Answer:
D
Step-by-step explanation:
[tex]y - \frac{3}{3} + 12[/tex]
[tex]y - 1 + 12[/tex]
[tex]y + 11[/tex]
Which equation represents the line that passes through points (1, –5) and (3, –17)?
Answer:
y = -6x + 1
Step-by-step explanation:
y = mx + b
b = slope = (-5 - (-17))/(1 - 3) = 12/(-2) = -6
y = -6x + b
-5 = -6(1) + b
b = 1
y = -6x + 1
Answer:
[tex]y=-6x+1[/tex]
Step-by-step explanation:
The linear equation with slope m and intercept c is given as follows:
[tex]y=mx+c[/tex]
The formula for slope of line with points [tex](x_{1} ,y_{2} )[/tex] and [tex](x_{2} ,y_{2} )[/tex] can be expressed as,
[tex]m=\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]
The line passes the points that are [tex](1,-5)[/tex] and [tex](3,-17)[/tex]
The slope of the line can be obtained as follows:
[tex]m=\frac{-17-(-5)}{(3)-1}[/tex]
[tex]m=\frac{-12}{2}[/tex]
[tex]m=-6[/tex]
The slope of the line is [tex]-6[/tex]
The line passes through the point [tex](3,-17)[/tex]
Substitute 3 for x, - 6 for m and -17 for y in equation [tex]y=mx+c[/tex] to obtain the value of c.
[tex]-17=-6(3)+c[/tex]
[tex]-17=-18+c[/tex]
[tex]-17+18=c[/tex]
[tex]1=c[/tex]
The equation is [tex]y=-6x+1[/tex]
Hence, the equation of the line that passes through the points [tex](1,-5)[/tex] and [tex](3,-17)[/tex] is [tex]y=-6x+1[/tex]
LMNP is a parallelogram.
On a coordinate plane, parallelogram L M N P is shown. Point L is at (negative 4, 1), point M is at (2, 4), point N is at (3, 2), and point P is at (negative 3, negative 1).
What additional information would prove that LMNP is a rectangle?
The length of LM is StartRoot 45 EndRoot and the length of MN is StartRoot 5 EndRoot.
The slope of LP and MN is –2.
LM ∥ PN
LP ⊥ PN
Answer:
LP ⊥ PN
Step-by-step explanation:
Given
[tex]L = (-4, 1)[/tex]
[tex]M = (2, 4)[/tex]
[tex]N = (3, 2)[/tex]
[tex]P = (-3, -1)[/tex]
See attachment
Required
What proves LMNP is a rectangle
The additional information needed is LP ⊥ PN
Because:
[tex](a)\ LM= \sqrt{45}; MN = \sqrt{5}[/tex]
This can be true for other shapes, such as trapezoid, etc.
[tex](b)\ m(LP) = m(MN) = -2[/tex]
The slopes of LP and MN will be the same because both sides are parallel; However, this is not peculiar to rectangles alone. Same as option (c)
(d) LP ⊥ PN
This must be true i.e. LP must be perpendicular to PN
Answer:
d
Step-by-step explanation:
Find the indicated confidence interval. Assume the standard error comes from a bootstrap distribution that is approximately normally distributed. A 90% confidence interval for a mean μ if the sample has n-80 with X-22.1 and s = 5.6, and the standard error is SE = 0.63.
The 90% confidence interval is to :_________
Answer:
(21.064 ; 23.136)
Step-by-step explanation:
Given :
Sample, n = 80
Mean, xbar = 22.1
Standard deviation, s = 5.6
Standard Error, S. E = 0.63
Confidence interval :
Xbar ± Zcritical * S.E
22.1 ± (1.645 * 0.63)
22.1 ± 1.036
Lower boundary = 22.1 - 1.036 = 21.064
Upper boundary = 22.1 + 1.048 = 23.136
(21.064 ; 23.136)
can anyone help with this please !!!!
Answer:
"Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Step-by-step explanation:
Let be the following system of linear equations:
[tex]4\cdot x + 4\cdot y + z = 24[/tex] (1)
[tex]2\cdot x - 4\cdot y +z = 0[/tex] (2)
[tex]5\cdot x - 4\cdot y - 5\cdot z = 12[/tex] (3)
1) We eliminate [tex]y[/tex] by adding (1) and (2):
[tex](4\cdot x + 2\cdot x) +(4\cdot y - 4\cdot y) + (z + z) = 24 + 0[/tex]
[tex]6\cdot x +2\cdot z = 24[/tex] (4)
2) We eliminate [tex]y[/tex] by adding (1) and (3):
[tex](4\cdot x + 5\cdot x) +(4\cdot y - 4\cdot y) +(z -5\cdot z) = (24 + 12)[/tex]
[tex]9\cdot x -4\cdot z = 36[/tex] (5)
Hence, the correct answer is "Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Math algebra 2 show you’re work plz
9514 1404 393
Answer:
(t, u, w) = (1, -2, -2)
Step-by-step explanation:
A graphing calculator makes short work of this, giving the solution as ...
(t, u, w) = (1, -2, -2)
__
There are many ways to solve this "by hand." Here's one of them.
Add the first and third equations. Their sum is ...
-3t +4w = -11 . . . . . [eq4]
Add this to twice the second equation. That sum is ...
(-3t +4w) +2(-4t -2w) = (-11) +2(0)
-11t = -11
t = 1
Substituting this into the second equation gives ...
-4(1) -2w = 0
w +2 = 0 . . . . divide by -2
w = -2 . . . . add -2
Substituting for t in the third equation lets us find u.
2(1) -2u = 6
-1 +u = -3 . . . . . divide by -2
u = -2 . . . . add 1
The solution is (t, u, w) = (1, -2, -2).
I need help! please!!
Answer:
r=8°.answerStep-by-step explanation:
95°=6r°+47{ vertically opposite angle are equal}95°-47°=6r°6r°=48°r=48/6r=8°hope it helps.stay safe healthy and happy.Answer:
8
Step-by-step explanation:
95°=6r°+47(being vertically opposite angle)
or,48°=6r
or,48=/6=r°
or,r=8°
Last softball season, Pamela had 46 hits, a combination of singles (1 base), doubles (2 bases), and triples (3 bases). These 46 hits totaled 66 bases, and she had 4 times as many singles as doubles. How many doubles did she have?
Answer:
She had 8 doubles.
Step-by-step explanation:
This question is solved by a system of equations.
I am going to say that:
x is the number of singles.
y is the number of doubles
z is the number of triples.
46 hits
This means that [tex]x + y + z = 46[/tex]
46 hits totaled 66 bases
This means that:
[tex]x + 2y + 3z = 66[/tex]
4 times as many singles as doubles
This means that [tex]x = 4y[/tex]
So
[tex]x + 2y + 3z = 66[/tex]
[tex]4y + 2y + 3z = 66[/tex]
[tex]6y + 3z = 66[/tex]
And
[tex]x + y + z = 46[/tex]
[tex]4y + y + z = 46[/tex]
[tex]5y + z = 46 \rightarrow z = 46 - 5y[/tex]
Then
[tex]6y + 3z = 66[/tex]
[tex]6y + 3(46 - 5y) = 66[/tex]
[tex]6y + 138 - 15y = 66[/tex]
[tex]9y = 72[/tex]
[tex]y = \frac{72}{9}[/tex]
[tex]y = 8[/tex]
She had 8 doubles.
The fair spinner shown in the diagram above is spun. Work out the probability of getting a 3. Give your answer as a fraction in its simplest form.
Answer:
The number of fours divided by the total number of possibilities. If there are two fours and 8 spaces, the probability is 2/8 = 1/4.Step-by-step explanation:
Which of the following statements must be true about this diagram? Check all
that apply.
4 3
1
1
N
A. The degree measure of 23 equals the sum of the degree
measures of 21 and 22.
B. m23 is greater than m 2
C. The degree measure of 24 equals the sum of the degree
measures of 22 and 23.
D. m 4 is greater than m_2.
E. m24 is greater than m 1.
F. The degree measure of 24 equals the sum of the degree measures
of 21 and 22.
Answer:
D, E, and F
Step-by-step explanation:
✔️Statement D is true:
Rationale: m<4 is more than 90°, while m<2 is less than 90°. Therefore m<4 is greater than m<2
✔️Statement E is true:
Rationale: m<4 is more than 90°, while m<1 is less than 90°. Therefore m<4 is greater than m<1
✔️Statement F is true:
Rationale:
m<4 is an external angle of the triangle.
m<1 and m<2 are interior angles that are opposite to m<4. Therefore, based on the external angle theorem of a triangle,
m<4 = m<1 + m<2
Can anyone help me with the question?
Answer:
-9
Step-by-step explanation:
(f-g) (x) = 2x²-7x+24-5x²-5x+3
= -3x²-12x+27
(f-g) (2) = -3(2)²-12(2)+27
= -12-24+27
= -9
In what ratio of line x-y-2=0 divides the line segment joining (3,-1) and (8,9)?
[tex] \large{ \tt{❁ \: USING \: INTERNAL \: SECTION \: FORMULA: }}[/tex]
[tex] \large{ \bf{✾ \: P(x \:, y \: ) = ( \frac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}} \: ,\: \frac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}) }}[/tex]
[tex] \large{ \bf{⟹ \: ( \frac{8m + 3n}{m + n} , \: \frac{9m -n}{m + n}) }}[/tex]
Since point P lies on the line x - y - 2 = 0 ,[tex] \large{ \bf{ ⟼\frac{8m + 3n}{m + n} - \frac{9m - n}{m + n} - 2 = 0 }}[/tex]
[tex] \large{ \bf{⟼ \: \frac{8m + 3n - 9m + n}{m + n} - 2 = 0 }}[/tex]
[tex] \large{ \bf{⟼ \: \frac{4n - m}{ m + n} - 2 = 0 }}[/tex]
[tex] \large{⟼ \: \bf{ \frac{4n - m}{m + n }} = 2} [/tex]
[tex] \large{ \bf{⟼ \: 4n - m = 2m + 2n}}[/tex]
[tex] \large{ \bf{⟼ \: 4n -2 n = 2m + m}}[/tex]
[tex] \large{ \bf{⟼2n = 3m}}[/tex]
[tex] \large{ \bf{⟼ \: 3m = 2n}}[/tex]
[tex] \large{ \bf{⟼ \: \frac{m}{n} = \frac{2}{3} }}[/tex]
[tex] \boxed{ \large{ \bf{⟼ \: m : \: n = 2: \: }3}}[/tex]
Hence , The required ratio is 2 : 3 .-Hope I helped! Let me know if you have any questions regarding my answer and also notify me , if you need any other help! :)
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
evaluate the expression when x= -3 and y=3
y-8x
Answer:
27
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightStep-by-step explanation:
Step 1: Define
Identify
x = -3
y = 3
y - 8x
Step 2: Evaluate
Substitute in variables: 3 - 8(-3)Multiply: 3 + 24Add: 27[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{y - 8x}\\\\\large\textsf{= 3 - 8(-3)}\\\\\large\textsf{8(-3) = \bf -24}\\\\\large\textsf{= 3 - \bf 24}\\\\\large\textsf{= \bf 27}\\\\\boxed{\boxed{\large\textsf{\huge\textsf{Answer: \bf 27}}}}\huge\checkmark\\\\\\\\\large\textsf{Good luck on your assignment and enjoy your day!}\\\\\\\\\\\frak{Amphitrite1040:)}[/tex]
Amic and Bernie built a maze for their hamsters. Annic's hamster completed the maze 7 seconds less than twice the time it took Bernie's hamster to complete the maze. If Bernie's hamster completed the maze in b seconds, which expression represents the time, in seconds, it took Annie's hamster to complete the maze?
A. 7-2b
B. 2b-7
c. 2b+7
D. 2b/7
Answer:
2b-7
Step-by-step explanation:
Given that,
Bernie's hamster completed the maze in b seconds.
Annic's hamster completed the maze 7 seconds less than twice the time it took Bernie's hamster to complete the maze.
Twice the time it took Bernie's hamster to complete the maze is 2b.
7 seconds less than twice the time it took Bernie's hamster = 2b-7
So, the correct option is (b) "2b-7".
please help will mark brainly!!!!! need done. PERSONAL FINANCE
Answer:
Step-by-step explanation:
The measures of two angles of a triangle are 101° and 37°. Find the measure of the third angle in degrees.
Answer:
42 degrees
Step-by-step explanation:
We already have the two angles for the triangle, we just need the third. For triangles, the can only add up to 180 degrees. 101+37=138 degrees, now we subtract 138 from 180.
180-138=42.
2.What is the value of x if x/4 + 12 = 4 ?
Answer:
Step-by-step explanation:
Answer:
hope it will help u
Heeelp please!!! Picture included
Answer:
2nd choice
Step-by-step explanation:
EXERCISE 3 Date:......... A shop sells a pencil at ¢500.00 and pen at 42,000.00. (a) If Afua bought 8 pencils and 5 pens, how much did she pay altogether for them? (b) The price of a pencil is increased by 20% and a pen by 10%. Find how much she will pay for 10 pencils and 8 pens.
Answer:
ok so its is 5 dollars for a pencil and 420 dollars for a pen(dang)
a40+2100=2140
now
b6 pencil 462 pen
60+3696=3756
Hope This Helps!!!
(a) Afua paid ¢44,500.00 for 8 pencils and 5 pens.
(b) Afua will pay ¢71,400.00 for 10 pencils and 8 pens after the price increase.
(a) To find how much Afua paid altogether for 8 pencils and 5 pens, we need to calculate the total cost for each item and then add them together.
Given:
Cost of a pencil, [tex]Pencil_{cost}[/tex] = ¢500.00
Cost of a pen, [tex]Pen_{cost}[/tex] = ¢42,000.00
Number of pencils bought, [tex]n_{pencils}[/tex] = 8
Number of pens bought, [tex]n_{pens}[/tex] = 5
Total cost of pencils,
[tex]Total_{pencil}_{cost} = Pencil_{cost} * n_{pencils}[/tex]
= ¢500.00 × 8
= ¢4,000.00
Total cost of pens,
[tex]Total_{pen}_{cost} = Pen_{cost} * n_{pens}[/tex]
= ¢42,000.00 × 5
= ¢210,000.00
Altogether, [tex]Total_{cost} = Total_{pencil}_{cost} + Total_{pen}_{cost}[/tex]
= ¢4,000.00 + ¢210,000.00
= ¢214,000.00.
Therefore, Afua paid ¢214,000.00 for 8 pencils and 5 pens.
(b) Now, let's calculate the new total cost after the price increase.
The price of a pencil increased by 20%, which means the new pencil cost is:
[tex]New_{pencil}_{cost}[/tex] = [tex]Pencil_{cost}[/tex]+ (20% × [tex]Pencil_{cost}[/tex])
= ¢500.00 + (0.20 × ¢500.00)
= ¢500.00 + ¢100.00
= ¢600.00
Similarly, the price of a pen increased by 10%, which means the new pen cost is:
[tex]New_{pen}_{cost}[/tex] = [tex]Pen_{cost}[/tex] + (10% × [tex]Pen_{cost}[/tex])
= ¢42,000.00 + (0.10 × ¢42,000.00)
= ¢42,000.00 + ¢4,200.00
= ¢46,200.00
Now, we can find the total cost for 10 pencils and 8 pens with the increased prices:
Number of pencils to be bought, [tex]n_{pencils}_{new}[/tex] = 10
Number of pens to be bought, [tex]n_{pens}_{new}[/tex] = 8
Total cost of pencils with new prices,
[tex]Total_{pencil}_{cost}_{new}[/tex] =[tex]New_{pencil}_{cost}[/tex] × [tex]n_{pencils}_{new}[/tex]
= ¢600.00 × 10
= ¢6,000.00
Total cost of pens with new prices,
[tex]Total_{pen}_{cost}_{new}[/tex] = [tex]New_{pen}_{cost}[/tex] × [tex]n_{pens}_{new}[/tex]
= ¢46,200.00 × 8
= ¢369,600.00
Altogether, [tex]New_{total}_{cost}[/tex] = [tex]Total_{pencil}_{cost}_{new}[/tex] + [tex]Total_{pen}_{cost}_{new}[/tex]
= ¢6,000.00 + ¢369,600.00
= ¢375,600.00
Therefore, Afua will pay ¢375,600.00 for 10 pencils and 8 pens with the increased prices.
To know more about Price here
https://brainly.com/question/28005569
#SPJ2
Let Y1 and Y2 denote the proportions of time (out of one workday) during which employees I and II, respectively, perform their assigned tasks. The joint relative frequency behavior of Y1 and Y2 is modeled by the density function.
f (y 1,y2)=y 1+y 2 o<=y 1<=1, 0<=y2<=1(0 elsewhere)
a. Find P (Y1< 1/2,y2>1/4)
b. Find P(Y 1+Y2<=1)
Are Y1 and Y2 independent?
(a) The region Y₁ < 1/2 and Y₂ > 1/4 corresponds to the rectangle,
{(y₁, y₂) : 0 ≤ y₁ < 1/2 and 1/4 < y₂ ≤ 1}
Integrate the joint density over this region:
[tex]P\left(Y_1<\dfrac12,Y_2>\dfrac14\right) = \displaystyle\int_0^{\frac12}\int_{\frac14}^1 (y_1+y_2)\,\mathrm dy_2\,\mathrm dy_1 = \boxed{\dfrac{21}{64}}[/tex]
(b) The line Y₁ + Y₂ = 1 cuts the support in half into a triangular region,
{(y₁, y₂) : 0 ≤ y₁ < 1 and 0 < y₂ ≤ 1 - y₁}
Integrate to get the probability:
[tex]P(Y_1+Y_2\le1) = \displaystyle\int_0^1\int_0^{1-y_1}(y_1+y_2)\,\mathrm dy_2\,\mathrm dy_1 = \boxed{\dfrac13}[/tex]
Y₁ and Y₂ are not independent because
P(Y₁ = y₁, Y₂ = y₂) ≠ P(Y₁ = y₁) P(Y₂ = y₂)
To see this, compute the marginal densities of Y₁ and Y₂.
[tex]P(Y_1=y_1) = \displaystyle\int_0^1 f(y_1,y_2)\,\mathrm dy_2 = \begin{cases}\frac{2y_1+1}2&\text{if }0\le y_1\le1\\0&\text{otherwise}\end{cases}[/tex]
[tex]P(Y_2=y_2) = \displaystyle\int_0^1 f(y_1,y_2)\,\mathrm dy_1 = \begin{cases}\frac{2y_2+1}2&\text{if }0\le y_2\le1\\0&\text{otherwise}\end{cases}[/tex]
[tex]\implies P(Y_1=y_1)P(Y_2=y_2) = \begin{cases}\frac{(2y_1+1)(2y_2_1)}4&\text{if }0\le y_1\le1,0\ley_2\le1\\0&\text{otherwise}\end{cases}[/tex]
but this clearly does not match the joint density.
answer please I’m dying from math
Answer:
B
substract the variables
Suppose there is a strong positive correlation between a and b. Which of the
following must be true?
A. An increase in a causes b to decrease.
B. An increase in a causes bto increase.
C. When a increases, b tends to increase.
D. When a increases, b tends to decrease.
ANSWER ASAP WILL GIVE BRAINLIEST
Answer:
B.
Step-by-step explanation:
there is not much to explain.
a strong correlation means there is a direct connection.
so, a change in a causes immediately a change in b.
and positive means that the changes go in the same sign direction. increase => increase. decrease => decrease.
What is the midpoint of the segment shown below?
Answer:
A
Step-by-step explanation:
Midpoints are found by averaging the coordinates.
Averaging " add all the numbers and divide by the number of numbers.
Here, there are only 2 numbers. So, you divide by 2.
(1,2) (1,-5)
[tex]\frac{1 +1}{2}[/tex] , [tex]\frac{2 + (-5)}{2}[/tex]
[tex]\frac{2}{2}[/tex] , [tex]\frac{-3}{2}[/tex]
(1, [tex]\frac{-3}{2}[/tex] )
At a sale, a sofa is being sold for 64% of the regular price. The sale price is $592. What is the regular price?
Answer:
925
Step-by-step explanation:
Formula =592 x 100/64 = 925
Many fast-food restaurants have soft drink dispensers with preset amounts, so that when the operator merely pushes a button for the desired rink the cup is automatically filled. This method apparently saves time and seems to increase worker productivity. A researcher randomly selects 9 workers from a restaurant with automatic dispensers and 9 works from a restaurant with manual dispensers. At a 1% significance level, use the Mann-Whitney U Test to test whether workers with automatic dispensers are significantly more productive.
Automatic (Group 1): 153, 128, 143, 110, 152, 168, 144, 137, 118
Manual (Group 2): 105, 118, 129, 114, 125, 117, 106, 92, 126
1. What is the alternative hypothesis for this study?
i. Worker productivity is higher with automatic dispensers.
ii. Automatic dispensers fill cups faster than manual dispensers.
iii. Worker productivity is lower with automatic dispensers.
iv. There is no difference in worker productivity between restaurants with automatic and manual dispensers.
2. What rank will be given to the observation value, 118 that is in both the automatic and manual groups? (Round answer to 1 decimal).
3. When rounding the U test statistic up to the next value, what is the p-value from the Mann Whitney Table of p-values? (Round to 4 decimal places)
4. What can be concluded from this study at a 1% significance level?
Answer:
ii
Step-by-step explanation:
you have to look and read it it comes simple
PLEASE HELP ME ASAP GIVING 10+ POINTS
The actual height of the building shown in the model is 150 feet What is the actual width of the building shown in the model?
Answer:
60 ft
Step-by-step explanation:
The answer has to be in feet units
Now that we know the height is 5 cm equivalent to 150 feet, what is the width of the building in feet units
5 cm = 150 ft
Rule: multiply cm by 30 to get the ft
2 cm = ?
2 cm × 30 = 60 ft
2 cm = 60 ft
what ordered pair makes both inequalities true
-3,5
-2,2
-1,-3
0,-1
Answer:
(-2, 2)
Step-by-step explanation:
(-2, 2) is the only ordered pair that makes both inequalities true.
Answer:
B
Step-by-step explanation:
got it right
Can someone help me please..
a total of 678 tickets were sold for the school play. They were either adult tickets or student tickets. there were 72 fewer student tickets sold than adult tickets. how many adult tickets were sold
Step-by-step explanation:
678-72=606/2=303+72=375
how to solve these questions?!
Answer:
1. x + 4 = 9
Hint: the word 'sum' generally refers to addition.
2. 10a = 70
3. [tex]\frac{3}{4} t[/tex] = 15
4. [tex]\frac{1}{4} x[/tex] - 4 = 4
Find the equation of the lines in problem 1 (0,0) slope =2.
Answer:
y = 2x
Step-by-step explanation:
Given that , the line passes through the point (0,0) and has a slope of 2. So here we can use the point slope form of the line as ,
[tex]\implies y- y_1 = m( x - x_1) \\\\\implies y - 0 = 2( x - 0 ) \\\\\implies y = 2(x) \\\\\implies \underline{\underline{y = 2x }}[/tex]