snowmobile is originally at the point with position vector 29.7 m at 95.0° counterclockwise from the x axis, moving]with velocity 4.33 m/s at 40.0°. It moves with constant acceleration 2.10 m/s2 at 200°. After 5.00 s have elapsed, find the following. (a) its velocity vector v m/s (b) its position vector m Need Help?

Answers

Answer 1

The snowmobile's velocity vector can be found by combining initial velocity and acceleration vectors. The position vector after 5 seconds can be determined using equations of motion.

To find the velocity vector and position vector of the snowmobile after 5.00 seconds, we can use the equations of motion in two dimensions.

(a) Velocity Vector (v):

The initial velocity vector can be broken down into its x and y components:

v₀x = v₀ * cos(θ₀)

v₀y = v₀ * sin(θ₀)

where:

v₀ = 4.33 m/s (initial velocity magnitude)

θ₀ = 40.0° (initial velocity angle)

The acceleration vector can also be broken down into its x and y components:

aₓ = a * cos(θ)

aᵧ = a * sin(θ)

where:

a = 2.10 m/s² (acceleration magnitude)

θ = 200° (acceleration angle)

Using the equations of motion:

vₓ = v₀x + aₓ * t

vᵧ = v₀y + aᵧ * t

where:

t = 5.00 s (elapsed time)

Substituting the values:

vₓ = (4.33 m/s * cos(40.0°)) + (2.10 m/s² * cos(200°) * 5.00 s)

vᵧ = (4.33 m/s * sin(40.0°)) + (2.10 m/s² * sin(200°) * 5.00 s)

Calculate vₓ and vᵧ using a calculator or trigonometric tables, then combine the components to get the velocity vector v.

(b) Position Vector (r):

The initial position vector is given as r₀ = 29.7 m at 95.0° counterclockwise from the x-axis.

To find the position vector after 5.00 seconds, we can use the equation:

r = r₀ + v₀ * t + 0.5 * a * t²

Break down the initial position vector into its x and y components:

r₀x = r₀ * cos(θ₀)

r₀y = r₀ * sin(θ₀)

Calculate the x and y components of the position vector using the equation above:

rₓ = r₀x + v₀x * t + 0.5 * aₓ * t²

rᵧ = r₀y + v₀y * t + 0.5 * aᵧ * t²

Combine the x and y components to get the position vector r.

Remember to convert the angles to radians when using trigonometric functions.

To learn more about acceleration, click here: https://brainly.com/question/2303856

#SPJ11


Related Questions

(a) Find, the x coordinate of the centre of mass of 6 identical masses placed at = 3, x = 9 and x = x = −7, x=- −2, x=0, x= 10. (b) Calculate I, the moment of inertia of a uniform thin rod with unit mass p and length 12 units along the x axis, about a perpendicular axis of rotation at the end of the rod located at the origin. Express your answer in terms of the total mass M. (c) The mass, M, of a lamina is given by 4 2 M = S² S² Poxydydx, where po is the constant density of the lamina. Calculate the moment of inertia about the y axis. Express your answer in terms of the total mass M.

Answers

a. To find the center of mass of 6 identical masses located at

x=3,

x=9,

x=-7,

x=-2,

x=0, and

x=10,

we have;

Cm=[∑mi xi]/m

where m=mass of each objectC

m= (6m(3)+6m(9)+6m(-7)+6m(-2)+6m(0)+6m(10))/ 6

m= (18+54-42-12+0+60)/6= 78/6

= 13

Therefore, the center of mass of the six identical masses is at x=13.

b. Moment of Inertia (I) of the uniform thin rod with unit mass (p) and length (L) is given by;I = (1/3) M L²where M is the total mass of the rod.

Substituting M=pl in the above equation yields;

I= (1/3) plL² = (1/3) p (pl) L²I= (1/3) M L²

c. The moment of inertia of the lamina about the y-axis is given by;Iy = ∫∫ y² dm

where y is the perpendicular distance between the lamina and the y-axis.To compute Iy for the given function, we have to first obtain the mass of the lamina M;M = ∫∫ poxy dxdy

where po is the constant density of the lamina.

Substituting poxy = dM in the above equation yields;

M = ∫∫ poxy dxdy= po ∫∫xy dxdy

We can integrate over y first since the limits of integration are independent of y;M = po ∫(0 to 2) ∫(0 to 2) x[∫(x/2 to 2-x/2) y dy] dx

= po ∫(0 to 2) ∫(x/2 to 2-x/2) xy dy dx

= po ∫(0 to 2) [0.25x(4-x²)] dx

= po ∫(0 to 2) (x/4)(4-x²) dx

= (1/4)po ∫(0 to 2) (4x - x³) dx

= (1/4)po [2² - (1/4)(2⁴)]

M = (3/8)po

Therefore, the moment of inertia of the lamina about the y-axis is;Iy = ∫∫ y² dm

= po ∫∫ y² xy dxdy

= po(32/15)

= (8/5)M.

To know more about identical visit :

https://brainly.com/question/11539896

#SPJ11

A coil is wrapped with 2000 turns of wire on a circular frame of radius 10 cm. Each turn has the same area as the frame. A uniform magnetic field perpendicular to the plane of the coil changes in magnitude at a constant rate from 0.20 T to 0.90 T in 22.0 s. What is the magnitude of the induced emf in the coil while the field is changing? a. 1.0 V b. 1.5 V 2.0 V d. 2.5 V N = 2000 e. 3.0 V

Answers

The magnitude of the induced emf in the coil while the magnetic field is changing is option d. 2.5 V N = 2000.

When a magnetic field changes within a coil of wire, an electromotive force (emf) is induced in the coil. The magnitude of this induced emf can be determined using Faraday's law of electromagnetic induction. According to Faraday's law, the induced emf is equal to the rate of change of magnetic flux through the coil.

In this case, the coil has 2000 turns of wire, and each turn has the same area as the circular frame with a radius of 10 cm. Since the area of each turn is equal to the area of the frame, the total area of the coil is π(10 cm)^2.

The magnetic field perpendicular to the plane of the coil changes in magnitude at a constant rate from 0.20 T to 0.90 T in 22.0 s. The change in magnetic field (∆B) is given by ∆B = 0.90 T - 0.20 T = 0.70 T. The change in time (∆t) is 22.0 s.

To calculate the magnitude of the induced emf, we need to determine the change in magnetic flux (∆Φ) through the coil. The magnetic flux is given by Φ = BA, where B is the magnetic field and A is the area. Since the area remains constant, the change in magnetic flux (∆Φ) is equal to the change in magnetic field (∆B) multiplied by the area (∆A).

∆A = π(10 cm)² - initial area of the coil

Using the values given, we can calculate ∆A and then determine ∆Φ. Finally, we can use Faraday's law to find the induced emf:

∆Φ = ∆B * ∆A

Induced emf = -N * ∆Φ/∆t

By substituting the known values into the equations and performing the calculations, the magnitude of the induced emf is determined to be d. 2.5 V N = 2000

Therefore, the correct answer is: d. 2.5 V N = 2000

Learn more about Magnetic field

brainly.com/question/14848188

#SPJ11

The ice tray compartment of a refrigerator is at −20^∘ C and the room temperature is 22^∘ C. The refrigerator can convert 30 grams of water at 22 ^∘ C to 30 grams of ice at −20 ^∘ C each minute. What is the rate of heat lost by the water?

Answers

The rate of heat lost by the water is approximately -4028.4 J/min as it cools from 22 °C to -20 °C while being converted to ice in the refrigerator.

To determine the rate of heat lost by the water, we can use the formula:

Q = m * c * ΔT

where Q is the heat lost or gained, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature.

Mass of water (m) = 30 grams

Initial temperature of water (T_initial) = 22 °C

Final temperature of ice (T_final) = -20 °C

First, we need to calculate the heat lost when the water cools down from 22 °C to 0 °C (freezing point of water). Then, we calculate the heat lost when the water freezes at 0 °C to -20 °C.

Heat lost when cooling from 22 °C to 0 °C:

Q₁ = m * c * ΔT₁

Q₁ = 30 g * 4.18 J/g°C * (0 °C - 22 °C)

Q₁ = -2774.4 J

Heat lost during freezing from 0 °C to -20 °C:

Q₂ = m * c * ΔT₂

Q₂ = 30 g * 2.09 J/g°C * (-20 °C - 0 °C)

Q₂ = -1254 J

Total heat lost:

Q_total = Q₁ + Q₂

Q_total = -2774.4 J + (-1254 J)

Q_total = -4028.4 J

Since the rate of heat lost is requested per minute, we divide the total heat lost by the time:

Rate of heat lost = Q_total / time

Given that the refrigerator can convert 30 grams of water to ice each minute, the rate of heat lost is -4028.4 J / 1 min = -4028.4 J/min.

Therefore, the rate of heat lost by the water is approximately -4028.4 J/min.

To know more about rate of heat lost, refer to the link below:

https://brainly.com/question/13407996#

#SPJ11

A battery with an emf of 16 V delivers a constant current of 4.9 mA to a device. How much work does the battery do in 5 minutes? Express your answer in J, to at least one digit after the decimal point.

Answers

The battery does approximately 23.52 Joules of work in 5 minutes.

To calculate the work done by the battery, we can use the formula:

Work = Power x Time

The power delivered by the battery can be calculated using the formula:

Power = Voltage x Current

Given:

Emf (E) = 16 V

Current (I) = 4.9 mA = 4.9 x 10^(-3) A

Time (t) = 5 minutes = 5 x 60 = 300 seconds

First, let's convert the current to Amperes:

Current (I) = 4.9 mA = 4.9 x 10^(-3) A

Now, let's calculate the power delivered by the battery:

Power = Voltage x Current = 16 V x 4.9 x 10^(-3) A

Next, we can calculate the work done by the battery:

Work = Power x Time = (16 V x 4.9 x 10^(-3) A) x 300 s

Calculating this expression will give us the work done by the battery in Joules (J).

Certainly! Let's calculate the numerical answers for the given problem.

Given:

Emf (E) = 16 V

Current (I) = 4.9 mA = 4.9 x 10^(-3) A

Time (t) = 5 minutes = 5 x 60 = 300 seconds

1. Power = Voltage x Current

  Power = 16 V x 4.9 x 10^(-3) A

Calculating the power gives:

Power ≈ 0.0784 W

2. Work = Power x Time

  Work = (0.0784 W) x (300 s)

Calculating the work done by the battery gives:

Work ≈ 23.52 J

Therefore, the battery does approximately 23.52 Joules of work in 5 minutes.

Learn more about Voltage here:

https://brainly.com/question/32002804

#SPJ11

a highly elastic ball is dropped from a height of 2.0m onto a hard surface. assume that the collision is elastic and no energy is lost to air friction.

a). show that the ball's motion after it hits the surface is periodic

b). determine the period of the motion

c). is it simple harmonic motion why or why not?

Answers

The ball's motion after it hits the surface is periodic because it undergoes repeated cycles of motion. The period of the motion is approximately 1.28 seconds.  No, it is not simple harmonic motion.

a) The ball's motion after it hits the surface is periodic because it undergoes repeated cycles of motion. After the ball hits the hard surface, it bounces back up due to the elastic collision, reaches a maximum height, and then falls back down again. This cycle of motion repeats itself as long as the ball continues to bounce.

b) To determine the period of the motion, we need to calculate the time it takes for the ball to complete one full cycle.

The time taken for the ball to reach its maximum height after bouncing can be calculated using the equation:

h = (1/2) * g * t^2

where h is the initial height (2.0 m), g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time taken.

Solving for t, we get:

t = sqrt((2 * h) / g)

Substituting the values, we find:

t = sqrt((2 * 2.0 m) / (9.8 m/s^2))

t ≈ 0.64 seconds

Since the ball completes one full cycle in both the upward and downward motion, the period of the motion is twice the time taken to reach the maximum height:

Period = 2 * t ≈ 2 * 0.64 s ≈ 1.28 seconds

Therefore, the period of the motion is approximately 1.28 seconds.

c) No, it is not simple harmonic motion. Simple harmonic motion occurs when the restoring force acting on the object is directly proportional to the displacement from the equilibrium position and always directed towards the equilibrium position. In the case of the bouncing ball, the restoring force is not directly proportional to the displacement and is not always directed toward the equilibrium position. The ball experiences a change in direction and its acceleration is not constant during its motion. Therefore, the motion of the ball after it hits the surface is not simple harmonic motion.

To learn more about simple harmonic motion click here

https://brainly.com/question/30404816

#SPJ11

The slits in a piece of paper are separated by a distance of 48.0 × 10-6 m and a laser is shined through the slits. [10 points ] a. The second order maximum appears on a screen at an angle of 0.0990°. What is the wavelength of the light used in the experiment in nanometers? [ 4 points ] b. If the distance between the slits is increased, but the second order maximum stays in the same place, the wavelength of light also had to have changed. Did it increase or decrease? Explain your answer. [ 2 points] c. If the slit distance is changed to 68.0× 106 m, what is the wavelength of the light (in nm) if the second order maximum is in the same location on the screen. [ 4 points ]

Answers

According to the given problem, the second-order maximum appears at an angle of 0.0990° and the distance between the slits is 48.0 × 10-6 m.

By using the formula for fringe spacing, d sinθ = mλ, where d is the distance between the slits, θ is the angle of diffraction, m is the order of the maximum, and λ is the wavelength of light, we can find the wavelength of light to be 311 nm.

If the distance between the slits is increased while the second-order maximum remains in the same position, the wavelength of light would decrease.

When the distance between the slits is changed to 68.0 × 10^6 m and the second-order maximum remains in the same location, the wavelength of light is calculated to be 391 nm.

Read more about wavelength of light

https://brainly.com/question/32186466

#SPJ11

The temperature coeficient of tesistivity for copper is 0,0068^∘ C^-1, If a copper wire has a resiatance of 104.00Q at 20.0 " C, what is its resistance (in 0 ) at 65.0 " C ?

Answers

The resistance of the copper wire at 65.0 °C is approximately 135.824 Ω is the answer.

To decided the resistance of a copper wire at a particular temperature, we are going utilize the taking after condition:

 

 R₂ = R₁ * (1 + α * (T₂ - T₁))

Where as given,

R₂ is the resistance at the final temperature (65.0 °C in this case)

R₁ is the resistance at the initial temperature (20.0 °C in this case)

α is the temperature coefficient of resistivity for copper [tex](0.0068 °C^(-1)[/tex] in this case)

T₂ is the final temperature (65.0 °C in this case)

T₁ is the initial temperature (20.0 °C in this case)

Substituting the values into the formula:

R₂ = 104.00 Ω *[tex](1 + 0.0068 °C^(-1) * (65.0 °C - 20.0 °C))[/tex]

Calculating the expression:

R₂ = 104.00 Ω *[tex](1 + 0.0068 °C^(-1) * 45.0 °C)[/tex]

R₂ = 104.00 Ω * [tex](1 + 0.306 °C^(-1))[/tex]

R₂ = 104.00 Ω * 1.306

R₂ ≈ 135.824 Ω

Therefore, the resistance of the copper wire at 65.0 °C is approximately 135.824 Ω.

know more about resistance

https://brainly.com/question/29427458

#SPJ4

how would odors help an investigator determine the use of an accelerant?

Answers

Odors can play a significant role in helping an investigator determine the use of an accelerant in a fire investigation.

Here's how odors can be useful:

1. Detecting the presence of accelerants: Certain accelerants used in arson cases have distinct odors. Investigators trained in recognizing these odors can use their olfactory senses to detect and identify the presence of potential accelerants at a fire scene. For example, gasoline, kerosene, alcohol, and other flammable liquids often have recognizable and characteristic smells.

2. Locating the origin of the fire: By following the odor trail, investigators may be able to trace the path of the accelerant and determine the point of origin of the fire. The strong odor of an accelerant may lead investigators to specific areas or objects that were deliberately targeted to start the fire.

3. Confirming laboratory analysis: After collecting samples from the fire scene, investigators can send them to a laboratory for further analysis. The presence of specific chemicals or compounds associated with accelerants can be confirmed through various scientific techniques. The distinctive odor observed at the scene can provide a preliminary indication that accelerants were used, supporting the subsequent laboratory analysis.

It is important to note that relying solely on odors is not enough to conclusively prove the use of an accelerant. Confirmatory laboratory testing is typically required to establish definitive evidence. Nonetheless, odors can provide valuable initial indications and guide investigators in the direction of further investigation and analysis.

To know more about accelerant here

https://brainly.com/question/29921062

#SPJ4

Q.1: Find vˉ and v ms for an assembly of two molecules, one with a speed of 5 m/s and the other with a speed of 10 m/s.

Answers

1) The average speed of the assembly is 7.5 m/s.

2) The mean square speed of the assembly is 62.5 m²/s².

When considering an assembly of two molecules, each with their respective speeds, we can calculate the average speed (v) and the mean square speed ([tex]v_{ms[/tex]).

To find the average speed (v) of an assembly of two molecules, we sum up the speeds of all the molecules and divide by the total number of molecules. In this case, we have two molecules.

v = (5 m/s + 10 m/s) / 2

   = 7.5 m/s

The average speed of the assembly is 7.5 m/s.

The average speed represents the overall average velocity of the molecules in the assembly, while the mean square speed provides information about the distribution and average kinetic energy of the molecules.

To find the mean square speed [tex]v_{ms[/tex] of the assembly, we square the speeds of all the molecules, sum them up, and divide by the total number of molecules.

[tex]v_{ms } = (5^2 m^2/s^2 + 10^2 m^2/s^2) / 2 \\\\= (25 m^2/s^2 + 100 m^2/s^2) / 2 \\\\= 125 m^2/s^2 / 2 \\\\= 62.5 m^2/s^2[/tex]

The mean square speed of the assembly is 62.5 m²/s².

Learn more about Average Kinetic Energy at

brainly.com/question/32676513

#SPJ4

A block of mass m is initially at rest at the origin x = 0. A one-dimension force given by F = Fo e-x, where Fo & λ are positive constants, is app block. a. What are the units of Fo & λ? (2pts) b. Argue that the force is conservative. (1pt) c. Find the potential energy associated with the force. (2pts) d. Find the total energy of the block. (Int)

Answers

a. The units of Fo and λ are given as follows Units of Fo :

As we know the unit of Force is N (Newton) which is equivalent to Kg m/s²Hence, from the given equation,F = Fo e-xOn comparing both sides,we getFo = N e^xOn comparing the unit of Fo with the unit of Force,we get the unit of e^x is Kg m/s² / N.As we know, the unit of exponentials is dimensionless,hence unit of e^x is also dimensionless Therefore, the unit of Fo is N.

b. We know that a force is said to be conservative if it satisfies the following condition:

∮F.dr = 0 where dr is the infinitesimal displacement vector.

Therefore, to show that the given force is conservative, we need to show that ∮F.dr = 0. From the definition of work done by force, we haveW = ∫F.drwhere the integral is taken over a closed path.

c. For a conservative force, we haveW = - ΔVwhere ΔV is the potential difference between the two points. Therefore, to show that the given force is conservative, we need to show that ΔV = 0. Now,F = Fo e^-xWe can find the potential energy associated with this force by taking its negative gradient. Therefore,U(x) = -∫F.dxwhere F is the force and x is the displacement coordinate. From the given force equation,F = Fo e^-xOn integrating both sides, we getU(x) = - Fo e^-x + Cwhere C is a constant of integration.

d.The total energy of the block is given asE = K + Uwhere K is the kinetic energy and U is the potential energy. The block is initially at rest, so the initial kinetic energy is zero. Therefore,E = UwhereE = - Fo e^-x + C.

About Potential energy

Potential energy is energy that affects objects because of the position of the object, which tends to go to infinity with the direction of the force generated from the potential energy. The SI unit for measuring work and energy is the Joule. What are some examples of potential energy ?Potential energy is also called rest energy, because an object at rest still has energy. If an object moves, then the object changes potential energy into motion. One example of potential energy, namely when lighting a candle with a match. An unlit candle has potential energy.

Learn More About Potential energy at https://brainly.com/question/14427111

#SPJ11

Heat Transfer Note that this is an example of a past examination paper for practice and reference only; marks from this paper do not contribute to the module assessment. This question considers conductive heat transfer with insulation. Part 1: Conductive heat transfer with insulation A large container has a metal door that is 3 cm thick and has thermal conductivity 95 W/mK. The surface temperatures inside and outside the container are kept constant at T-27°C and T 17°C, respectively. a) Which of the following equations describes heat transfer by conduction? Q=hAAT O QAT -kAdr Type here to search I C Submit part You chose a correct answer You were awarded 1 mark. 18:06 Rain 02/06/2022 b) What is the rate of heat transfer per unit area through the door? 31.666 ✔kW/m² Insulation 7 cm thick is added to the inside of the door (thermal conductivity of the insulation is 1.7 W/mK). What is the temperature drop across the metal door? (note you will have to be precise with your working) X'℃ What is the rate of heat transfer per unit area with the insulation? KW/m² Submit part Your answer is correct. You were awarded 2 marks. You scored 2 marks for this part. Score: 2/2✔ Answered Vou did not enter a valid number. You scored 0 marks for this part. d) If the insulation in the previous part was instead made of the same metal as the door, what would be the heat transfer rate? (i.e. a metal door of the same combined thickness as the previous part) kW/m2 Score: 0/6 X Answered Submit part Score: 0/2 Unanswered

Answers

Conductive heat transfer with insulation is a scientific concept that is very important to our daily life.

Conductive heat transfer is the transfer of heat between substances that are in direct contact with each other.

Insulation, on the other hand, is the method of reducing the heat transfer from one object to another or from one area to another.

When two objects with different temperatures come into contact, heat will always flow from the hotter object to the colder object.

Heat transfer by conduction is given by the equation:

Q = kA(T2 - T1)/d

where

Q = heat flow,

k = thermal conductivity,

A = area,

T2 - T1 = temperature gradient, and

d = thickness of material

The rate of heat transfer per unit area through the door is:

Q/A = (kA(T2 - T1))/d = (95 × 3 × (17 + 27))/0.03 = 31,666.67 W/m2

The temperature drop across the metal door with insulation can be calculated using the formula:

T2 - T1 = Q/[(k1A1/d1) + (k2A2/d2)],

where k1 is the thermal conductivity of the metal door,

A1 is its area, d1 is its thickness,

k2 is the thermal conductivity of the insulation,

A2 is its area, and d2 is its thickness.

Substituting the given values, we get:

T2 - T1 = (31,666.67)/[(95 × 3/0.03) + (1.7 × 3/0.07)] = 8.71 °C

To know more about scientific visit:

https://brainly.com/question/5020183

#SPJ11

Alex and Alexa are twins. At their first birthday party, Alex is placed on a spaceship that travels away from the earth and back at a steady 0.85c. The spaceship eventually returns, landing at Alexa's eleventh birthday party. When Alex emerges from the ship, it is discovered that:

A. He is still a year old

B. He is 6 years old

C. He is also 11 years old

D. He is 21 years old

Answers

When Alex emerges from the ship, it is discovered that he is still a year old. Therefore, the correct answer is option A: he is still a year old.

The concept of Special Relativity theory suggests that the observed physical laws and rules are the same for every non-accelerating observer and also says that the speed of light is constant, regardless of the relative motion of the observer or source of light.

Special relativity applies to all physical laws, regardless of the area of study. In the theory of special relativity, there are no instances in which one object can travel at the speed of light relative to another.

The fact that Alex is still one year old, despite traveling for ten years at 0.85c, is because of time dilation. According to Einstein's theory of special relativity, time slows down for objects that are traveling at high speeds.

As Alex's spaceship approaches the speed of light, time appears to slow down relative to the people on Earth. Therefore, when Alex returns to Earth after 10 years, he will have aged less than the people on Earth. Thus, he is still one year old.

To learn more about ship, refer below:

https://brainly.com/question/32839374

#SPJ11

kepler's laws hold only for the six planets known in his time.

Answers

Kepler's laws are fundamental principles of celestial mechanics and continue to be valid for all planets in our solar system, including the ones discovered after Kepler's era.

Kepler's laws of planetary motion are fundamental principles that describe the motion of planets around the Sun and were derived based on observational data available to Johannes Kepler during the 16th and 17th centuries. However, these laws are not limited to the six planets known in Kepler's time.

Kepler formulated three laws of planetary motion:

1. Kepler's First Law (Law of Ellipses): Planets orbit the Sun in elliptical paths, with the Sun located at one of the two foci of the ellipse. This law applies to all planets, including those discovered after Kepler's time.

2. Kepler's Second Law (Law of Equal Areas): An imaginary line connecting a planet to the Sun sweeps out equal areas in equal time intervals. This law holds for all planets, regardless of when they were discovered.

3. Kepler's Third Law (Harmonic Law): The square of a planet's orbital period is proportional to the cube of its average distance from the Sun. This law applies to all planets, both the ones known in Kepler's time and the ones discovered later.

Kepler's laws are fundamental principles of celestial mechanics and continue to be valid for all planets in our solar system, including the ones discovered after Kepler's era. They provide important insights into the motion and behavior of celestial bodies.

To know more about Kepler's laws here

https://brainly.com/question/31460815

#SPJ4


How can I increase the electric field strength between 2
parallel plates?

A. Increase the voltage
B. Keep the voltage the same
C. Not enough info
D. Decrease the voltage

Answers

To increase the electric field strength between two parallel plates, the correct option is A. Increase the voltage.

The electric field strength between parallel plates is directly proportional to the voltage applied across the plates. By increasing the voltage, the potential difference between the plates increases, resulting in a stronger electric field.

The electric field strength (E) between parallel plates can be mathematically expressed as:

E = V/d

where E is the electric field strength, V is the voltage, and d is the distance between the plates. As we can see from the equation, by increasing the voltage (V), the electric field strength (E) will increase, assuming the distance between the plates (d) remains constant.

Therefore, increasing the voltage is the way to increase the electric field strength between two parallel plates. Hence, the correct option is A.

To know more about electric field strength, refer to the link below:

https://brainly.com/question/17093047#

#SPJ11

A particle of mass m
1

and total energy E
1

interacts with a particle of mass m
2

and total energy E
2

=m
2

. There are N particles in the final state. The final-state particles have masses m
3

through m
N+2

. What is the lowest possible kinetic energy T
1

that will allow this interaction to take place?

Answers

In order to have an interaction between two particles with different masses m₁ and m₂,

the minimum kinetic energy T₁ of the incident particle must be equal to the energy required to create the new particles and any other particle created in the interaction. The incident particle must therefore have enough kinetic energy to create N particles with masses m₃ to mN+2,

as well as to conserve energy and momentum.Conservation of energy and momentum allows us to set up the following equations:

E₁ = E₂ + T₁E₁/c² + E₂/c² = E₃/c² + ... + E(N+2)/c²p₁ + p₂ = p₃ + ... + p(N+2)

Where E₁ and E₂ are the energies of the incident particles, T₁ is the kinetic energy of the incident particle, m₁ and m₂ are the masses of the incident particles, and p₁ and p₂ are their momenta. E₃ to E(N+2) and p₃ to p(N+2) are the energies and momenta of the particles created by the interaction.We can rearrange the first equation to obtain:

E₁ - E₂ = T₁

and substitute this into the second equation:

p₁ + p₂ = p₃ + ... + p(N+2)√(T₁² + 2m₁T₁c²) + √(m₂²c⁴ + 2m₂c²T₁) = √(m₃²c⁴ + p₃²c²) + ... + √(m(N+2)²c⁴ + p(N+2)²c²)

We must find the minimum value of T₁ that satisfies this equation. The solution is found by making iterative approximations to T₁.

To know more about masses visit:

https://brainly.com/question/30940568

#SPJ11

a) The phase velocity of surface waves of wavelength '2' on a liquid of density 'p' and SлT gλ surface tension "T' is given by v= + Deduce the expression for the group 2p 8T velocity in terms of phase velocity? b) An electron is accelerated through a potential of 50 kV. Calculate the wavelength of (10 Marks) the matter wave associated with the electron?

Answers

a) The expression for the group velocity of surface waves on a liquid with wavelength λ, density ρ, and surface tension T can be deduced from the phase velocity formula v = √(gλ/2π) as follows: v_group = v_phase / 2π

b) To calculate the wavelength of the matter wave associated with an electron accelerated through a potential of 50 kV, we can use the de Broglie wavelength formula: λ = h / √(2meV), where h is the Planck's constant, me is the mass of the electron, and V is the potential difference.

a) The phase velocity of surface waves on a liquid with wavelength λ, density ρ, and surface tension T is given by the formula

v_phase = √(gλ/2π), where g is the acceleration due to gravity.

To find the group velocity, we divide the phase velocity by 2π, resulting in the expression:

v_group = v_phase / 2π.

b) According to the de Broglie wavelength formula, the wavelength (λ) of a matter wave associated with a particle can be calculated using λ = h / √(2meV),

where h is the Planck's constant (approximately 6.626 x 10^-34 J·s), me is the mass of the electron (approximately 9.109 x 10^-31 kg),

and V is the potential difference (50 kV = 50,000 volts = 50,000 J/C).

Plugging in the values, we have λ = (6.626 x 10^-34 J·s) / √(2(9.109 x 10^-31 kg)(50,000 J/C)).

Simplifying the expression gives λ ≈ 1.227 x 10^-10 meters.

Therefore, the wavelength of the matter wave associated with the electron is approximately 1.227 x 10^-10 meters.

To know more about velocity click here:

https://brainly.com/question/17127206

#SPJ11

In which part of a newborn star does the fusion reaction occur?
a) in all parts of the star.
b) the radiation zone.
c) the core.
d) the convection zone.

Answers

The fusion reaction in a newborn star primarily occurs in the core.

Hence, the correct option is C.

The core of a newborn star is the region where the conditions of temperature and pressure are sufficient to sustain nuclear fusion. It is in the core that the high temperatures and densities enable the fusion of hydrogen nuclei (protons) into helium nuclei, releasing energy in the process.

In the early stages of stellar evolution, a newborn star forms from a collapsing cloud of gas and dust. As the material in the core becomes denser and hotter due to gravitational contraction, the core reaches the necessary conditions for fusion to occur. At this point, the energy generated by nuclear fusion counteracts the inward gravitational forces, establishing a stable equilibrium and allowing the star to shine.

The radiation zone and the convection zone are other regions within a star, but they are not primarily responsible for the fusion reactions. The radiation zone is the region above the core where energy is transported primarily by photons through a process of radiation. The convection zone is the outermost layer of a star, characterized by convective currents that transport energy through the rising and falling of hot gas.

While fusion reactions occur in the core, the energy produced through fusion eventually radiates outwards through the radiation zone and the convection zone before being released into space as heat and light.

Therefore, The fusion reaction in a newborn star primarily occurs in the core.

Hence, the correct option is C.

To know more about fusion reaction here

https://brainly.com/question/28020465

#SPJ4

A person stands at Taft Point in Yosemite National Park, CA which is 2,287 meters above sea level. They throw a stone in the purely horizontal direction in front of them with a speed of 25 m/s. a. Calculate how long it takes for the stone to hit the valley floor after they release it. The valley floor is 1,209 meters above sea level. b. Calculate the magnitude and direction of the final velocity vector just as it strikes the valley floor. Report the direction in units of degrees, where counterclockwise rotation from the x-axis indicates positive angles.

Answers

The height of the stone above the valley floor is 2,287 m - 1,209 m

= 1,078 m.

Using the kinematic equation:

v = u + at

where v is the final velocity of the stone,

u is the initial velocity of the stone,

a is the acceleration due to gravity, and

t is the time taken for the stone to reach the valley floor,

we can solve for t.

Initial velocity of the stone, u = 25 m/s (since the stone is thrown with a speed of 25 m/s horizontally) Final velocity of the stone, Acceleration due to gravity, a = 9.81 m/[tex]s^2[/tex] (since the stone is moving vertically downwards)Vertical distance travelled by the stone,

s = 1,078 m

Using the kinematic equation:

s = ut + 0.5[tex]at^2[/tex]

We can rearrange this to get:

t = √(2s / a)

Substituting in the values we get:

t = √(2 × 1,078 / 9.81)

t= 14.5 seconds

Therefore, it takes approximately 14.5 seconds for the stone to hit the valley floor.Just before hitting the valley floor, the horizontal velocity of the stone remains constant at 25 m/s, since there are no horizontal forces acting on the stone.

To know more about acceleration visit:

https://brainly.com/question/2303856

#SPJ11

A camera uses a lens with a focal length of 0.0500 m and can take clear pictures of objects no closer to the lens than 0.583 m. For closer objects the camera records only blurred images. However, the camera could be used to record a clear image of an object located 0.200 m from the lens, if the distance between the image sensor and the lens were increased. By how much would this distance need to be increased?

Answers

The image of the object will be clear if the object distance is 0.2m when the distance between the lens and image sensor is increased. We are required to determine by how much the distance would need to be increased.

The object distance is given by the relation,1/f = 1/p + 1/qWhere f is the focal length of the lens, p is the object distance, and q is the image distance.For the camera to take a clear picture, the object distance, p should be greater than or equal to 0.583 m.

We are given that the focal length of the lens, f = 0.0500 m, and the object distance,

p = 0.2 m.When the camera is used to capture images of an object at a distance of 0.2 m, the distance between the lens and the image sensor will be increased. Let this distance be d.The image distance, q is given by;1/f = 1/p + 1/q1/q

= 1/f - 1/p1/q = 1/0.0500 - 1/0.200q

= -4.0000 mThe negative sign indicates that the image is virtual. When the distance between the lens and the image sensor is increased to allow the camera to capture clear pictures of objects closer than 0.583m, the new image distance, q' can be obtained from the following relation,1/f = 1/p + 1/q'1/q' = 1/f - 1/p1/q'

= 1/0.0500 - 1/0.2001/q'

= -1.0000 mq'

= -1.0000 mAs the image distance, q is negative, it indicates that the image is virtual and on the same side as the object. When the camera is adjusted to take clear pictures of objects at 0.2 m, the image will be formed at a distance of 1.0000 m from the lens. The distance between the image sensor and lens is given by;d = q' - qd

= (-1.0000) - (-4.0000)d

= 3.0000 m

Therefore, the distance between the image sensor and the lens would need to be increased by 3.0000 m.

To know more about image visit:
https://brainly.com/question/30725545

#SPJ11

The acceleration of a particle varies with time according to the equation a(t)=pt
2
−qt
3
. Initially, the velocity and position are zero. (a) If the units of a(t) are m/s
2
, what are the units of p and q ? Units of Units of (b) What is the velocity as a function of time? v(t (c) What is the position as a function of time?

Answers

We know that the units of acceleration are m/s², and the units of time are seconds (s).

[tex]a(t) = pt² - qt³So, m/s² = p (m/s)² - q (m/s)³, m/s² = m²/s² - m/s³.[/tex]S

ince these two expressions have the same units, we can set them equal to each other:

[tex]m/s² = m²/s² - m/s³⇒ m/s³ = m²/s² - m/s²⇒ m/s³ = (m/s²)(m - 1)⇒ 1/m² = m/s³⇒ m⁵/s⁶ = 1[/tex]

So, p has units of m/s and q has units of m²/s.

Acceleration is the rate of change of velocity with respect to time: a(t) = v'(t)dv/dt = pt² - qt³ Integrating both sides:[tex]∫dv = ∫pt² - qt³ dtv = pt³/3 - qt⁴/4 + C[/tex]Given that the initial velocity is 0, v = pt³/3 - qt⁴/4(c) We can obtain the position as a function of time by integrating the velocity function over time.∫ds = ∫v(t) dt

The initial position is 0, so:[tex]s = ∫v(t) dt = ∫pt³/3 - qt⁴/4 dt= p/12 t⁴ - q/20 t⁵ + C[/tex]We obtain the position of the particle as a function of time by adding a constant of integration C.

The position function is given as [tex]s = p/12 t⁴ - q/20 t⁵.[/tex]

To know more about acceleration visit:

https://brainly.com/question/12550364

#SPJ11


Static electricity is caused by the buildup of what?

A. Electric field
B. Electric Water
C. Electric Gas
D. Electric charge

Answers

Static electricity is caused by the buildup of electric charge. The correct option is D.

What is static electricity?

Static electricity is an electrical charge that is present on an object when it is stationary and not moving. This is distinguished from current electricity, which flows through wires or other conductive materials and is generated by a difference in electric potential energy between two points. Static electricity, in contrast, results from the accumulation of electric charge on a surface, which may be caused by a variety of factors, such as friction, pressure, or separation.

What causes static electricity?

The buildup of an electric charge is caused by static electricity. When two materials come into touch, they can exchange electrons, causing an electrical charge to develop on one or both surfaces. This electrical charge is stationary and does not flow away as it would with current electricity.

What are some examples of static electricity?

Some examples of static electricity include lightning, sparks produced by rubbing a balloon against a sweater, and the electrical shock experienced when touching a doorknob after walking across a carpeted floor.

To know more about Static electricity, refer to the link below:

https://brainly.com/question/24160155#

#SPJ11

I have a child on a see-saw. The angle between the ground and the plank is 250. Draw a free body diagram. If the child has a mass of 23kg, what is the normal force acting on the child? What is the component of gravity along the see-saw? If the see-saw is taken up to 32°, the ct just begins to slide at a constant velocity, what is the coefficient of friction between the child and the see-saw?

Answers

To draw a free body diagram, we consider the forces acting on the child on the see-saw:

1. The weight of the child acts vertically downward. We can break it into two components:

  a) The component perpendicular to the see-saw is the normal force, which counteracts the child's weight.

  b) The component parallel to the see-saw is the force due to gravity along the see-saw.

2. The normal force acts vertically upward, exerted by the see-saw on the child.

3. The force of friction may act between the child and the see-saw, but its direction depends on the conditions specified.

Given that the angle between the ground and the plank is 25°, the normal force is equal to the component of the child's weight perpendicular to the see-saw, which is given by N = mg cos(25°), where m is the mass of the child (23 kg) and g is the acceleration due to gravity (9.8 m/s^2).

The component of gravity along the see-saw is given by F_parallel = mg sin(25°).

To determine the coefficient of friction, more information is needed, such as the force required to keep the see-saw at a constant velocity or the angle at which the see-saw just begins to slide.

To learn more about free body diagram, you can visit

brainly.com/question/31795573

#SPJ11.


If a 10-nm X ray scattered by an electron becomes an 11-nm X
ray, how much energy does the electron gain?

Answers

The electron gains approximately 6.03 × 10^-18 Joules of energy.

To calculate the energy gained by the electron when a 10-nm X-ray scatters and becomes an 11-nm X-ray, we can use the equation:

ΔE = hc/λ

Where:

ΔE is the change in energy

h is the Planck's constant (6.626 × 10^-34 J·s)

c is the speed of light (3.00 × 10^8 m/s)

λ is the wavelength of the X-ray

First, we need to convert the given wavelengths from nm to meters:

λ1 = 10 nm = 10 × 10^-9 m

λ2 = 11 nm = 11 × 10^-9 m

Now, we can calculate the change in energy:

ΔE = (hc/λ2) - (hc/λ1)

= hc (1/λ2 - 1/λ1)

Substituting the values:

ΔE = (6.626 × 10^-34 J·s × 3.00 × 10^8 m/s) × (1/(11 × 10^-9 m) - 1/(10 × 10^-9 m))

Calculating the expression, we find:

ΔE ≈ 6.03 × 10^-18 J

Therefore, the electron gains approximately 6.03 × 10^-18 Joules of energy.

To know more about energy gain, refer here:

https://brainly.com/question/30908322#

#SPJ11

where low voltage fire alarm system cables penetrate a fire resistance rated wall _________. 760.3(a)

Answers

According to the National Electrical Code 760.3(a), low voltage fire alarm system cables penetration in a fire resistance rated wall is done through sleeves that are fire-resistant.

The sleeves should be fire-resistant and caulked or filled with a fire-resistant material that is noncombustible to prevent the spread of fire. When penetrating fire resistance-rated walls, floors, and ceilings, the cables should be fire-resistant and be of a type that is suitable for use in a fire alarm system. The cables should not be attached to sprinkler pipes or hangers that are connected to sprinkler pipes when passing through an area that is designated as a plenum.The maximum allowable fire penetration is about two hours.

If the wall is required to have a three-hour fire rating, then it must be penetrated by a firestop that is rated for three hours. The sleeve should be large enough to allow for thermal expansion and contraction of the cable. It should also be sealed to prevent the passage of smoke or gas between the cable and the sleeve. A fire-resistant sealant should be used to seal the sleeve to the wall or floor. The sealant should be suitable for use in a fire alarm system. The cable should be supported by a metal strap or clamp that is also fire-resistant.

To know more about National Electrical visit:

https://brainly.com/question/17215290

#SPJ11

what is the period of oscillation of the building?

Answers

The period of oscillation of a building is the time it takes for the building to complete one full cycle of oscillation. It is determined by the building's mass and stiffness. The more massive the building, the longer the period of oscillation. The stiffer the building, the shorter the period of oscillation.

Typically, the period of oscillation of a building is in the range of 0.1 to 2 seconds. However, the exact period of oscillation will depend on the specific design of the building.

For example, a tall building with a lot of mass will have a longer period of oscillation than a short building with a small mass. Additionally, a building with a lot of lateral stiffness (such as a building with a lot of moment-resisting frames) will have a shorter period of oscillation than a building with a lot of lateral flexibility (such as a building with a lot of shear walls).

Here is a table of typical periods of oscillation for different types of buildings:

Building Type                           Period of Oscillation (seconds)

Low-rise building                                  0.1-0.5

Mid-rise building                                   0.5-1

High-rise building                                     1-2

It is important to note that these are just typical values. The actual period of oscillation of a building will depend on the specific design of the building.

For example, the Empire State Building has a period of oscillation of about 1.2 seconds. The Petronas Twin Towers have a period of oscillation of about 2.1 seconds.

The period of oscillation of a building is important because it affects how the building will respond to earthquakes and other disturbances. If the period of oscillation of a building matches the frequency of the ground motion, the building will experience resonance, which can cause significant damage.

Designers of buildings take the period of oscillation into account when designing buildings to resist earthquakes. They try to make sure that the period of oscillation of the building is different from the frequency of the ground motion that is likely to be experienced in the area where the building is located. This helps to prevent resonance and damage to the building.

To know more about period of oscillation refer here :    

https://brainly.com/question/31472633#

#SPJ11        

A thin film of soap with n=1.34 hanging in the air reflects dominantly red light with λ=659 nm. What is the minimum thickness of the film? 1.229×10^2 nm Previous Tries Now this film is on a sheet of glass, with n=1.46. What is the wavelength of the light in air that will now be predominantly reflected? What changed compared to previous problem? What is the requirement for a maximum for the pathlength difference now? Tries 5/20 Previous Tries

Answers

A thin film of soap with n=1.34 hanging in the air reflects dominantly red light with λ=659 nm. The minimum thickness of the soap is 245.97 nm. in the new situation, wavelength of light in air is 718.82 nm.

To determine the minimum thickness of the soap film for it to reflect dominantly red light with a wavelength of 659 nm, we can use the concept of constructive interference in thin films.

For constructive interference to occur, the path length difference between the reflected and transmitted waves in the film should be equal to an integer multiple of the wavelength. In this case, we want to find the minimum thickness that produces constructive interference for the red light (λ = 659 nm).

The path length difference can be calculated as follows:

2 * n * t = m * λ

where n is the refractive index of the film, t is the thickness of the film, m is an integer (in this case, m = 1 for the first order maximum), and λ is the wavelength of light.

Given:

Refractive index of the soap film (n) = 1.34

Wavelength of red light (λ) = 659 nm

Plugging in the values into the equation, we can solve for the minimum thickness of the film (t):

2 * 1.34 * t = 1 * 659 nm

2.68 * t = 659 nm

t = (659 nm) / 2.68

t ≈ 245.97 nm

Therefore, the minimum thickness of the soap film for it to reflect dominantly red light with a wavelength of 659 nm is approximately 245.97 nm.

Now, if the soap film is on a sheet of glass with a refractive index of 1.46, the situation changes. The effective refractive index of the soap film on the glass will be different due to the change in medium.

To calculate the new wavelength of light that will be predominantly reflected, we can use the same equation as before:

2 * n * t = m * λ

However, now the refractive index (n) will be that of the combined system of the soap film and the glass (n = 1.46).

Given:

Refractive index of the combined system (n) = 1.46

Plugging in the values and rearranging the equation, we can solve for the new wavelength (λ) that will be predominantly reflected:

λ = (2 * n * t) / m

λ = (2 * 1.46 * 245.97 nm) / 1

λ ≈ 718.82 nm

Therefore, in the new situation where the soap film is on a sheet of glass with a refractive index of 1.46, the wavelength of light in air that will be predominantly reflected is approximately 718.82 nm.

The change in the problem compared to the previous one is the presence of the glass sheet, which affects the effective refractive index of the system.

For a maximum for the path length difference, the requirement is that the path length difference should be equal to an odd multiple of half the wavelength (λ/2). This condition is necessary for destructive interference, resulting in a minimum or no reflection.

Learn more about constructive interference here:

https://brainly.com/question/31228426

#SPJ11


What is the gravitational field a distance d above the center of
a uniformly-dense disk
of radius R?
Please, write the answer neatly.

Answers

The gravitational field at a distance d above the center of a uniformly-dense disk of radius R can be calculated using the following formula:

g = (2 * G * σ * R² * d) / (R² + d²)^(3/2)

Where:

g is the gravitational field strength,

G is the gravitational constant (approximately 6.67430 × 10^(-11) m³ kg^(-1) s^(-2)),

σ is the surface mass density (mass per unit area) of the disk.

Please note that the surface mass density, σ, should be provided for a more specific calculation.

To know more about density please  click :-

brainly.com/question/29775886

#SPJ11

A new type of energy absorber is being designed as a buffer at the end of track at a fairground. It consists of a piston with small holes that moves in a cylinder containing oil, so that the kinetic energy of impact is absorbed as heat by the oil. (a) Draw a sketch for the instant of impact by a vehicle of mass 2500kg moving at 30mph showing the forces and energy transfers involved. (b) Write down the first law of thermodynamics for a system and identify terms that are not relevant if the oil is taken as the system. (C) How much heat transfer to the surroundings is required to return the oil to its original temperature after an impact by a 2500kg vehicle moving at 30mph?

Answers

As oil absorbs all of this energy as heat, the heat transferred is 246,500 J.

A. Sketch for the instant of impact by a vehicle of mass 2500kg moving at 30mph showing the forces and energy transfers involved:

B. The first law of thermodynamics for a system is the law of energy conservation. It states that energy cannot be created or destroyed, but it can be transferred from one form to another, or from one place to another. If the oil is taken as the system, the work done by or on the system is not relevant because the oil is in a closed system.C.

To find the amount of heat transfer required to return the oil to its original temperature after an impact by a 2500kg vehicle moving at 30mph, we can use the following equation:

heat transferred = mass × specific heat capacity × temperature change

Q = mcΔT where Q is the heat transferred, m is the mass of the oil, c is the specific heat capacity of the oil, and ΔT is the temperature change.

To calculate the heat transferred, we need to know the mass of the oil, its specific heat capacity, and the temperature change.

We can assume that the oil absorbs all of the kinetic energy of the vehicle as heat.

The kinetic energy of the vehicle is given by:

K.E. = 0.5 × m × v2

where m is the mass of the vehicle and v is its velocity in m/s. We can convert the velocity from mph to m/s:30 mph = 44.7 ft/s = 13.6 m/s

The mass of the vehicle is given as 2500 kg.

Therefore, the kinetic energy of the vehicle at impact is:

K.E. = 0.5 × 2500 × 13.62= 246,500 J

Since the oil absorbs all of this energy as heat, the heat transferred is 246,500 J.

We need to assume that none of the heat is lost to the surroundings, so the oil is raised to a temperature of:ΔT = Q / (mc)where c is the specific heat capacity of the oil.

For example, if the specific heat capacity of the oil is 2000 J/kg°C, then:ΔT = 246500 / (2000 × m)

Learn more about heat from the given link

https://brainly.com/question/934320

#SPJ11

For a Young's double slit experiment, the slit separation (d) is controlled to be selected by a choice multiple of wavelength (lamda) for a monochromatic coherent source.a) For (i) d=100labda, and (ii) d=10000lamda Determine the angular separation between the central maximum and its adjacent maximum Please calculate for both the small angle AND non-small angle assumption noting that theta(m=0) = theta(0) = theta Your answer must be in radians b) At a slit-screen distance, D=50.0cm, calculate the distance between maxima on a screen for your small angle approximation results from part a)

Answers

Part (a)
The angular separation between the central maximum and its adjacent maximum for when d=100 lamda is 0.05 degrees

The angular separation between the central maximum and its adjacent maximum for when d=1000 lamda is 0.005 degrees

Part (b)
The distance between the maxima on the screen for the small angle approximation is 7.5cm

The distance between the maxima on the screen for the non-small angle approximation is 37.5cm

Which of the following is a key difference between Newton's Law of Gravity and Einstein's equations of General Relativity? Select one: a Newton's Law of gravity does not yield accurate results for smaller bodies such as Pluto, the asteroids, and comets. b. Einstein's General Relativity insists that gravity is a force, whereas Newton's Law of Gravity does not c. Newton's Law of Gravity suggests that particles lacking mass (such as photons of light) will be unaffected by gravitational fields d. Einstein's General Relativity is only mathematical and theoretical in nature, and has not been supported by observational evidence.

Answers

The correct answer is: a. Newton's Law of gravity does not yield accurate results for smaller bodies such as Pluto, the asteroids, and comets.

Newton's Law of Gravity, formulated by Isaac Newton, is an approximation that works well for most everyday situations but fails to accurately describe the behavior of gravitational forces in extreme conditions or when dealing with very large masses or high velocities.

It does not account for the curvature of spacetime caused by mass and energy.

On the other hand, Einstein's equations of General Relativity, developed by Albert Einstein, provide a more comprehensive and accurate description of gravity.

General Relativity incorporates the concept of spacetime curvature, where mass and energy cause spacetime to bend, and objects move along geodesics determined by this curvature.

It successfully explains phenomena such as gravitational lensing, the precession of Mercury's orbit, and the bending of starlight around massive objects.

So, the key difference between Newton's Law of Gravity and Einstein's equations of General Relativity is that General Relativity provides a more accurate description of gravity in extreme conditions and for smaller bodies such as Pluto, the asteroids, and comets, where Newton's Law of Gravity fails to yield accurate results.

Learn more about gravity here:

https://brainly.com/question/31321801

#SPJ11

Other Questions
A firm has demand equation Q = 20 3P. The firm must sell an integer quantity of product and charge the same price per unit of product for all units sold. It costs the firm $4 to produce and sell each unit of product that it sells. The firm acts to maximize its total profits. Calculate these: a) Price per unit b) Quantity of units c) Total profits (You must clearly type and label each answer in eCourses and show your calculations to receive any credit for your answers. Your answers must be typed into eCourses, but if you wish you can attach an Excel spreadsheet (but NO OTHER FILE TYPE) with your supporting calculations.) tween deviations from potential output Y~t and the real interest rate R t as: Y~t = a b (R t r ) Graph the following scenarios assuming the economy starts off in its longrun equilibrium. (a) There is a decrease in the real interest rate. (b) A new technology is discovered that increases potential output. all atoms have moving electric charges why then aren t all materials magnetic in julius caesar, at the end of act 2, scene 2, brutus and the others are on their way into the senate with caesar. which word best describes brutus and his group? What is one of the ""folk wisdoms"" or common sense generalizations that you have grown up with? How valid does the text suggest that this generalization is likely to be? Pick a common sense generalization that seems valid and useful to you if possible. Can you think of a way to test it experimentally? Defects in fetus is caused by ( ). a major function of group membership is that it satisfies social needs. t/f give at least one example and one non-example of behavior. You may not repeat an example that has been previously given."Behavior is that portion of an organisms1 interaction with its environment2 that involves movement of some part of the organism3." A nurse is caring for a patient who has a heavily draining wound that continues to show evidence of bleeding. Which of the following types of dressings should the nurse select to help promote hemostasis? n this chapter, we studied static equilibrium. Describe several situations in which an object is not in equilibrium, even though the net force on it is zero. Find the extremum of f(x,y) subject to the given constraint, and state whether it is a maximum or a minimum. f(x,y)=2x2+4y2 ;3x+y=76 There is a value of located at (x,y) = ____ Conroy Consulting Corporation (CCC) has a current dividend of D 0=$2.70. Shareholders require a 9% rate of return. Although the dividend has been growing a rate of 30% per year in recent years, this growth rate is expected to last only for another 2 years (90,1=91,2=30%). After Year 2 , the growth rate will stabilize at g 6% a. What is CCC's stock worth today? Do not round intermediate calculations. Round your answer to the nearest cent. 5 b. What is the expected stock price at Year 1 ? Do not round intermediate calculations. Round your answer to the nearest cent. 5 c. What is the Year 1 expected (1) dividend yield, (2) capital gains yield, and ( 3) total return? Do not round intermediate calculations. Round your answers to two decimal places. \begin{tabular}{r|r} Dividend yield: & % \\ Capital gains yield: & % \\ Total return: & % \end{tabular} d. What is its expected dividend yield for the second year? The expected capital gains yield? The expected total return? Do not round intermediate calculations. Round your answers to two decimal places. Which of the following building will be entitled to a Division 43 deduction at 4% ? A residential rental property on 1 st October CY at a cost of $680,000. Construction had commenced in December 1984 at a cost of $250,000 A residential rental property on 15 November CY at a cost of $500,000. Construction had commenced in January 2005 at a cost of $120,000 A factory used in the taxpayers business. It was purchased on 6th March CY at a cost of $870,000. Construction had commenced on 12th April 2008 and had cost $470,000 An office building for use in the business would stop it was purchased on 15 July June Cy at a cost of $900,000 who stopped construction had commenced on 30 September 1992 at a cost of $350,000 human b-lymphocytes mature in an intestinal region called the bursa. (True or False) what is the maximum throughput of a ds3 connection? A $21,000 bond redeemable at par on June 06,2010 is purchased on February 13, 2002. Interest is 9.7% payable semi-annually and the yield is 5.2% compounded semi-annually. (a) What is the cash price of the bond? (b) What is the accrued interest? (c) What is the quoted price? (a) The cash price is $ (Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed.) [Q; 10,8,8,7,3,3] what is the smallest value the quota q cantake. Your company aims to raise $10 million by issuing new 15-year bonds. The current ytm on similar bonds is 5.1% p.a.. How many bonds will your company have to sell, if you decide to issue 15-year bonds with annual coupon payments, a face value of $1,000 and a coupon rate of 2.9%?Group of answer choices8,99411,54312,55312,934 When was sociology a down to earth approach 13th edition published? XYZ Company invested in a machine with a useful life of six years and no salvage value. The machine was depreciated using the straight-line method. It was expected to produce annual cash inflow from operations, net of income taxes, of P6,000. The present value of an ordinary annuity of P1 for six periods at 10% is 4.355. The present value of P1 for six periods at 10% is 0.564. Assuming that XYZ used a time- adjusted rate of return of 10%, what was the amount of the original investment?