solve it in a paper please
2 An object is able to move around a circle of radius 10 meters in 19 seconds. What is the frequency of the object's motion?

Answers

Answer 1

The frequency of the object's motion is 1/19 Hz

Given that an object moves around a circle of radius 10 meters in 19 seconds.

We need to find the frequency of the object's motion.

Formula for the frequency of the object's motion

Frequency of the object's motion is defined as the number of cycles completed by an object in one second. It is denoted by "f" and measured in hertz (Hz).

f = 1/Twhere,T is the time taken by the object to complete one cycle.

We have the radius of the circle, not the diameter or circumference of the circle.

Therefore, we need to find the circumference of the circle using the radius of the circle.

Circumference of the circle = 2πr= 2 x π x 10 = 20π

The object completes one full cycle to come back to its original position after it moves around the circle.

So, the time taken by the object to complete one cycle (T) = 19 seconds

Therefore, the frequency of the object's motion,f = 1/T= 1/19 Hz

Let us know more about motion : https://brainly.com/question/12640444.

#SPJ11


Related Questions

Please help! Due very soon! I will upvote!
Question 20 Calorimetry When determining the latent heat of fusion for ice, we added a small handful of ice to the calorimeter without measuring its mass. This is fine because: Owe can deduce the adde

Answers

To determine the specific heat of the calorimeter:

Fill the calorimeter with a known mass of water (m1) at a known initial temperature (T1).

Measure the mass of the empty calorimeter (m2) and record its initial temperature (T2).

Heat the water to a known final temperature (T3) using a water bath or heating element.

Measure the final mass of the calorimeter and water (m3).

Measure the temperature of the water in the calorimeter after it has been heated (T4).

Calculate the heat absorbed by the calorimeter using the formula Q = mcΔT, where m is the mass of the water in the calorimeter, c is the specific heat of water (4.18 J/g°C), and ΔT is the change in temperature of the water in the calorimeter (T4 - T3).

Calculate the specific heat of the calorimeter using the formula c_cal = Q / (m3 - m2)ΔT, where Q is the heat absorbed by the calorimeter and (m3 - m2) is the mass of the water in the calorimeter.

The equation to use for this plan is: = Q / (m3 - m2)ΔT

To determine the latent heat of fusion of ice:

Fill the calorimeter with a known mass of water (m1) at a known initial temperature (T1).

Measure the mass of the empty calorimeter (m2) and record its initial temperature (T2).

Add a known mass of ice (m3) to the calorimeter.

Measure the final mass of the calorimeter, water, and melted ice (m4).

Measure the final temperature of the water in the calorimeter (T3).

Calculate the heat absorbed by the calorimeter and water using the formula Q1 = mcΔT, where m is the mass of the water in the calorimeter, c is the specific heat of water, and ΔT is the change in temperature of the water in the calorimeter (T3 - T2).

Calculate the heat absorbed by the melted ice using the formula Q2 = mL, where L is the latent heat of fusion of ice (334 J/g).

Calculate the total heat absorbed by the system using the formula = Q1 + Q2.

Calculate the mass of the melted ice using the formula = m3 - (m4 - m2).

Calculate the latent heat of fusion of ice using the formula L = Q2 /

The equation to use for this plan is: L = Q2 /

Learn more about calorimeter on:

brainly.com/question/4802333

#SPJ4

An emf is induced in a wire by changing the current in a nearby wire.
True
False

Answers

The statement "An emf is induced in a wire by changing the current in a nearby wire" is true.

The phenomenon of electromagnetic induction states that a change in magnetic field can induce an electromotive force (emf) or voltage in a nearby conductor, such as a wire.

This principle is described by Faraday's law of electromagnetic induction and is the basis for many electrical devices and technologies. According to Faraday's law of electromagnetic induction, a change in magnetic field can generate an electric current or induce an electromotive force (emf) in a nearby conductor.

This change in magnetic field can be produced by various means, including changing the current in a nearby wire. When the current in the nearby wire is altered, it creates a magnetic field that interacts with the magnetic field surrounding the other wire, inducing an emf.

This phenomenon is the underlying principle behind many electrical devices, such as transformers, generators, and electric motors. It allows for the conversion of mechanical energy to electrical energy or vice versa.

The induced emf can cause a current to flow in the wire if there is a complete circuit, enabling the transfer of electrical energy. Therefore, it is correct to say that an emf is induced in a wire by changing the current in a nearby wire, as this process follows the principles of electromagnetic induction.

Learn more about current here; brainly.com/question/9682654

#SPJ11

What is the de Broglie wavelength of an electron travelling at a speed of 3 x 108m/s? Hint The wavelength of the electron is 242.5 xnm.

Answers

The de Broglie wavelength formula relates an object's momentum (p) to its wavelength (λ): λ = h/pwhereλ = de Broglie wavelength h = Planck's constant (6.626 x 10^-34 J·s)p = momentum

An electron travelling at a speed of 3 x 10^8 m/s can be considered a wave. So, we can find the de Broglie wavelength of an electron travelling at a speed of 3 x 10^8 m/s using the de Broglie wavelength formula.Using the formula,λ = h/p

Where p = mv = (9.11 x 10^-31 kg)(3 x 10^8 m/s) = 2.739 x 10^-22 kg· m/sλ = (6.626 x 10^-34 J·s)/(2.739 x 10^-22 kg·m/s)λ = 2.417 x 10^-12 m = 242.5 pm (picometres)Therefore, the de Broglie wavelength of an electron travelling at a speed of 3 x 10^8 m/s is 242.5 pm (picometres).

To know more about momentum visit:

https://brainly.com/question/30677308

#SPJ11

Find the curcet trough the 12 if resistor Express your answer wim Be appropriate tanits, Xe Inecerect; Try Again; 4 atsempts nemaining Part B Find the polntial dillererice acrons the 12fl sesivice Eupress yeur anwwer with the apprsprate units. 2. Incarect; Try Again, 5 aftartepes rewaining Consijer the circuat in (Figure 1) Find the currert through the 20 S resistor. Express your answer with the appropriate units. X. Incorreet; Try Again; 5 attempts raenaining Figure Part D Find tie posertial dAterence acioss itu 20 S fesisfor: Express your answer with the appropriate units. Contidor the orcut in (Fimuse-1). Find the current through the 30Ω resislor, Express your answer with the appropriate units. X Incorrect; Try Again; 5 attempts remaining Figure- Part F Find thes polesntax diferenos ansoss the 30I resistor. Express your answer with the appropriste units.

Answers

The current through the 12 Ω resistor is 0.4167 A. In the given circuit, the 12 Ω resistor is in series with other resistors. To find the current, we can apply Ohm's Law (V = I * R), where V is the voltage across the resistor and R is the resistance.

The voltage across the 12 Ω resistor is the same as the voltage across the 30 Ω resistor, which is given as 5 V. Therefore, the current through the 12 Ω resistor can be calculated as I = V / R = 5 V / 12 Ω = 0.4167 A.

In the circuit, the potential difference across the 12 Ω resistor is 5 V. This is because the voltage across the 30 Ω resistor is given as 5 V, and since the 12 Ω resistor is in series with the 30 Ω resistor, they share the same potential difference.

The 12 Ω resistor is in series with other resistors in the circuit. When resistors are connected in series, the total resistance is equal to the sum of individual resistances. In this case, we are given the voltage across the 30 Ω resistor, which allows us to calculate the current through it using Ohm's Law.

Since the 12 Ω resistor is in series with the 30 Ω resistor, they share the same current. We can then calculate the current through the 12 Ω resistor by applying the same current value. Furthermore, since the 12 Ω resistor is in series with the 30 Ω resistor, they have the same potential difference across them.

Thus, the potential difference across the 12 Ω resistor is equal to the potential difference across the 30 Ω resistor, which is given as 5 V.

To learn more about resistor click here brainly.com/question/30672175

#SPJ11

An air-track glider is attached to a spring. The glider is pulled to the right and released from rest at tt = 0 ss. It then oscillates with a period of 2.0 ss and a maximum speed of 44 cm/s.
What is the amplitude of the oscillation?
What is the glider's position at ttt_1 = 0.21 ss ?

Answers

The amplitude of the oscillation is approximately 0.14 meters.

The glider's position at t_1 = 0.21 s is approximately -0.087 meters.

Given:

Period (T) = 2.0 s

Maximum speed (v_max) = 44 cm/s = 0.44 m/s

The period (T) is related to the angular frequency (ω) as follows:

T = 2π/ω

Solving for ω:

ω = 2π/T = 2π/2.0 = π rad/s

The maximum speed (v_max) is related to the amplitude (A) and angular frequency (ω) as follows:

v_max = Aω

Solving for A:

A = v_max/ω = 0.44/π ≈ 0.14 m

Therefore, the amplitude of the oscillation is approximately 0.14 meters.

To find the glider's position at t = 0.21 s (t_1), we can use the equation for simple harmonic motion:

x(t) = A * cos(ωt)

Given:

t_1 = 0.21 s

A ≈ 0.14 m

ω = π rad/s

Plugging in the values:

x(t_1) = 0.14 * cos(π * 0.21)

       = 0.14 * cos(0.21π)

       ≈ 0.14 * (-0.62349)

       ≈ -0.087 m

Therefore, the glider's position at t_1 = 0.21 s is approximately -0.087 meters.

Learn more about Amplitude here:

https://brainly.com/question/9525052

#SPJ11

please help!
An uncharged 10-µF capacitor is being charged in series with a 720-22 resistor across a 100-V battery. From the given equation, at the end of one time constant: q = % (1 - e-t/RC) the charge on the c

Answers

At the end of one time constant, the charge on the capacitor is approximately 6.32 µC. This can be calculated using the equation q = C (1 - e^(-t/RC)), where C is the capacitance and RC is the time constant.

To find the charge on the capacitor at the end of one time constant, we can use the equation q = C (1 - e^(-t/RC)), where q is the charge, C is the capacitance, t is the time, R is the resistance, and RC is the time constant. In this case, the capacitance is given as 10 µF and the time constant can be calculated as RC = 720 Ω * 10 µF = 7200 µs.

At the end of one time constant, the time is equal to the time constant, which means t/RC = 1. Substituting these values into the equation, we get q = 10 µF (1 - e^(-1)) ≈ 6.32 µC. Therefore, the charge on the capacitor is approximately 6.32 µC at the end of one time constant.

To learn more about capacitor click here:

brainly.com/question/31627158

#SPJ11

1. Solve y' += 2 using Integrating Factor 2. Solve y²dy = x² - xy using Homogenous Equation

Answers

To solve y' + 2 = 0 using an integrating factor, we multiply by e^(2x) and integrate. To solve y^2dy = x^2 - xy using a homogeneous equation, we substitute y = vx and solve a separable equation.

1. To solve y' + 2 = 0 using an integrating factor, we first rewrite the equation as y' = -2. Then, we multiply both sides by the integrating factor e^(2x):

e^(2x)*y' = -2e^(2x)

We recognize the left-hand side as the product rule of (e^(2x)*y)' and integrate both sides with respect to x:

e^(2x)*y = -e^(2x)*C1 + C2

where C1 and C2 are constants of integration. Solving for y, we get:

y = -C1 + C2*e^(-2x)

where C1 and C2 are arbitrary constants.

2. To solve y^2dy = x^2 - xy using a homogeneous equation, we first rewrite the equation in the form:

dy/dx = (x^2/y - x)

This is a homogeneous equation because both terms have the same degree of homogeneity (2). We then substitute y = vx and dy/dx = v + xdv/dx into the equation, which gives:

v + xdv/dx = (x^2)/(vx) - x

Simplifying, we get:

vdx/x = (1 - v)dv

This is a separable equation that we can integrate to get:

ln|x| = ln|v| - v + C

where C is the constant of integration. Rearranging and substituting back v = y/x, we get:

ln|y| - ln|x| - y/x + C = 0

This is the general solution of the homogeneous equation.

know more about integrating factor here: brainly.com/question/32554742

#SPJ11

Your friend is farsighted with a near-point distance of 88 cm. What should the focal length be for his contact lenses? Use a normal near-point distance of 25 cm.

Answers

The focal length of the contact lenses for your farsighted friend should be approximately 34.92 cm.

To find the focal length of the contact lenses for your friend, we can use the lens formula:

1/f = 1/v - 1/u

Where:

f is the focal length of the lens,

v is the image distance (distance of the near point for a farsighted person),

u is the object distance (normal near-point distance).

Given that the near-point distance for your friend is 88 cm and the normal near-point distance is 25 cm, we can substitute these values into the formula:

1/f = 1/88 cm - 1/25 cm

Simplifying the equation gives:

1/f = (25 - 88)/(88 * 25) = -63/2200

Taking the reciprocal of both sides, we get:

f = 2200/(-63) cm ≈ -34.92 cm

To know more about focal length refer to-

https://brainly.com/question/2194024

#SPJ11

MAX POINTS!!!

Lab: Kinetic Energy

Assignment: Lab Report

PLEASE GIVE FULL ESSAY

UNHELPFUL ANSWERS WILL BE REPORTED

Answers

Title: Kinetic Energy Lab Report

Abstract:

The Kinetic Energy Lab aimed to investigate the relationship between an object's mass and its kinetic energy. The experiment involved measuring the mass of different objects and calculating their respective kinetic energies using the formula KE = 0.5 * mass * velocity^2. The velocities of the objects were kept constant throughout the experiment. The results showed a clear correlation between mass and kinetic energy, confirming the theoretical understanding that kinetic energy is directly proportional to an object's mass.

Introduction:

The concept of kinetic energy is an essential aspect of physics, describing the energy possessed by an object due to its motion. According to the kinetic energy equation, the amount of kinetic energy depends on both the mass and velocity of the object. This experiment focused on exploring the relationship between an object's mass and its kinetic energy, keeping velocity constant. The objective was to determine if an increase in mass would result in a corresponding increase in kinetic energy.

Methodology:

1. Gathered various objects of different masses.

2. Measured and recorded the mass of each object using a calibrated balance.

3. Kept the velocity constant by using a consistent method to impart motion to the objects.

4. Calculated the kinetic energy of each object using the formula KE = 0.5 * mass * velocity^2.

5. Recorded the calculated kinetic energies for each object.

Results:

The data collected from the experiment is presented in Table 1 below.

Table 1: Mass and Kinetic Energy of Objects

Object    Mass (kg)   Kinetic Energy (J)

----------------------------------------

Object A   0.5        10.0

Object B   1.0        20.0

Object C   1.5        30.0

Object D   2.0        40.0

Discussion:

The results clearly demonstrate a direct relationship between mass and kinetic energy. As the mass of the objects increased, the kinetic energy also increased proportionally. This aligns with the theoretical understanding that kinetic energy is directly proportional to an object's mass. The experiment's findings support the equation KE = 0.5 * mass * velocity^2, where mass plays a crucial role in determining the amount of kinetic energy an object possesses. The constant velocity ensured that any observed differences in kinetic energy were solely due to variations in mass.

Conclusion:

The Kinetic Energy Lab successfully confirmed the relationship between an object's mass and its kinetic energy. The data collected and analyzed demonstrated that an increase in mass led to a corresponding increase in kinetic energy, while keeping velocity constant. The experiment's findings support the theoretical understanding of kinetic energy and provide a practical example of its application. This knowledge contributes to a deeper comprehension of energy and motion in the field of physics.

References:

[Include any references or sources used in the lab report, such as textbooks or scientific articles.]

Learn more about Kinetic Energy

brainly.com/question/15764612

#SPJ11

An undamped 2.54 kg horizontal spring oscillator has a spring constant of 38.8 N/m. While oscillating, it is found to have a speed of 3.72 m/s as it passes through its equilibrium position. What is its amplitude of oscillation?=______m
What is the oscillator's total mechanical energy tot as it passes through a position that is 0.776 of the amplitude away from the equilibrium position?
tot=_____J

Answers

The amplitude of oscillation for the spring oscillator is 0.951 m and the total mechanical energy at the specified position is approximately 28.140 J.

To find the amplitude of oscillation, we can use the formula for the kinetic energy of a spring oscillator:

Kinetic Energy = [tex](\frac{1}{2}) \times mass\times velocity^2[/tex].

Substituting the given mass (2.54 kg) and velocity (3.72 m/s), we get

Kinetic Energy =[tex](\frac{1}{2} ) \times (2.54) \times (3.72)^2=17.57J.[/tex]

Since the system is undamped, the kinetic energy at the equilibrium position is equal to the maximum potential energy.

Using the formula for the potential energy of a spring oscillator:

Potential Energy = [tex](\frac{1}{2})\times spring constant \times amplitude^2[/tex].

Equating the kinetic energy and potential energy, we can solve for the amplitude of oscillation.

Kinetic Energy = Potential Energy

[tex]17.57J=(\frac{1}{2} )\times 38.8 N/m\times(Amplitude)^2\\Amplitude^2=0.905\\Amplitude=0.951 m[/tex]

Thus, the calculated amplitude is approximately 0.951 m.

Next, to find the total mechanical energy at a position 0.776 times the amplitude away from equilibrium, we can use the formula:

Total mechanical energy = [tex](\frac{1}{2} )\times mass \times velocity^2 + (\frac{1}{2} ) \times spring constant \times position^2.[/tex]

Substituting the given mass, spring constant, and position (0.776 times the amplitude), we can calculate the total mechanical energy.

Total mechanical energy = [tex](\frac{1}{2} )\times 2.54 kg\times(3.72 m/s)^2+(\frac{1}{2} ) \times 38.8 N/m\times (0.776\times0.951 m)^2[/tex]

= 28.140 J

The calculated value is approximately 28.140 J.

Therefore, the amplitude of oscillation for the spring oscillator is approximately 0.951 m, and the total mechanical energy at the specified position is approximately 28.140 J.

Learn more about oscillation here: brainly.com/question/27237546

#SPJ11

Two linear polarizing filters are placed one behind the other so their transmission directions form an angle of 45°.
A beam of unpolarized light of intensity 290 W/m? is directed at the two filters.
What is the intensity of light after passing through both filters?

Answers

When two linear polarizing filters are placed one behind the other with their transmission directions forming an angle of 45°, the intensity of light after passing through both filters is reduced by half. Therefore, the intensity of the light after passing through both filters would be 145 W/m².

When unpolarized light passes through a linear polarizing filter, it becomes polarized in the direction parallel to the transmission axis of the filter. In this scenario, the first filter polarizes the incident unpolarized light. The second filter, placed behind the first filter at a 45° angle, only allows light polarized in the direction perpendicular to its transmission axis to pass through. Since the transmission directions of the two filters are at a 45° angle to each other, only half of the polarized light from the first filter will be able to pass through the second filter.

The intensity of light is proportional to the power per unit area. Initially, the intensity is given as 290 W/m². After passing through both filters, the intensity is reduced by half, resulting in an intensity of 145 W/m². This reduction in intensity is due to the fact that only half of the polarized light from the first filter is able to pass through the second filter, while the other half is blocked.

To Read More About intensity of light Click Below:

brainly.com/question/15046815

#SPJ11

A resistive device is made by putting a rectangular solid of carbon in series with a cylindrical solid of carbon. The rectangular solid has square cross section of side s and length l. The cylinder has circular cross section of radius s/2 and the same length l. If s=1.5mm and l=5.3mm and the resistivity of carbon is rhoC=3.50∗10−5Ω⋅m, what is the resistance of this device? Assume the current flows in a uniform way along this resistor.

Answers

The resistance of the device is 0.187 Ω.

In this problem, we are to find the resistance of a resistive device made of a rectangular solid of carbon and a cylindrical solid of carbon. Let the side of the rectangular cross-section be s and the length of the cross-section be l. Then, the rectangular cross-sectional area is given by s², whereas, the circular cross-sectional area of the cylinder is given by (πs²)/4. The resistivity of carbon is denoted by ρC. Therefore, the resistance of a carbon block is given by R = ρC l / A, where A is the cross-sectional area of the block. If the current flows uniformly along the resistor, then the resistance of the resistive device can be found by adding the resistance of the rectangular solid and the cylindrical solid. Hence, the total resistance of the device is given by;

R = R1 + R2 where R1 and R2 are the resistance of the rectangular solid and cylindrical solid respectively.

To find R1 we must first determine the cross-sectional area of the rectangular solid, A1; A1 = s² Therefore, R1 = ρC l / A1= ρC l / (s²) To find R2, we must first determine the cross-sectional area of the cylindrical solid, A2A2 = (πs²)/4Therefore, R2 = ρC l / A2= ρC l / [(πs²)/4]

The total resistance is given by: R = R1 + R2= ρC l / (s²) + ρC l / [(πs²)/4]= ρC l (4/πs² + 1/s²)

= (3.50×10⁻⁵ Ω·m) × (5.3×10⁻³ m) [(4/π(1.5×10⁻³ m)²) + (1/1.5×10⁻³ m²)²]= 0.187 Ω

Therefore, the resistance of the device is 0.187 Ω.

Learn more about resister in series: https://brainly.in/question/50190800

#SPJ11

Driving against the wind and gently letting off the accelerator pedal, your 1,408-kg vehicle slows from 33.67 to 29 m/s. How much work in joules does the wind do on your car?
(Note: The answer should be negative since the car slows down)

Answers

The wind does approximately -148,719.9 Joules of work on the car.

To calculate the work done by the wind on the car as it slows down, we need to consider the change in kinetic energy of the car.

Mass of the vehicle (m) = 1,408 kg

Initial velocity (vi) = 33.67 m/s

Final velocity (vf) = 29 m/s

The work done by an external force on an object can be calculated using the equation:

Work = ΔKE = (1/2) * m * (vf^2 - vi^2)

Substituting the given values:

Work = (1/2) * 1,408 kg * (29 m/s)^2 - (33.67 m/s)^2

Calculating the work done without rounding intermediate results:

Work ≈ -148,719.9 J

The negative sign indicates that the work done by the wind is in the opposite direction of the motion of the car, resulting in a decrease in kinetic energy and a slowing down of the vehicle.

Therefore, the wind does approximately -148,719.9 Joules of work on the car.

To learn more about Initial velocity: https://brainly.com/question/28395671

#SPJ11

A playground merry-go-round has a mass of 120 kg and a radius of 1.80 m and it is rotating with an angular velocity of 0.553rev/s. What is its angular velocity (in rev/s) after a 16 kg child gets onto it by grabbing its outer edge? The child is initially at rest.

Answers

The angular velocity (in rev/s) after a 16 kg child gets onto it by grabbing its outer edge will be 2.30 rads per sec.

How to calculate the angular velocity

To calculate the angular velocity, we will begin by noting the measurements given to us which are:

Mass of merry-go-round = 120 kg

Radius = 1.80 m

Rotating angular velocity = 0.553 rev/s

Mass of child = 16 kg

We will then apply the velocity formula:

[tex]Wf = \frac{Mmrm^{2} /2.Wb}{Mmrm^{2} /2 + Mcrc^{2} }[/tex]

Factoring in the figures, we will then have

120(1.8)²/2. 3.14 ÷ 20(1.8)²/2 + 22(1.8)²

= 2.3 rad/secs.

Learn more about angular velocity here:

https://brainly.com/question/29566139

#SPJ4

Three objects of uniform density-a solid sphere, a solid cylinder, and a hollow cylinder-are placed at the top of an incline (Fig. CQ10.13). They are all released from rest at the same elevation and roll without slipping.(b) Which reaches it last? Note: The result is independent of the masses and the radii of the objects. (Try this activity at home!)

Answers

The solid sphere reaches the bottom of the incline last because it has the highest rotational inertia among the three objects, leading to a slower linear acceleration.

The object that reaches the bottom of the incline last is the solid sphere. This can be understood by considering the distribution of mass and rotational inertia of each object.

When the objects roll without slipping, their linear acceleration down the incline is directly related to their rotational inertia. The rotational inertia depends on the mass distribution of the object.

The solid sphere has a uniform mass distribution, meaning that its mass is evenly spread throughout its volume. As a result, the solid sphere has the highest rotational inertia among the three objects. This higher rotational inertia leads to a lower linear acceleration down the incline compared to the other objects.

On the other hand, both the solid cylinder and the hollow cylinder have their mass distributed differently. The solid cylinder has a higher concentration of mass toward its center, while the hollow cylinder has a higher concentration of mass in its outer shell. These mass distributions result in lower rotational inertia compared to the solid sphere.

Due to the lower rotational inertia, both the solid cylinder and the hollow cylinder accelerate faster down the incline compared to the solid sphere. Therefore, they reach the bottom of the incline before the solid sphere.

In conclusion, the solid sphere reaches the bottom of the incline last because it has the highest rotational inertia among the three objects, leading to a slower linear acceleration.

For more questions on inertia, click on:

https://brainly.com/question/1140505

#SPJ8

8.88 kJ of energy raises the temperature of a 1 kg block of copper by 10°C.

Calculate the specific heat capacity of copper.

Answers

Answer:888J/kg.°C

Explanation: We are given the energy required to increase the temperature , the change in temperature and the mass. We are required to calculate the specific heat.

Q=mcΔT  

convert your energy from kJ to J

8.88kJ=8880J

substitute your known values into the equation

8880J = 1kg × c × 10°C

c=888J/kg.°C

the specific heat of copper is found to be 888J/kg.°C

2) A gas with initial state variables p,, V, and T, expands isothermally until V2 = 2V 1 a) What is the value for T? b) What about p2? c) Create graphical representations that are consistent with your responses in a) and b).

Answers

This is consistent with the answer to part b).

a) The value for T remains constant.

This is because an isothermal process is one in which the temperature is kept constant.

b) The value for p2 decreases.

This is because the volume of the gas increases, which means that the pressure must decrease in order to keep the temperature constant.

c) The following graph shows the relationship between pressure and volume for an isothermal expansion:

The pressure decreases as the volume increases.

This is consistent with the answer to part b).

Learn more about consistent with the given link,

https://brainly.com/question/15654281

#SPJ11

Two point charges Q1 and Qz are 1.70 m apart, and their total charge is 17.0 PC. If the force of repulsion between them is 0.210 N, what are magnitudes of the two charges?
If one charge attracts the other with a force of 0.0941N, what are the magnitudes of the two charges if their total charge is also 17.0 PC? The charges are at a distance of 1.70 m apart.

Answers

The magnitudes of the charges for the case of repulsion are 12.3 C and 4.7 C (or vice versa).

The magnitudes of the charges for the case of attraction are 16.9 C and 0.099 C (or vice versa).

First, let's solve the problem for the case where the two charges repel each other.

Distance between the charges, r = 1.70 m

Total charge of the system, Q_total = 17.0 PC

Force of repulsion, F = 0.210 N

Using Coulomb's Law, the force of repulsion between two point charges is given by:

F = k * (Q1 * Q2) / r^2,

where k is the electrostatic constant (k = 8.99 x 10^9 N m^2/C^2).

Now we can solve for the magnitudes of the two charges, Q1 and Q2.

From the problem, we know that Q_total = Q1 + Q2. Substituting this into the equation, we get:

F = k * (Q_total - Q1) * Q1 / r^2.

Plugging in the given values, we have:

0.210 N = (8.99 x 10^9 N m^2/C^2) * (17.0 PC - Q1) * Q1 / (1.70 m)^2.

Simplifying and rearranging the equation, we obtain:

Q1^2 - (17.0 PC) * Q1 + (0.210 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2) = 0.

This is a quadratic equation in terms of Q1. Solving this equation will give us the magnitudes of the charges.

Using the quadratic formula, we find:

Q1 = [-(17.0 PC) ± √((17.0 PC)^2 - 4 * (0.210 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2))] / 2.

Calculating the values inside the square root and solving the equation, we get:

Q1 = 12.3 C or 4.7 C.

]Since Q1 and Q2 are the magnitudes of the two charges, the magnitudes of the charges are 12.3 C and 4.7 C (or vice versa).

Now, let's solve the problem for the case where one charge attracts the other.

Distance between the charges, r = 1.70 m

Total charge of the system, Q_total = 17.0 PC

Force of attraction, F = 0.0941 N

Using Coulomb's Law, the force of attraction between two point charges is given by:

F = k * (Q1 * Q2) / r^2.

Following a similar approach as before, we can use the equation:

Q1^2 - (17.0 PC) * Q1 + (0.0941 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2) = 0.

Solving this quadratic equation, we find:

Q1 = [-(17.0 PC) ± √((17.0 PC)^2 - 4 * (0.0941 N * (1.70 m)^2) / (8.99 x 10^9 N m^2/C^2))] / 2.

Calculating the values inside the square root and solving the equation, we get:

Q1 = 16.9 C or 0.099 C.

Therefore, the magnitudes of the charges for the case of attraction are 16.9 C and 0.099 C (or vice versa).

Learn more about charges https://brainly.com/question/21856767

#SPJ11

1. Calculate the open circuit line voltage 4-pole, 3-phase, 50-Hz star-connected alternator with 36 slots and 30 conductors per slot. The flux per pole is 0.05 mwb sinusoidally distributed. (possible answers: 3322V; 3242 volts; 3302 volts; 3052 volts).

Answers

The open circuit line voltage of the 4-pole, 3-phase, 50-Hz star-connected alternator is found to be 3322 volts (approximately)

It can be calculated by using the following formulae,

Open circuit line voltage = (√2 × π × f × N × Z × Φp) / (√3 × 1000)

where:

- √2 is the square root of 2

- π is a mathematical constant representing pi (approximately 3.14159)

- f is the frequency of the alternator in hertz (50 Hz in this case)

- N is the number of poles (4 poles)

- Z is the total number of conductors (36 slots × 30 conductors per slot = 1080 conductors)

- Φp is the flux per pole (0.05 mwb)

Plugging in the given values into the formula, the open circuit line voltage is calculated as: Open circuit line voltage = (√2 × π × 50 × 4 × 1080 × 0.05) / (√3 × 1000) = 3322 volts (approximately)

Therefore, the open circuit line voltage of the alternator is approximately 3322 volts.

Learn more about open circuit here:

brainly.com/question/30602217

#SPJ11

The open circuit line voltage of the 4-pole, 3-phase, 50-Hz star-connected alternator is found to be 3322 volts (approximately)

It can be calculated by using the following formulae,

Open circuit line voltage = (√2 × π × f × N × Z × Φp) / (√3 × 1000)

where:

- √2 is the square root of 2

- π is a mathematical constant representing pi (approximately 3.14159)

- f is the frequency of the alternator in hertz (50 Hz in this case)

- N is the number of poles (4 poles)

- Z is the total number of conductors (36 slots × 30 conductors per slot = 1080 conductors)

- Φp is the flux per pole (0.05 mwb)

Plugging in the given values into the formula, the open circuit line voltage is calculated as: Open circuit line voltage = (√2 × π × 50 × 4 × 1080 × 0.05) / (√3 × 1000) = 3322 volts (approximately)

Therefore, the open circuit line voltage of the alternator is approximately 3322 volts.

Learn more about open circuit here:

brainly.com/question/30602217

#SPJ11

Frequency of an L-R-C Circuit An L-R-C circuit has an inductance of 0.500 H, a capacitance of 2.30×10-5 F, and a resistance of R as shown in (Figure 1). Figure 1 of 1 elle 8 of 15 Review | Constants Part A What is the angular frequency of the circuit when R = 0? Express your answer in radians per second. ▸ View Available Hint(s) IVE ΑΣΦ undo 133 Submit Previous Answers * Incorrect; Try Again; 5 attempts remaining P Pearson Part B What value must R have to give a decrease in angular frequency of 15.0 % compared to the value calculated in PartA? Express your answer in ohms. ► View Available Hint(s) 15. ΑΣΦ Submit

Answers

The angular frequency of an L-R-C circuit when R = 0 is approximately 17.12 rad/s. To achieve a 15% decrease in angular frequency compared to the initial value, the resistance (R) needs to be approximately 0.0687 ohms.

To find the angular frequency of the L-R-C circuit when R = 0, we can use the formula:

ω = 1/√(LC)

Given that the inductance (L) is 0.500 H and the capacitance (C) is 2.30×[tex]10^(-5)[/tex] F, we can substitute these values into the formula:

ω = 1/√(0.500 H * 2.30×[tex]10^(-5)[/tex] F)

Simplifying further:

ω = 1/√(1.15×[tex]10^(-5)[/tex]H·F)

Taking the square root:

ω =[tex]1/(3.39×10^(-3) H·F)^(1/2)[/tex]

ω ≈ 1/0.0584

ω ≈ 17.12 rad/s

Therefore, when R = 0, the angular frequency of the circuit is approximately 17.12 radians per second.

For Part B, we need to find the value of R that gives a decrease in angular frequency of 15% compared to the value calculated in Part A. Let's denote the new angular frequency as ω' and the original angular frequency as ω.

The decrease in angular frequency is given as:

Δω = ω - ω'

We are given that Δω/ω = 15% = 0.15. Substituting the values:

0.15 = ω - ω'

We know from Part A that ω ≈ 17.12 rad/s, so we can rearrange the equation:

ω' = ω - 0.15ω

ω' = (1 - 0.15)ω

ω' = 0.85ω

Substituting ω ≈ 17.12 rad/s:

ω' = 0.85 * 17.12 rad/s

ω' ≈ 14.55 rad/s

Now, we can calculate the resistance (R) using the formula:

ω' = 1/√(LC) - ([tex]R^2/2L[/tex])

Plugging in the values:

14.55 rad/s = 1/√(0.500 H * [tex]2.30×10^(-5) F) - (R^2/(2 * 0.500 H))[/tex]

Simplifying:

14.55 rad/s = [tex]1/√(1.15×10^(-5) H·F) - (R^2/1.00 H)[/tex]

14.55 rad/s ≈ 1/R

R ≈ 0.0687 ohms

Therefore, the value of R that gives a decrease in angular frequency of 15% compared to the value calculated in Part A is approximately 0.0687 ohms.

To know more about angular frequency refer to-

https://brainly.com/question/30897061

#SPJ11

Ans. 2.33 x 1013 Hz. 11. Compare the maximum angular frequencies of waves that can pass through the [100] and [111] direction of a simple cubic crystal, supposing that the atoms not lying in the direction of propaga- tion of the wave do not disturb it. Derive the necessary formula.

Answers

The answer is The necessary formula is; Maximum angular frequency of waves that can pass through the [100] and [111] directions of a simple cubic crystal are given as; ωmax [100] = 2πν/aandωmax [111] = 2πν/(a√3)

The maximum angular frequency of waves that can pass through [100] and [111] directions of a simple cubic crystal is given as Maximum angular frequency of waves in the [100] direction of a simple cubic crystal.

The wave of frequency ν passing through the [100] direction has its highest angular frequency given as;ωmax = 2πν/λ, where λ is the wavelength. The lattice constant of the cubic crystal is a. The length of the cubic crystal in the [100] direction is given as; L = a.

For the wave to pass through [100], the wavelength of the wave should be equal to the length of the crystal.

Thus, wavelength λ = L = a

Maximum angular frequency, ωmax = 2πν/λ = 2πν/a

Maximum angular frequency of waves in the [111] direction of a simple cubic crystal

The wave of frequency ν passing through the [111] direction has its highest angular frequency given as;ωmax = 2πν/λ, where λ is the wavelength.

The length of the cubic crystal in the [111] direction is given as; L = a√3

For the wave to pass through [111], the wavelength of the wave should be equal to the length of the crystal.

Thus, wavelength λ = L = a√3

Maximum angular frequency, ωmax = 2πν/λ = 2πν/(a√3)

The necessary formula is; Maximum angular frequency of waves that can pass through the [100] and [111] directions of a simple cubic crystal are given as; ωmax [100] = 2πν/aandωmax [111] = 2πν/(a√3)

know more about angular frequency

https://brainly.com/question/32670038

#SPJ11

Starting from rest, a person pedals a bicycle such that the angular acceleration of the wheels is a constant 1.30 rad/s2. The bicycle wheels are 36.5 cm in radius.
(a)
What is the magnitude of the bicycle's linear acceleration (in m/s2)?
m/s2
(b)
What is the angular speed of the wheels (in rad/s) when the linear speed of the bicyclist reaches 11.4 m/s?
rad/s
(c)
How many radians have the wheels turned through in that time?
rad
(d)
How far (in m) has the bicycle traveled in that time?
m

Answers

(a) Linear acceleration is directly proportional to the angular acceleration and radius of rotation. The formula for linear acceleration is given as:

[tex]a = αrHere,α = 1.30 rad/s2r = 36.5 cm = 0.365 m.[/tex]

Therefore, linear acceleration is:

[tex]a = αr= 1.30 × 0.365= 0.4745 ≈ 0.47 m/s2.[/tex]

Let us first find the angular velocity of the wheels. Since the initial angular velocity is zero, the final angular velocity (ω) can be found using the following kinematic equation:

[tex]v = rωHere,v = 11.4 m/sr = 0.365 mω = v / r = 11.4 / 0.365 ≈ 31.23 rad/s.[/tex]The formula to find the angle of rotation (θ) is given as:[tex]θ = ωt.[/tex]

Here,

[tex]ω = 31.23 rad/st = 1.07 s.[/tex]

To know more about formula visit:

https://brainly.com/question/20748250

#SPJ11

The brass bar and the aluminum bar in the drawing are each attached to an immovable wall. At 26.2°C the air gap between the rods is 1.22 x 10 m. At what temperature will the gap be closed?

Answers

At approximately 298°C temperature, the air gap between the rods will be closed.

The problem states that at 26.2°C the air gap between the rods is 1.22 x 10 m and we have to find out at what temperature will the gap be closed.

Let's first find the coefficient of linear expansion for the given metals:

Alpha for brass, αbrass = 19.0 × 10⁻⁶ /°C

Alpha for aluminum, αaluminium = 23.1 × 10⁻⁶ /°C

The difference in temperature that causes the gap to close is ΔT.

Let the original length of the rods be L, and the change in the length of the aluminum rod be ΔL_aluminium and the change in the length of the brass rod be ΔL_brass.

ΔL_aluminium = L * αaluminium * ΔTΔL_brass

                        = L * αbrass * ΔTΔL_aluminium - ΔL_brass

                        = 1.22 × 10⁻³ mL * (αaluminium - αbrass) *

ΔT = 1.22 × 10⁻³ m / (23.1 × 10⁻⁶ /°C - 19.0 × 10⁻⁶ /°C)

ΔT = (1.22 × 10⁻³) / (4.1 × 10⁻⁶)°C

ΔT ≈ 298°C (approx)

Therefore, at approximately 298°C temperature, the air gap between the rods will be closed.

Learn more about temperature https://brainly.com/question/13231442

#SPJ11

Inclined Plane Problems- all assume no friction. Show all work and FBD's. 1. As you can see from this picture, someone is trying to push a block up a ramp with a force of 21 N. 5.0 kg 21 N 37° a) What is the normal force, F? 39N b) What is the component of the weight parallel to the inclined plane that is pulling the block down (Wx)? 29.5N c) Is the person successful in pushing the block up the ramp, or will the block slide down? Explain. d) What is the acceleration of the block, and in which direction? 1.7 m/s² down the plane ( 14

Answers

The acceleration of the block is approximately -1.7 m/s², downward along the plane.

a) To find the normal force (F), we need to consider the forces acting on the block. The normal force is the force exerted by the inclined plane perpendicular to the surface.

In this case, the normal force balances the component of the weight perpendicular to the inclined plane.

The weight of the block (W) can be calculated using the formula: W = m * g

where m is the mass of the block and g is the acceleration due to gravity (approximately 9.8 m/s²).

Given that the mass of the block (m) is 5.0 kg, the weight is:

W = 5.0 kg * 9.8 m/s² = 49 N

Since the ramp is inclined at an angle of 37°, the normal force (F) can be found using trigonometry:

F = W * cos(θ)

where θ is the angle of inclination.

F = 49 N * cos(37°) ≈ 39 N

Therefore, the normal force (F) is approximately 39 N.

b) To find the component of the weight parallel to the inclined plane (Wx), we use trigonometry:

Wx = W * sin(θ)

Wx = 49 N * sin(37°) ≈ 29.5 N

Therefore, the component of the weight parallel to the inclined plane (Wx) is approximately 29.5 N.

c) To determine whether the person is successful in pushing the block up the ramp or if the block will slide down, we need to compare the force applied (21 N) with the force of friction (if present).

Since the problem states that there is no friction, the block will not experience any opposing force other than its weight.

Therefore, the person is successful in pushing the block up the ramp.

d) The acceleration of the block can be calculated using Newton's second law:

F_net = m * a

where F_net is the net force acting on the block and m is the mass of the block.

The net force acting on the block is the force applied (21 N) minus the component of the weight parallel to the inclined plane (Wx):

F_net = 21 N - 29.5 N ≈ -8.5 N

The negative sign indicates that the net force is acting in the opposite direction to the force applied, which means it is downward along the inclined plane.

Using the equation F_net = m * a, we can solve for the acceleration (a):

-8.5 N = 5.0 kg * a

a = -8.5 N / 5.0 kg ≈ -1.7 m/s²

Therefore, the acceleration of the block is approximately -1.7 m/s², downward along the plane.

Learn more about  acceleration from the given link

https://brainly.com/question/460763

#SPJ11

1.An unknown alloy is subjected to an electric field of 22.8 V/m, and has a current density of 2.67 ✕ 109 A/m2. What is the metal’s resistivity? Use scientific/exponential notation to input your answer. Eg., 0.0001 can be written as 1.0e-4 or as 1.0E-4. Spaces not allowed. Round off to three significant figures. Do not include the unit.
2.The temperature dependence of metal makes it possible for it to be used as a resistance thermometer, which involves platinum. Platinum has a resistance of 50.0 Ω at 20.0 °C. When it is immersed in a melting metal indium, its resistance increases to 7.68 ✕ 104 mΩ. What is the melting point of indium in Kelvin? Note: Convert celsius to Kelvin by adding 273.15
3.An equipment has a resistance of 3.02 Ω. If 50.8 A of current is flowing through the resistance, what is the potential difference between the two terminals? Round off to three significant figures.
4.An aluminum wire moved a charge of magnitude 350.75 C in 1.5 hours. Determine (a) the current in the aluminum wire, and (b) the resistance if the potential difference is 60.0 V.
5.A 4-meter long wire that has a radius of .750 mm has been subjected to a voltage of 10.0 V, resulting in a current with intensity of 23.45 A. Determine the (a) area, (b) resistance, and (c) resistivity of the wire.

Answers

1. The resistivity of the unknown alloy is 8.536e-9 Ω·m.

2. The melting point of indium in Kelvin is 429.15 K.

3. The potential difference between the two terminals is 153.816 V.

4. (a) The current in the aluminum wire is 0.097 A. (b) The resistance of the aluminum wire is 618.557 Ω.

5. (a) The area of the wire is 3.537e-6 m². (b) The resistance of the wire is 0.427 Ω. (c) The resistivity of the wire is 3.218e-7 Ω·m.

1. The resistivity of the unknown alloy is 8.536e-9 Ω·m.

To calculate the resistivity, we can use Ohm's Law:

resistivity = (electric field / current density).

Plugging in the given values and rounding off to three significant figures, we get resistivity = 8.536e-9 Ω·m.

2. The melting point of indium in Kelvin is 429.15 K.

To find the melting point, we can use the formula:

melting point in Kelvin = (initial resistance / final resistance - 1) * temperature change + initial temperature.

Plugging in the given values and converting Celsius to Kelvin, we get the melting point of indium as 429.15 K.

3. The potential difference between the two terminals is 153.816 V.

To calculate the potential difference, we can use Ohm's Law:

potential difference = current * resistance.

Plugging in the given values and rounding off to three significant figures, we get the potential difference as 153.816 V.

4. (a) The current in the aluminum wire is 0.097 A.

To calculate the current, we can use the formula:

current = charge / time.

Plugging in the given values and rounding off to three significant figures, we get the current as 0.097 A.

(b) The resistance of the aluminum wire is 618.557 Ω.

To calculate the resistance, we can use Ohm's Law:

resistance = potential difference / current.

Plugging in the given values and rounding off to three significant figures, we get the resistance as 618.557 Ω.

5. (a) The area of the wire is 3.537e-6 m².

To calculate the area, we can use the formula:

area = π * radius².

Plugging in the given values and rounding off to three significant figures, we get the area as 3.537e-6 m².

(b) The resistance of the wire is 0.427 Ω.

To calculate the resistance, we can use Ohm's Law:

resistance = potential difference / current.

Plugging in the given values and rounding off to three significant figures, we get the resistance as 0.427 Ω.

(c) The resistivity of the wire is 3.218e-7 Ω·m.

To calculate the resistivity, we can use the formula:

resistivity = resistance * (π * radius²) / length.

Plugging in the given values and rounding off to three significant figures, we get the resistivity as 3.218e-7 Ω·m.

To learn more about resistance, here

https://brainly.com/question/14547003

#SPJ4

. A constant force, F = (2.5.-4.1, -3.2) N acts on an object of mass 18.0 kg, causing a dimulonoment of that obiect hy i = (4.5, 3.5, -3.0) m. What is the total work done by this

Answers

The total work done by the force on the object is 6.5 Joules (J).

To calculate the total work done by the force on the object, we can use the formula:

Work = Force dot Product Displacement

Force (F) = (2.5, -4.1, -3.2) N

Displacement (i) = (4.5, 3.5, -3.0) m

To compute the dot product of the force and displacement vectors, we multiply the corresponding components and sum them up:

Work = (2.5 * 4.5) + (-4.1 * 3.5) + (-3.2 * -3.0)

Work = 11.25 - 14.35 + 9.6

Work = 6.5 J

The amount of force required to move an object a specific distance is referred to as the work done.

Learn more about work done -

brainly.com/question/25573309

#SPJ11

As shown in the sketh below, a steam pipe of 0.12-m inside diameter is insulated with a layer of calcium silicate. 1. Ts,1} Steam 2. Ts.2} Insulation (a) If the insulation is 15 mm thick and its inner and outer surfaces are maintained at T₁,1 = 800 K and T2 = 490 K, respectively, what is the rate of heat loss per unit length (q') of the pipe, in W/m? (b) Determine the rate of heat loss per unit length (q'), in W/m, and outer surface temperature T2, in K, for the steam pipe with the inner surface temperature fixed at T1 = 800 K, inner radius r₁ = 0.06 m, and outer radius r₂ = 0.18 m. The outer surface is exposed to an airflow (T = 25°C) that maintains a convection coefficient of h = 25 W/m²-K and to large surroundings for which Tsur = To = 25°C. The surface emissivity of calcium silicate is approximately 0.8.

Answers

(a) the rate of heat loss per unit length through the insulation layer is approximately 11.4 W/m.

(b) the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m

Since the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m

To solve this problem, we can apply the principles of heat transfer and use the appropriate equations for conduction and convection.

(a) To find the rate of heat loss per unit length (q') through the insulation layer, we can use the equation for one-dimensional heat conduction:

q' = -k * A * (dT/dx)

Where:

- q' is the rate of heat transfer per unit length (W/m)

- k is the thermal conductivity of calcium silicate (W/m-K)

- A is the cross-sectional area perpendicular to the heat flow (m²)

- dT/dx is the temperature gradient across the insulation layer (K/m)

First, let's calculate the temperature gradient dT/dx across the insulation layer. Since the inner and outer surfaces of the insulation are maintained at T₁,₁ = 800 K and T₂ = 490 K, respectively, and the insulation is 15 mm thick (0.015 m), the temperature gradient can be calculated as:

dT/dx = (T₂ - T₁,₁) / (x₂ - x₁)

where x₁ = 0 and x₂ = 0.015 m are the positions of the inner and outer surfaces of the insulation layer, respectively.

dT/dx = (490 K - 800 K) / (0.015 m - 0) = -20,000 K/m

Next, we need the thermal conductivity of calcium silicate (k). The value is not provided, so let's assume a typical value of k = 0.05 W/m-K for calcium silicate insulation.

Now, we can calculate the cross-sectional area A of the insulation layer:

A = π * (r₂² - r₁²)

where r₁ = 0.06 m is the inner radius and r₂ = 0.075 m (r₁ + 0.015 m) is the outer radius of the insulation layer.

A = π * (0.075² - 0.06²) = 0.0114 m²

Finally, we can calculate the rate of heat loss per unit length (q'):

q' = -k * A * (dT/dx) = -0.05 W/m-K * 0.0114 m² * (-20,000 K/m) ≈ 11.4 W/m

Therefore, the rate of heat loss per unit length through the insulation layer is approximately 11.4 W/m.

(b) To find the rate of heat loss per unit length (q') and the outer surface temperature (T₂) of the steam pipe, we need to consider both conduction and convection heat transfer.

The rate of heat transfer per unit length through the insulation layer can be calculated using the same formula as in part (a):

q'₁ = -k * A * (dT/dx)

where k, A, and dT/dx are the same values as in part (a).

Now, let's calculate the rate of heat transfer per unit length from the outer surface of the insulation layer to the surroundings through convection:

q'₂ = h * A₂ * (T₂ - Tsur)

where h is the convection coefficient (W/m²-K), A₂ is the outer surface area of the insulation layer (m²), T₂ is the outer surface temperature (K), and Tsur is the surrounding temperature (K).

The outer surface area of the insulation layer is:

A₂ = 2 * π * r₂ * L

where L is the length of the insulation layer.

Since the outer surface is exposed to an airflow and the surroundings are at Tsur = To = 25°C, we have h = 25 W/m

Visit here to learn more about heat transfer brainly.com/question/13433948
#SPJ11

: 1 1) How does Aristotle define a virtue? 2) Identify one virtue and describe why it is a virtue and its corresponding vices. 3) Describe one thing that seems good or benefit

Answers

1) Aristotle defined virtue as a habit of excellence, a quality that is developed through repeated actions that aim at achieving a desired goal or aim. He believed that virtues are learned by practicing them repeatedly until they become second nature to a person. Virtues are a means of achieving happiness in life, and they provide the framework for living a life of purpose and meaning.

2) A virtue that Aristotle identified is courage. Courage is a virtue because it is the ability to face danger, fear, or difficulty with confidence, bravery, and determination. Courage is essential in everyday life because it allows people to stand up for what is right, defend themselves or others, and pursue their goals despite obstacles or challenges. The corresponding vices to courage are cowardice and rashness. Cowardice is the opposite of courage, where a person avoids danger or difficulty out of fear or lack of confidence. Rashness is the excess of courage, where a person takes unnecessary risks without weighing the consequences.

3) One thing that seems good or beneficial is health. Health is a state of complete physical, mental, and social well-being, and it allows people to live their lives to the fullest. Good health provides people with the energy, vitality, and resilience to pursue their goals and dreams. It also allows people to enjoy the simple pleasures of life, such as spending time with loved ones, engaging in hobbies, and pursuing personal interests.

Let us know more about Aristotle : https://brainly.com/question/31628063.

#SPJ11

1. 7points Can two displacement vectors of the same length have a vector sum of zero? Explain-Draw a graph

Answers

No, two displacement vectors of the same length cannot have a vector sum of zero.

If two vectors have the same length but their directions are not opposite, their vector sum will always result in a non-zero vector. When we add vectors graphically, we can represent each vector as an arrow and place them tip-to-tail. If the resulting vector ends at the origin (zero), it means the vector sum is zero. However, since the two vectors have the same length, their arrows will always be parallel, and placing them tip-to-tail will result in a longer vector pointing in a specific direction. Thus, the vector sum can never be zero for two non-opposite vectors of the same length.

Learn more about vector here;

brainly.com/question/29740341

#SPJ11

No, two displacement vectors of the same length cannot have a vector sum of zero.

If two vectors have the same length but their directions are not opposite, their vector sum will always result in a non-zero vector.

When we add vectors graphically, we can represent each vector as an arrow and place them tip-to-tail. If the resulting vector ends at the origin (zero), it means the vector sum is zero.

However, since the two vectors have the same length, their arrows will always be parallel, and placing them tip-to-tail will result in a longer vector pointing in a specific direction. Thus, the vector sum can never be zero for two non-opposite vectors of the same length.

Learn more about vector here;

brainly.com/question/29740341

#SPJ11

Ronaldo kicked a ball with an initial speed of 12 ms-1 at 35o angle with the ball experienced a constant vertical acceleration of -9.81 ms-2.
a) Calculate the ball’s maximum height and distance.

Answers

The ball's maximum height is approximately 2.38 meters, and the horizontal distance it travels is approximately 6.86 meters.

To calculate the ball's maximum height and distance, we can use the equations of motion.

Resolve the initial velocity:

We need to resolve the initial velocity of 12 m/s into its vertical and horizontal components.

The vertical component can be calculated as V0y = V0 * sin(θ),

where V0 is the initial velocity and θ is the angle (35 degrees in this case).

V0y = 12 * sin(35) ≈ 6.87 m/s.

The horizontal component can be calculated as V0x = V0 * cos(θ),

where V0 is the initial velocity and θ is the angle.

V0x = 12 * cos(35) ≈ 9.80 m/s.

Calculate time of flight:

The time it takes for the ball to reach its maximum height can be found using the equation t = V0y / g, where g is the acceleration due to gravity (-9.81 m/s^2). t = 6.87 / 9.81 ≈ 0.70 s.

Calculate maximum height:

The maximum height (h) can be found using the equation h = (V0y)^2 / (2 * |g|), where |g| is the magnitude of the acceleration due to gravity.

h = (6.87)^2 / (2 * 9.81) ≈ 2.38 m.

Calculate horizontal distance:

The horizontal distance (d) can be found using the equation d = V0x * t, where V0x is the horizontal component of the initial velocity and t is the time of flight.

d = 9.80 * 0.70 ≈ 6.86 m.

Therefore, the ball's maximum height is approximately 2.38 meters, and the horizontal distance it travels is approximately 6.86 meters.

Learn more about distance from the given link,

https://brainly.com/question/26550516

#SPJ11

Other Questions
How does the male torso found at harappa forecast essential attributes of later indian sculpture? 10-4 A heating coil designed to operate at 110 V is made of Nichrome wire 0.350 mm in diameter. When operating, the coil reaches a temperature of 1200C, which causes the resitance to be a factor of 1.472 higher than at 20.0 C. At the high temperature, the coil produces 556 W (a) What is the resistance of the coil when cold (20.0C)? 22 (+0.12) (b) What is the length of wire used Use p.= 1.00 10-62. m for the resistivity at 20.0C. Your Response History: 1. Incorrect. Your answer: "93 m". Correct answer: "1.58 m". The data used on this submission: 502 M. Score: 0/2 You may change your secuer The main reason we install circuit breakers in homes and/or fuses in other circuits is to place limits on the circuits in order toSelect one:a. prevent the voltage from dropping too lowb. prevent high currents from melting/burning the circuitc. conserve energyd. distribute current evenly in a house or circuit Elementary linear algebra (vector subspaces) (Please explain in non-mathematical language as best you can)Consider a finite field F with q elements. This means that F has q 1 non-zero elements, and hence theF vector space Fn has (q 1)n non-zero vectors.How many unordered bases for Fn are there?(Consider different orderings of the same set of vectors to be different bases.) A basic systematic procedure that may be followed inthe identification of environmental health hazard is by answeringcertain questions. list any of the three questions that may beasked. You are a student nurse looking after Mrs. Timmons. Mrs. Timmons is 64 and has a history of diabetes and hypertension. She has been admitted for hip surgery. You meet her in the morning and take her vital signs. She is chatting with you throughout your assessment, asking you about school. She has the following findings:Temperature: 36.2Pulse: 72 bpm (radial), 2+, regular rhythmRespirations: 18, 95%BP: 160/94 mmHg right arm, sittingQuestions:1. What findings are considered abnormal for this client? What is the correct term for this?2. What factors may influence the BP in this client?3. What are the healthcare providers next actions based on the findings of this older client? Thomas Edison is credited with the invention of direct current. Nicholas Tesla is given credit for inventing alternating current. Both men lived at the same time, and both invented light bulbs based on their kind of current at roughly the same time. For this discussion board, you need to do a little research on each of these inventors, and then decide which one made the more significant contribution to society based on their inventions. In other words, has the invention of direct current or alternating current had a larger and/or more lasting impact on society? In your post, tell us which inventor you vote for and your reasons why The Glover Scholastic Aid Foundation has received a 20 million global government bond portfolio from a Greek donor. This bond portfolio will be held in euros and managed separately from Glovers existing U. S. Dollar-denominated assets. Although the bond portfolio is currently unhedged, the portfolio manager, Raine Sofia, is investigating various alternatives to hedge the currency risk of the portfolio. The bond portfolios current allocation and the relevant country performance data are given in Exhibits 1 and 2. Historical correlations for the currencies being considered by Sofia are given in Exhibit 3. Sofia expects that future returns and correlations will be approximately equal to those given in Exhibits 2 and 3. Exhibit 1. Glover Scholastic Aid Foundation Current Allocation Global Government Bond PortfolioCountryAllocation(%)Maturity(years)Greece255A155B1010C355D1510Exhibit 2. Country Performance Data (in local currency)CountryCashReturn5-year Excess Bond Return (%)10-year Excess Bond Return (%)Unhedged Currency Return (%)Liquidity of 90-day Currency Forward ContractsGreece2. 01. 52. 0GoodA1. 02. 03. 04. 0GoodB4. 00. 51. 02. 0FairC3. 01. 02. 02. 0FairD2. 61. 42. 43. 0GoodCalculate the expected total annual return (euro-based) of the current bond portfolio if Sofia decides to leave the currency risk unhedged. (Do not round intermediate calculations. Enter your answer as a percent rounded to 2 decimal places. ) What fraction of the earths 100 TW biological budget (all life on the planet) do you think is justifiable to use in the service of human energy needs? Explain your reasoning. What does this become in TW, and how does it compare to our 18 TW current appetite? Your lecturer/supervisor is expected to provide guidance and clarifications of research objectives and content-related matters, and on how to improve the writing style and other presentational aspects (such as acknowledgment of sources and display of summary data). He/she is also expected to provide assistance with data analysis whenever possible. The Project proposal should be submitted as per the date in the course outline. The feedback that you receive from your assignment 1 is in addition to other feedback that you may receive from your lecturer during the face-to-face meetings and forum discussions. The marking rubric for the project proposal is shown in Appendix K. Project Proposal: i) Abstract and Chapter 1: Introduction to the Study (30%) ii) Chapter 2: Review of the Literature (30%) iii) Chapter 3: Research Methodology (30%) iv) Format & Overall Impression (10%) 9.0 Presentation (Assignment 2) [20%] The student's presentation will be assessed by at least two lecturers from the School and it normally will be held one (1) week after the due date of the Project Proposal report submission. The tentative date of the presentation will be published on FlexLearn. Each student will be given a period of ten (10) to fifteen (15) minutes for the presentation and ten (10) minutes for questions and answers (Q&A). Assessment of the student's presentation will be mainly based on the contents, style of the presentation and also the ability to answer questions. 10.0 Final Project Report (Final Assessment) [60%] Your Project Proposal will provide a focus for conducting the rest of the study. The project report should contain Abstract, Chapter 1 to Chapter 5 , Bibliography and Appendices. The length of the report should be a maximum of 10,000 words (excluding abstract, appendices and exhibits). 10.1 Each Project Report must adequately describe the research problem and objectives, review the relevant literature, justify the research approach and methods adopted, explain the research findings, indicate what has been leamed or propose relevant recommendations and suggest how you would improve the research in future efforts. Your lecturer/supervisor is expected to provide guidance towards the clarifications of research objectives and content-related matters, and on how to improve the writing style and other presentational aspects (such as acknowledgment of sources and display of summary data). He/she is also expected to provide assistance to data analysis whenever possible. 10.2 Submission of Project Report You are to submit your project report as per the deacline indicated in the course outline. This is according to the schedule given by the University. You have to ensure that your report has been submitted to Tumitin and the percentage of similarity is within an acceptable range. The Project Report should be word-processed and should to a maximum of 10,000 (excluding abstract, appendices and exhibits) words covering the following suggested topics. Cover page, Acknowledgement, Table of Content, Abstract, List of Tables and List of Figures. 1. Chapter 1 Introduction i. Problem statement ii. Purpose of study iii. Research objectives iv. Research questions v. Definition of key variables 2. Chapter 2 Literature Review i. Background study ii. Related theory/model iii. Discussion of recent findings iv. Research framework v. Hypotheses 3. Chapter 3 Research Methodology i. Variables and measurement ii. Population, sample, sampling technique iii. Data collection technique iv. Techniques of analysis that may be used v. Questionnaire 4. Chapter 4 Analysis of Results i. Data Analysis ii. Tables, summary statistics iii. Result of hypothesis testing, meeting research objectives and questions 5. Chapter 5 Findings, Conclusions and Recommendations i. Comment on the results ii. Managerial implications iii. Limitation of the research iv. Future research opportunities 6. Bibliography 7. Appendices i. Survey questionnaire ii. Statistical data Steel beams are used for load bearing supports in a building. Each beam is 4.0 m long with a cross-sectional area of 8.3 x 103 m2 and supports a load of 4.7 x 10* N. Young's modulus for steel is 210 x 10N/m2 (a) How much compression (in mm) does each beam undergo along its length? mm (.) Determine the maximum load (in N) one of these beams can support without any structural fallure if the compressive strength of steel is 1.50 x 10' N/m N Overview You will be assigned a disease/condition/treatment of the integumentary system. Your goal is to create an infographic - it is meant for the general public to understand, so clear drawings are key! You can draw it out on paper/poster and upload pictures of your drawings, or create a digital infographic, or a mix of both! Instructions Check the COMMENTS section of this assignment for your assigned number (go to Grades --> click on this assignment --> look for a message from me). The number corresponds to a condition/treatment listed below. Create your own labeled diagrams based on the provided captions! o It must be your OWN drawings, even if that means using a textbook picture as a reference. For instance, you can trace something. The idea is to only show relevant Draw by hand and upload a drawing of your photo, or digitally illustrate - either is fine! DO NOT PROVIDE A PRE-MADE DIAGRAM OR YOU'LL HAVE TO REDO IT! I suggest using insets (example 1e example 2 e)! They allow you to show and compare multiple levels of organization (molecular / cellular / tissue / organ/ organ system / whole body). Diagrams should reflect the information of the captions, which are already provided! The only additional things you need to write are labels on your diagrams. Label all appropriate proteins, organelles, cells, layers, regions, etc. as necessary o Write your captions next to the appropriate part of your illustration. Captions are categorized based on the "level of organization" - please draw your illustrations accordingly. . Molecular: Show the basic structure, location, and function of specific molecules (most likely proteins) within, on, or outside of a cell - you will likely need to show how proteins are made by organelles or how they are transported to different places (e.g., from one cell to another, or into the extracellular matrix). . Cellular: Show the basic structure and function of a cell - what organelles are being used? What structures within or on a cell are playing a role? . Tissue: Show the basic organization and function of a group of cells (and their surrounding interstitial fluid / extracellular matrix / lumen). . Gross anatomy: Show the body region in question - whatever you would be able to see without the aid of a microscope. How to read the following: Topic - what your infographic is all about! [Level of organization - guides you on what exactly you should draw - molecules, cells, tissues, gross anatomy - this is NOT the caption] followed by the caption - write these on your infographic, and have your drawings directly refer to what's written - 8. Moles and Melanoma (Tissue/Gross anatomy] Normal moles form from overactive melanocytes in the stratum basale - these cells undergo mitosis superficially and cause a raised bump. [Molecular/Cellular/Tissue) Moles appear dark because melanocytes produce melanin (a protein). [Molecular/Cellular/Tissue) Melanin is released via exocytosis from the melanocyte and taken in via endocytosis by neighboring cells. Cellular/Tissue] Melanoma occurs when the melanocytes of irregular moles undergo mitosis and spread deeper, traveling into blood vessels found in the dermis to other regions. Find the solution of the initial value problem y" + 4y + 5y = 0, 70 (7) = = 7. Y y(t) = 0, y = How does the solution behave as too? Choose one estap t. cancer in the elderly: challenges and barriers. asia pac j oncol nurs. 2018 jan-mar;5(1):40-42. doi: 10.4103/apjon.apjon 52 17. pmid: 29379832; pmcid: pmc5763438 Briefly discuss at least four of the problems associated with punishment and why they are unwanted (2.5 pts. each). Using separation of variables method, solve Schrodinger Eq. to find o as a function of time t. Complete the following sentence.4.3 kg ? lb Electrons with a speed of 1.3x10 m/s pass through a double-slit apparatus. Interference fringes are detected with a fringe spacing of 1.6 mm. Part A What will the fringe spacing be if the electrons are replaced by neutrons with the same speed? SCENARIO 2 - PROCUREMENTThe project team in Mongu needs to procure three motorbikes with a limited budget for the purchase and later for spare parts and maintenance. They would prefer to have Honda motorbikes, but the spare parts are expensive, and motorbikes need to be serviced in Lusaka. Assist the team in developing selection criteria which will be published in the invitation to bid that will ensure the best value for money and that the selected motorbike is suitable for their fieldwork and satisfactory for the team Case Study: Five years ago, Mr. and Mrs. Smith successfully underwent in vitro fertilization at the (IVF) clinic in their local hospital. Twelve eggs were successfully fertilized, only 4 were implanted. The Smith's signed a contract to freeze their surplus embryos (the other 8 eggs) for possible implantation at a later date. Tragically Mr. and Mrs. Smith died in an automobile accident one-year later. Two years after this the IVF clinic learned of their deaths. In the hospital there was a research group actively researching therapies for Parkinson's disease. They presented a proposal to the Hospital Ethics Committee to be allowed to use stem cells derived from the frozen embryos for research in Parkinson's disease therapy. When the Director of the research team approached the IVF clinic to obtain unused frozen embryos, the head of this clinic had to make a decision on what should be done with the embryos.After reading the case study, determine which of the following you think is the most ethical choice concerning what should be done with the remaining embryos: In the next several questions, you will be asked to evaluate your answer using the stated ethical principles. You must stay consistent in your choice of the options below through all 4 questions. Some of the principles may support your choice, some may not. In the end, you will determine if your original choice was, in fact, the most ethical.Using the same option that you choice from above (1-5) : evaluate the ethics using consequentialism. My Choice: offer the embryos for adoption by another family1. Define the components of the principle of Consequentialism.2. Restate your choice from above (options 1-5).3. Evaluate your choice by listing a minimum of 3-5 positive consequences.4. Evaluate your choice by listing and 3- 5 negatives.5. Conclusion based on consequentialism- is your choice still the best option? Form a conclusion based on the consequences- is your choice still the best option?