Solve the given differential equation by using an appropriate substitution. The DE is of the form - RAx+By+C), which is given in (5) of Section 2.5. Need Help? Raadi 14. [-/1 Points] DETAILS ZILLDIFFEQMODAP11 2.5.025. MY NOTES dy Solve the given differential equation by using an appropriate substitution. The DE is of the form -Ax+By+C), which is given in [5) of Section 2.5. dx itytan³(x+y) Need Help?

Answers

Answer 1

The differential equation is [tex]$$y(x)=-\frac{1}{tan(x+y)}\cdot\int itan^4(x+y)dx+C$$[/tex] based on question.

Given differential equation is: [tex]$dy/dx=itan^3(x+y)$[/tex]

A differential equation is a type of mathematical equation that connects the derivatives of an unknown function. The function itself, as well as the variables and their rates of change, may be involved. These equations are employed to model a variety of phenomena in the domains of engineering, physics, and other sciences. Depending on whether the function and its derivatives are with regard to one variable or several variables, respectively, differential equations can be categorised as ordinary or partial. Finding a function that solves the equation is the first step in solving a differential equation, which is sometimes done with initial or boundary conditions. There are numerous approaches for resolving these equations, including numerical methods, integrating factors, and variable separation

This is a first-order differential equation of the form [tex]$$\frac{dy}{dx}=f(x,y)$$[/tex]

The substitution to solve this differential equation is[tex]$u=x+y$[/tex].

Applying the chain rule of differentiation, we get[tex]$$\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$$[/tex]

Using the above substitution, we get[tex]$$\frac{dy}{du}+\frac{du}{dx}=f(x,y)$$$$\frac{dy}{du}=-\frac{du}{dx}+f(x,y)$$[/tex]

On substituting the given equation, we ge[tex]t$$\frac{dy}{du}=-\frac{du}{dx}+itan^3u$$[/tex]

The above equation is of the form[tex]$dy/du=g(u)-f(x,y)$[/tex].

Using the integrating factor, the solution to the above equation is given by[tex]$$y(x)=-\frac{1}{tan(u)}\cdot\int f(x,y)\cdot tan(u)du+C$$[/tex]

where C is the constant of integration. Substituting u=x+y, we get the solution to the given differential equation as:

[tex]$$y(x)=-\frac{1}{tan(x+y)}\cdot\int itan^3(x+y)\cdot tan(x+y)dx+C$$[/tex]

which simplifies to [tex]$$y(x)=-\frac{1}{tan(x+y)}\cdot\int itan^4(x+y)dx+C$$[/tex]

Learn more about differential equation here:

https://brainly.com/question/32524608


#SPJ11


Related Questions

Find 2 different non-zero vectors at right angles to < 3, 4 >. 2) Find 2 different non-zero vectors at right angles to < 3, 4, 5 >.

Answers

1. The vector < -4/3,1 > is perpendicular to <3,4>.

2. The vector <1,-3/4,4/5> is perpendicular to <3,4,5>.

1. The vector at right angles to <3,4> can be obtained by using the theorem that the scalar product of perpendicular vectors is zero. So, for a vector <a,b> perpendicular to <3,4>, the equation 3a+4b=0 must be satisfied. By choosing a=4 and b=-3, we have <4,-3> · <3,4> = 4·3 + (-3)·4 = 0.

Hence, <4,-3> is perpendicular to <3,4>. Another vector perpendicular to <3,4> can be found by setting b=1, which gives a=-4/3.

Thus, the vector < -4/3,1 > is perpendicular to <3,4>.

2. Similarly, for a vector perpendicular to <3,4,5>, we can set up two equations: 3a+4b+5c=0 (scalar product) and a^2+b^2+c^2=1 (magnitude). By choosing c=1, we get 3a+4b+5=0. Taking a=4 and b=-3, we have <4,-3,1> · <3,4,5> = 4·3 + (-3)·4 + 1·5 = 0.

Therefore, <4,-3,1> is perpendicular to <3,4,5>.

To find another vector perpendicular to <3,4,5>,

we can solve for b using b = (-3a-5c)/4. By setting a=1 and c=4/5, we get <1, -(3/4)·1 - (5/4)·(4/5), 4/5> · <3,4,5> = 1·3 - (3/4)·4 + (4/5)·5 = 0.

Thus, the vector <1,-3/4,4/5> is perpendicular to <3,4,5>.

Learn more about right angles

https://brainly.com/question/3770177


#SPJ11

Given the definite integral (20-¹ -1 a. Use Trapezoid Rule with 4 equal subintervals to approximate the value ofthe map o b. Determine whether your answer in part a is an overestimate or an underestimate of he Type your final answer in the solution box below. For full or partial credit on this problem, be sure to show full detailed steps of your work suporty

Answers

Therefore, the approximate value of the definite integral using the Trapezoid Rule with 4 equal subintervals is 52.484375. In this case, the function 20 - x⁴ is concave down within the interval [-1, 2]. Therefore, the approximation using the Trapezoid Rule is likely to be an underestimate.

a. To approximate the definite integral using the Trapezoid Rule with 4 equal subintervals, we divide the interval [-1, 2] into 4 subintervals of equal width.

The width of each subinterval, Δx, is given by:

Δx = (b - a) / n

where b is the upper limit of integration, a is the lower limit of integration, and n is the number of subintervals.

In this case, a = -1, b = 2, and n = 4. Therefore:

Δx = (2 - (-1)) / 4 = 3 / 4 = 0.75

Next, we approximate the integral using the Trapezoid Rule formula:

(20 - x⁴) dx ≈ Δx / 2 × [f(a) + 2f(x₁) + 2f(x₂) + 2f(x₃) + f(b)]

where f(x) represents the function being integrated.

Substituting the values:

integration of [-1, 2] (20 - x⁴) dx ≈ 0.75 / 2 × [f(-1) + 2f(-0.25) + 2f(0.5) + 2f(1.25) + f(2)]

We evaluate the function at the given points:

f(-1) = 20 - (-1)⁴ = 20 - 1 = 19

f(-0.25) = 20 - (-0.25)⁴ = 20 - 0.00390625 = 19.99609375

f(0.5) = 20 - (0.5)⁴ = 20 - 0.0625 = 19.9375

f(1.25) = 20 - (1.25)⁴= 20 - 1.953125 = 18.046875

f(2) = 20 - (2)⁴ = 20 - 16 = 4

Now, we substitute these values into the formula:

integration of [-1, 2] (20 - x⁴) dx ≈ 0.75 / 2 × [19 + 2(19.99609375) + 2(19.9375) + 2(18.046875) + 4]

Calculating the expression:

integration of [-1, 2] (20 - x⁴) dx ≈ 0.75 / 2 × [19 + 2(19.99609375) + 2(19.9375) + 2(18.046875) + 4]

≈ 0.375 × [19 + 39.9921875 + 39.875 + 36.09375 + 4]

≈ 0.375 × [139.9609375]

≈ 52.484375

Therefore, the approximate value of the definite integral using the Trapezoid Rule with 4 equal subintervals is 52.484375.

b. To determine whether the approximation in part a is an overestimate or an underestimate, we need to compare it with the exact value of the integral.

However, we can observe that the Trapezoid Rule tends to overestimate the value of integrals when the function is concave up and underestimates when the function is concave down.

In this case, the function 20 - x⁴ is concave down within the interval [-1, 2]. Therefore, the approximation using the Trapezoid Rule is likely to be an underestimate.

To know more about Trapezoid Rule:

https://brainly.com/question/30425931

#SPJ4

On a test that has a normal distribution, a score of 66 falls two standard deviations
above the mean, and a score of 36 falls one standard deviation below the mean.
Determine the mean of this test.

Answers

- x: the mean of the test

- s: the standard deviation of the test

We know that a score of 66 falls two standard deviations above the mean, so we can write:

66 = x + 2s

Similarly, we know that a score of 36 falls one standard deviation below the mean, so we can write:

36 = x - s

Now we have two equations with two unknowns (x and s). We can solve for x by isolating it in one of the equations and then substituting the result into the other equation.

Let's start with the second equation:

36 = x - s

x = 36 + s

Now we can substitute this expression for x into the first equation:

66 = x + 2s

66 = (36 + s) + 2s

66 = 36 + 3s

30 = 3s

s = 10

We have found the value of the standard deviation to be 10. Now we can substitute this value into either of the original equations to find the mean:

x = 36 + s

x = 36 + 10

x = 46

Therefore, the mean of the test is 46.

Use spherical coordinates to calculate the triple integral of f(x, y, z) √² + y² + 2² over the region r² + y² + 2² < 2z.

Answers

The triple integral over the region r² + y² + 2² < 2z can be calculated using spherical coordinates. The given region corresponds to a cone with a vertex at the origin and an opening angle of π/4.

The integral can be expressed as the triple integral over the region ρ² + 2² < 2ρcos(φ), where ρ is the radial coordinate, φ is the polar angle, and θ is the azimuthal angle.

To evaluate the triple integral, we first integrate with respect to θ from 0 to 2π, representing a complete revolution around the z-axis. Next, we integrate with respect to ρ from 0 to 2cos(φ), taking into account the limits imposed by the cone. Finally, we integrate with respect to φ from 0 to π/4, which corresponds to the opening angle of the cone. The integrand function is √(ρ² + y² + 2²) and the differential volume element is ρ²sin(φ)dρdφdθ.

Combining these steps, the triple integral evaluates to:

∫∫∫ √(ρ² + y² + 2²) ρ²sin(φ)dρdφdθ,

where the limits of integration are θ: 0 to 2π, φ: 0 to π/4, and ρ: 0 to 2cos(φ). This integral represents the volume under the surface defined by the function f(x, y, z) over the given region in spherical coordinates.

Learn more about triple integral here:

https://brainly.com/question/2289273

#SPJ11

There is no product rule for integration but the corresponding antidifferentiation rule for the derivative product rule is
substitution
partial fraction decomposition
integration by parts
hyperbolic substitution

Answers

The corresponding antidifferentiation rule for the derivative product rule is integration by parts. Integration by parts is the antidifferentiation technique that corresponds to the derivative product rule.

Integration by parts is the antidifferentiation technique that corresponds to the derivative product rule. It allows us to integrate the product of two functions by breaking it down into two terms and applying a specific formula.

The formula states that the integral of the product of two functions, u(x) and v'(x), is equal to the product of u(x) and v(x) minus the integral of the product of u'(x) and v(x).

This technique is useful when faced with integrals that involve products of functions, as it allows us to simplify and solve them step by step. By applying integration by parts, we can find the antiderivative of a given function by strategically choosing which parts to differentiate and integrate, ultimately solving the integral.

Learn more about Integration: brainly.com/question/30094386

#SPJ11

Approximate the following integral by the trapezoidal rule; then find the exact value by integration. 11 1 X-4 dx; n = 5 6 Use the trapezoidal rule to approximate the integral. 11 110~0 dx x-4 6 (Round the final answer to five decimal places as needed. Round all intermediate values to four decimal places a

Answers

The trapezoidal rule approximation of the integral is 0.2788. The exact value of the integral is 0.2778. The error of the approximation is 0.001.

The trapezoidal rule is a numerical method for approximating the definite integral of a function. The rule divides the interval of integration into a number of subintervals and approximates the integral as the sum of the areas of trapezoids. In this case, the interval of integration is [1, 6] and the number of subintervals is 5. The trapezoidal rule approximation is given by the following formula:

```

Tn = (b - a)/2 * [f(a) + 2f(a + h) + 2f(a + 2h) + ... + 2f(a + (n - 1)h) + f(b)]

```

where:

* b is the upper limit of integration

* a is the lower limit of integration

* h is the width of each subinterval

* f(x) is the function to be integrated

In this case, b = 6, a = 1, h = (6 - 1)/5 = 1, and f(x) = 1/(x - 4). Substituting these values into the formula for the trapezoidal rule gives the following approximation:

```

Tn = (6 - 1)/2 * [f(1) + 2f(2) + 2f(3) + 2f(4) + f(5)] = 0.2788

```

The exact value of the integral can be found by integrating 1/(x - 4) from 1 to 6 using the fundamental theorem of calculus. This gives the following result:

```

∫161/(x-4)dx = ln(6-4) = ln(2) = 0.2778

```

The error of the approximation is 0.001, which is a small amount. This is because the trapezoidal rule is a relatively accurate numerical method.

Learn more about limit of integration here:

brainly.com/question/31994684

#SPJ11

Let V₁ = V₂ = 2, and W = Span{v₁, v2}. Write the point x = 3 as x= x+z, where x EW and ze W. (Note that v₁ and v2 are orthogonal.) x = Z= (b) Let W = Span Use the Gram-Schmidt process to find an orthogonal {0.0} basis, U = {u₁, 1₂), for W. u₁ = U₂

Answers

The orthogonal basis of W is U = {u₁, u₂} = {(1, 0), (0, 1)}

Given that

V₁ = V₂ = 2,  

W = Span{v₁, v2} and

To write the point x = 3 as x= x+z, where x ∈ W and z ∈ W.

Also, note that v₁ and v₂ are orthogonal.

To write the point x = 3 as x= x+z,

where x ∈ W and z ∈ W,

we have,

x = 2v₁ + 2v₂

z = x - (2v₁ + 2v₂)

Substituting the values,

we get,

x = 2v₁ + 2v₂

= 2(1, 0) + 2(0, 1)

= (2, 2)

z = x - (2v₁ + 2v₂)

= (3, 0) - (2, 2)

= (1, -2)

Therefore, x = (2, 2) and z = (1, -2)

such that, x + z = (2, 2) + (1, -2) = (3, 0).

Let W = Span {v₁, v₂} such that v₁ = (1, 0) and v₂ = (0,

1).Using the Gram-Schmidt process to find an orthogonal basis,

U = {u₁, u₂} for W.

u₁ = v₁ = (1, 0)

u₂ = v₂ - projᵥ₂

u₁v₂ = (0, 1) projᵥ₂

u₁ =  ᵥ₂ ∙  u₁ / ‖u₁‖²ᵥ₂ ∙  u₁

= (0, 1) ∙  (1, 0)

= 0‖u₁‖²

= ‖(1, 0)‖²

= 1

Therefore,

projᵥ₂ u₁ = 0

u₂ = v₂ = (0, 1)

Therefore, the orthogonal basis of W is U = {u₁, u₂} = {(1, 0), (0, 1)}

To know more about Gram-Schmidt  , visit;

https://brainly.com/question/17412861

#SPJ11

1. True or False
2. Explain why?
For any two vectors u and v in R3 , ||u × v|| ≤ ||u|| ||v||

Answers

The statement "For any two vectors u and v in R3 , ||u × v|| ≤ ||u|| ||v||" is True.

For any two vectors u and v in R3 , the magnitude of their cross product u × v is given by:||u × v|| = ||u|| ||v|| sin θ
where θ is the angle between u and v.
So we can say that:||u × v|| ≤ ||u|| ||v|| sin θ ≤ ||u|| ||v||
This implies that the magnitude of the cross product of two vectors u and v is less than or equal to the product of their magnitudes.

Therefore, the statement "For any two vectors u and v in R3 , ||u × v|| ≤ ||u|| ||v||" is True.

To know more about vectors, click here

https://brainly.com/question/24256726

#SPJ11

Find the linearization of y = √ at x = 8 and use it to approximate 7.8.

Answers

The linearization of √x at x = 8 is approximately y = 1.975√2, and using this linearization, we can approximate √7.8 as approximately 1.975√2.

To find the linearization of a function, we can use the formula for the equation of a tangent line at a given point. The equation of a tangent line is given by:

y = f(a) + f'(a)(x - a)

where f(a) represents the function evaluated at the point a, and f'(a) represents the derivative of the function evaluated at the point a.

In this case, the function is y = √x, and we want to find the linearization at x = 8.

Calculate the function value and the derivative at x = 8:

f(8) = √8 = 2√2

To find the derivative, we can use the power rule. The derivative of √x is 1/(2√x). Evaluating this at x = 8:

f'(8) = 1/(2√8) = 1/(2 * 2√2) = 1/(4√2)

Plug these values into the equation of the tangent line:

y = 2√2 + (1/(4√2))(x - 8)

Now, we can use this linearization to approximate y at x = 7.8:

y ≈ 2√2 + (1/(4√2))(7.8 - 8)

Simplifying:

y ≈ 2√2 + (1/(4√2))(-0.2)

y ≈ 2√2 - 0.05/√2

y ≈ 2√2 - 0.05√2/2

y ≈ (2 - 0.05/2)√2

y ≈ (2 - 0.025)√2

y ≈ 1.975√2

Therefore, the linearization of √x at x = 8 is approximately y = 1.975√2, and using this linearization, we can approximate √7.8 as approximately 1.975√2.

Learn more about tangent line here:

https://brainly.com/question/31617205

#SPJ11

Find (a) the slope (if it is defined) of a line containing the two given points, (b) the equation of the line containing the two points in slope-intercept form, and (c) the ordered pair identifying the line's y-intercept, assuming that it exists. If appropriate, state whether the line is vertical or horizontal and

Answers

The ordered pair identifying the line's y-intercept is (0, -4). The line is neither horizontal nor vertical for slope-intercept form.

Given points are (6, 2) and (8, 5).The slope of a line containing the two given points:

The slope formula is as follows:[tex]$$m = \frac{{y_2 - y_1 }}{{x_2 - x_1 }}$$[/tex]where (x1, y1) = (6, 2) and (x2, y2) = (8, 5)Substitute the given points in the slope formula.

[tex]$$m = \frac{{5 - 2}}{{8 - 6}} = \frac{3}{2}$$[/tex]Therefore, the slope of the line containing the two given points is 3/2.(b) The equation of the line containing the two points in slope-intercept form:The slope-intercept form of a line is given by the equation y = mx + b where m is the slope of the line and b is the y-intercept.So, substituting m and either of the two points (x, y) in the equation, we get y = 3/2 x - 4.

As the slope is positive, the line is neither horizontal nor vertical.(c) The ordered pair identifying the line's y-intercept, assuming that it exists.The equation of the line is y = 3/2 x - 4.The y-intercept is the point where the line intersects the y-axis. On the y-axis, x = 0.Substitute x = 0 in the equation of the line, we gety = - 4The ordered pair identifying the line's y-intercept is (0, -4).Therefore, the slope of the line containing the two given points is 3/2. The equation of the line containing the two points in slope-intercept form is y = 3/2 x - 4.

The ordered pair identifying the line's y-intercept is (0, -4). The line is neither horizontal nor vertical in slope-intercept form.


Learn more about slope-intercept form here:
https://brainly.com/question/30381959


#SPJ11

points Let a=(4,-6, 8) and b = (-1, 4, 9). Find the indicated scalar or vector. a b

Answers

Therefore, the scalar indicated by a · b is 44.

To find the scalar or vector indicated by a · b, we need to calculate the dot product of the vectors a and b.

The dot product of two vectors a = (a₁, a₂, a₃) and b = (b₁, b₂, b₃) is given by the formula:

a · b = a₁ * b₁ + a₂ * b₂ + a₃ * b₃

In this case, a = (4, -6, 8) and b = (-1, 4, 9). Plugging in the values, we have:

a · b = (4 * -1) + (-6 * 4) + (8 * 9)

= -4 - 24 + 72

= 44

Therefore, the scalar indicated by a · b is 44.

To learn more about dot product visit:

brainly.com/question/23477017

#SPJ11

URGENT!!!
A. Find the value of a. B. Find the value of the marked angles.

----

A-18, 119

B-20, 131

C-21, 137

D- 17, 113

Answers

The value of a and angles in the intersected line is as follows:

(18, 119)

How to find angles?

When lines intersect each other, angle relationships are formed such as vertically opposite angles, linear angles etc.

Therefore, let's use the angle relationships to find the value of a in the diagram as follows:

Hence,

6a + 11 = 2a + 83 (vertically opposite angles)

Vertically opposite angles are congruent.

Therefore,

6a + 11 = 2a + 83

6a - 2a = 83 - 11

4a = 72

divide both sides of the equation by 4

a = 72 / 4

a = 18

Therefore, the angles are as follows:

2(18) + 83 = 119 degrees

learn more on angles here: brainly.com/question/30194223

#SPJ1

Find the area of the surface obtained by rotating the curve }=1+22 from a = 0 to a 4 about the y-axis.

Answers

The area of the surface obtained by rotating the curve y = 1 + 2x² about the y-axis from x = 0 to x = 4 is approximately 1009.14 square units.

To find the area of the surface obtained by rotating the curve defined by y = 1 + 2x² from x = 0 to x = 4 about the y-axis, we can use the method of cylindrical shells.

First, let's express the equation y = 1 + 2x² in terms of x = f(y). Solving for x, we get x = sqrt((y - 1) / 2).

Now, we consider a thin strip of width dy on the y-axis, with radius x = sqrt((y - 1) / 2) and height 2πx.

The area of this strip is given by dA = 2πx * dy.

To find the total area, we integrate dA from y = 1 to y = 23 (corresponding to x = 0 to x = 4):

A = ∫[1,23] 2πx * dy

= 2π ∫[1,23][tex]\sqrt{(y - 1) / 2}[/tex] * dy.

Evaluating this integral, we find:

A = 2π/3 [(y - 1)^(3/2)]|[1,23]

= 2π/3 [(23 - 1)^(3/2) - (1 - 1)^(3/2)]

= 2π/3 (22^(3/2))

= 2π/3 * 22 *[tex]\sqrt{22[/tex]

≈ 1009.14 square units.

Therefore, the area of the surface obtained by rotating the curve y = 1 + 2x² about the y-axis from x = 0 to x = 4 is approximately 1009.14 square units.

To learn more about area of the surface visit:

brainly.com/question/31481687

#SPJ11

Find the average value of the function f over the interval [0, 6]. 12 = x + 1

Answers

The average value of the function f over the interval [0, 6] is 12.

To find the function f(x), we substitute the value of x in the given equation and solve for y. We have 12 = x + 1, which gives x = 11. Substituting the value of x in the equation for f(x), we have f(x) = x^2 - 3x + 4. Therefore, f(11) = 11^2 - 3(11) + 4 = 121 - 33 + 4 = 92.

The average value of the function f(x) over the interval [0, 6] is given by the formula:

Average value = 1/(b-a) × ∫(a to b) f(x) dx,

where a = 0 and b = 6. Substituting the values, we get:

Average value = 1/6 × ∫(0 to 6) (x^2 - 3x + 4) dx

= 1/6 [(x^3/3 - 3(x^2)/2 + 4x)] from 0 to 6

= 1/6 [(216/3 - 3(36/2) + 24) - 0]

= 1/6 [72]

= 12.

Therefore, the average value of the function f over the interval [0, 6] is 12.

Learn more about average value

https://brainly.com/question/39395

#SPJ11

Use the complex exponential to evaluate the following: dio (a) da 10 (e* cos(x))

Answers

To evaluate the integral ∫e^(10 cos(x)) dx, we can use the complex exponential function. The complex exponential can be represented as e^z, where z = x + iy, with x and y being real numbers. By using Euler's formula, we can rewrite e^(ix) in terms of sine and cosine functions: e^(ix) = cos(x) + i sin(x).

Now, let's consider the integral ∫e^(10 cos(x)) dx. We can rewrite e^(10 cos(x)) as e^(10 cos(x)) = e^(10 (cos(x) + i sin(x))). Applying Euler's formula, this becomes e^(10 (cos(x) + i sin(x))) = e^(10 cos(x)) (cos(10 sin(x)) + i sin(10 sin(x))).

Since the original integral involves only real numbers, we are only interested in the real part of the complex exponential. Therefore, we can rewrite the integral as ∫e^(10 cos(x)) dx = Re [∫e^(10 cos(x)) (cos(10 sin(x)) + i sin(10 sin(x))))] dx.

Now, by taking the real part of the integral, we have ∫e^(10 cos(x)) dx = Re [∫e^(10 cos(x)) (cos(10 sin(x)) + i sin(10 sin(x))))] dx = Re [∫e^(10 cos(x)) cos(10 sin(x))] dx.

The integral of e^(10 cos(x)) cos(10 sin(x)) can be difficult to evaluate analytically, so numerical methods or special functions like Bessel functions may be needed to obtain a numerical approximation.

To learn more about Cosine functions : brainly.com/question/4599903

#SPJ11

Fleet Assignment (Scenario) Q3 (55% to CW01 mark) Moon Airline is a Hong Kong based airline. The airline operates passenger and cargo flights, including but not limited to Airbus A320s and A330s. The Airline has decided to reintroduce nonstop flights from Hong Kong International Airport (HKG) to Taipei (TPE) and Changsha (CSX). The marketing and planning departments have forecasted passenger demand and proposed flight schedule on those two routes in Table 3. The Airline intends to use two aircraft, one A330-300 and one A320 based on this plan. Table 4 shows the seat capacity and estimated fleet operating data. Table 3: The planned flight information Flight Distance Standard Origin Destination Demand Departure Arrive No. (Miles) Deviation 101 HKG TPE 501 282 24 08:00 09:15 201 HKG CSX 407 162 26 08:30 10:00 102 ΤΡΕ HKG 501 265 23 12:00 13:30 103 HKG ΤΡΕ 501 300 24 15:00 16:30 CSX HKG 407 165 30 17:00 18:15 202 104 TPE HKG 501 295 33 20:15 21:30 Table 4: The seat capacity and estimated fleet operating data for A330-300 and A320s Seat Turnaround Time CASM($) RASM ($) 262 60 0.046 0.095 A330-300 A320s 164 45 0.042 0.095 ៖ You are required to write an academic report to apply the fleet assignment approach and tools to complete the following tasks: Task 1 (8%) Conduct the critical analysis of the fleet operating costs and passenger-spill costs. To obtain the passenger spill number, you need to replicate randomly at least 20,000 times. Assume the Airline has a 15% recapture rate. All calculations and detailed explanations should be included in this analysis. Task 2 (8%) Apply the Time-Space network approach to generate the Time-Space network for each airport with aircraft balance constraints. Describe in details how the graphs and aircraft balance constraints support to solve the fleet assignment problem. Task 3 (8%) Address and explain all of the fleet assignment constraints in your fleet assignment model and evaluate your calculation methodology. Task 4 (8%) Complete the fleet assignment plan for the flights in Table 3 by using the FAM (Fleet Assignment Model) and the Linear Integer Programming technique, and generate a final fleet assignment Time-Space network diagram to allocate your results. Explain and evaluate your model and results. Task 5 (5%) You need to provide animation(s) (screen recording, no longer than 1 minute) on how you run your program (Excel Solver/LpSolve/R) to get the solutions. Task 6 (8%) Bad weather and aircraft incidents/accidents frequently cause disruptions in airline operations. As an airline operation manager, discuss and propose a plan for a tactic or series of tactics for Sun Airline to deal with irregular operations. You can use a scenario to demonstrate your tactic(s) based on the flight information provided above. Provide the references you found from online articles and textbooks that support you to formulate a plan for irregular handling. Report Writing Format (10%) You will need to adopt the report structure provided below: • Title page (To include report title) • Table of contents • List of Abbreviations/Glossary • Introduction • The main body of the Report • Conclusion • References Appendices Use examples and cases from text books, journals, papers and reports to support your arguments and reference properly, using CU Harvard Reference Style. *Remarks: Remember to zip and submit all the respective files to Canvas Refer to CWSubmission Guide, Canvas other files submission

Answers

The academic report focuses on applying the fleet assignment approach and tools to solve various tasks related to Moon Airline's flight operations.

The report includes a critical analysis of fleet operating costs and passenger-spill costs, generation of Time-Space networks for each airport with aircraft balance constraints, addressing fleet assignment constraints, completing the fleet assignment plan using Linear Integer Programming, providing animations of the program running, and proposing tactics to handle irregular operations. The report follows a structured format, including a title page, table of contents, introduction, main body, conclusion, references, and appendices. It emphasizes the use of examples, cases, and references from textbooks, journals, papers, and reports to support arguments and uses the CU Harvard Reference Style for proper citation.

In Task 1, the report conducts a critical analysis of fleet operating costs and passenger-spill costs. It involves replicating passenger spill randomly at least 20,000 times and considering a 15% recapture rate. The analysis includes detailed calculations and explanations.

Task 2 focuses on applying the Time-Space network approach to generate Time-Space networks for each airport while considering aircraft balance constraints. The report describes how graphs and aircraft balance constraints support solving the fleet assignment problem.

Task 3 involves addressing and explaining all fleet assignment constraints in the model and evaluating the calculation methodology used.

Task 4 requires completing the fleet assignment plan for the flights in Table 3 using the Fleet Assignment Model (FAM) and Linear Integer Programming. The report also generates a final fleet assignment Time-Space network diagram and provides an explanation and evaluation of the model and results.

Task 5 requests providing animations demonstrating how the program (Excel Solver/LpSolve/R) was run to obtain the solutions.

Task 6 focuses on proposing a plan for dealing with irregular operations caused by bad weather and aircraft incidents/accidents. The report discusses tactics and provides scenarios based on the flight information provided. It supports the proposed plan with references from online articles and textbooks.

The report adheres to a comprehensive format, ensuring clarity, organization, and proper referencing throughout the analysis and tasks.

Learn more about  Linear Integer Programming here:

https://brainly.com/question/31954137

#SPJ11

Problem Solving Full solutions required. 1. Determine the parametric equations of a line that has the same x and z-intercepts as the plane 2x - 3y 4z - 12 = 0 2. Determine the value of k so that these planes are perpendicular. T₁: X= 1 + 4s + kt T₂: =(4,1,-1) + s(1,0,5) + t(0,-3,3) Y=2+2s+t z=7+2t

Answers

To determine the parametric equations of a line with the same x and z-intercepts as the plane 2x - 3y + 4z - 12 = 0, we can use the intercepts to find two points on the line.

For the x-intercept, we set y and z to 0 and solve for x:

2x - 3(0) + 4(0) - 12 = 0

2x - 12 = 0

2x = 12

x = 6

So one point on the line is (6, 0, 0).

For the z-intercept, we set x and y to 0 and solve for z:

2(0) - 3y + 4z - 12 = 0

4z - 12 = 0

4z = 12

z = 3

So another point on the line is (0, 0, 3).

Now we can write the parametric equations of the line using these two points:

x = 6s

y = 0s

z = 3s

To determine the value of k so that the planes T₁: X= 1 + 4s + kt and T₂: =(4,1,-1) + s(1,0,5) + t(0,-3,3) are perpendicular, we need to check if the direction vectors of the two planes are perpendicular.

The direction vector of T₁ is (4, k, 0) since the coefficients of s and t are the direction ratios for the plane.

The direction vector of T₂ is (1, 0, 5).

For two vectors to be perpendicular, their dot product should be zero.

(4, k, 0) · (1, 0, 5) = 4(1) + k(0) + 0(5) = 4

To make the planes perpendicular, the dot product should be zero. Therefore, we need:

4 = 0

However, this equation has no solution since 4 is not equal to 0. Therefore, there is no value of k that makes the planes T₁ and T₂ perpendicular.

Learn more about parametric equations here:

https://brainly.com/question/30451972

#SPJ11

Consider the function z = x² cos(2y) - when (x, y) = (1, π). 3 . Find the tangent plane to the surface

Answers

The tangent plane to the surface z = x² cos(2y) - at the point (1, π) is given by the equation z = -1 + 2x - 2y.

The tangent plane to a surface at a point is defined as the plane that best approximates the surface at that point. In this case, we can find the tangent plane by taking the partial derivatives of z with respect to x and y, and evaluating them at the point (1, π).

The partial derivative of z with respect to x is 2x cos(2y). When x = 1 and y = π, this value is 2. The partial derivative of z with respect to y is -2 sin(2y). When x = 1 and y = π, this value is -2.

The equation of the tangent plane is therefore given by:

```

z = z(1, π) + 2x(x - 1) - 2y(y - π)

```

Plugging in z(1, π) = -1, we get the equation:

```

z = -1 + 2x - 2y

```

This is the equation of the tangent plane to the surface z = x² cos(2y) - at the point (1, π).

Learn more about tangent plane here:

brainly.com/question/30565764

#SPJ11

Assume lim f(x)=28, lim g(x)=5, and lim h(x) = 3. Compute the following limit and state the limit laws used to justify the computation. X-2 X-2 x-2 f(x) lim x-29(x)-h(x) (Simplify your answer.) f(x) x-29(x)-h(x) lim

Answers

The limit of the given expression is 28/3. This is obtained by applying the quotient rule and canceling out the common factor of (x-2) in the numerator and denominator.

The limit of (x-2)(x-2)f(x) / (x-2)9(x)-h(x) as x approaches 2 is 28/3. This result is obtained by applying the limit laws, specifically the quotient rule and the product rule. The quotient rule states that the limit of the quotient of two functions is equal to the quotient of their limits, provided the denominator's limit is not zero. In this case, the limit of (x-2)f(x) as x approaches 2 is 28, and the limit of (x-2)9(x)-h(x) as x approaches 2 is 5*3 = 15. Therefore, the quotient is 28/15.

However, we also need to consider the factor of (x-2) in the numerator and denominator. Since x-2 approaches 0 as x approaches 2, we can cancel out the common factor of (x-2) in the numerator and denominator. This leaves us with the simplified expression f(x) / 9(x)-h(x). Substituting the given limits, we have 28 / (9*5 - 3) = 28/42 = 2/3.

Learn more about limit of a given expression:

https://brainly.com/question/28463400

#SPJ11

The line AB passes through the points A(2, -1) and (6, k). The gradient of AB is 5. Work out the value of k.​

Answers

Answer:

Step-by-step explanation:

gradient = 5 = [k-(-1)]/[6-2]

[k+1]/4 = 5

k+1=20

k=19

Final answer:

The value of k in the line that passes through the points A(2, -1) and (6, k) with a gradient of 5 is found to be 19 by using the formula for gradient and solving the resulting equation for k.

Explanation:

To find the value of k in the line that passes through the points A(2, -1) and (6, k) with a gradient of 5, we'll use the formula for gradient, which is (y2 - y1) / (x2 - x1).

The given points can be substituted into the formula as follows: The gradient (m) is 5. The point A(2, -1) will be x1 and y1, and point B(6, k) will be x2 and y2. Now, we set up the formula as follows: 5 = (k - (-1)) / (6 - 2).

By simplifying, the equation becomes 5 = (k + 1) / 4. To find the value of k, we just need to solve this equation for k, which is done by multiplying both sides of the equation by 4 (to get rid of the denominator on the right side) and then subtracting 1 from both sides to isolate k. So, the equation becomes: k = 5 * 4 - 1. After carrying out the multiplication and subtraction, we find that k = 20 - 1 = 19.

Learn more about Line Gradient here:

https://brainly.com/question/30249498

#SPJ2

Find the equation of the line shown.

Answers

to get the equation of any straight line, we simply need two points off of it, let's use those two in the picture below.

[tex](\stackrel{x_1}{-4}~,~\stackrel{y_1}{3})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{1}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{1}-\stackrel{y1}{3}}}{\underset{\textit{\large run}} {\underset{x_2}{4}-\underset{x_1}{(-4)}}} \implies \cfrac{-2}{4 +4} \implies \cfrac{ -2 }{ 8 } \implies - \cfrac{1}{4}[/tex]

[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{- \cfrac{1}{4}}(x-\stackrel{x_1}{(-4)}) \implies y -3 = - \cfrac{1}{4} ( x +4) \\\\\\ y-3=- \cfrac{1}{4}x-1\implies {\Large \begin{array}{llll} y=- \cfrac{1}{4}x+2 \end{array}}[/tex]

Estimate the conditional probabilities for Pr(A = 1|+) ..., Pr(B = 1|+) ..., Pr(C = 1|+)...
Question:
Estimate the conditional probabilities for
_____,
_____,
_____,
_____,
_____, and
_____;
Instance A B C Class
1 0 0 1 -
2 1 0 1 +
3 0 1 0 -
4 1 0 0 -
5 1 0 1 +
6 0 0 1 +
7 1 1 0 -
8 0 0 0 -
9 0 1 0 +
10 1 1 1 +

Answers

To estimate the conditional probabilities for Pr(A = 1|+), Pr(B = 1|+), and Pr(C = 1|+), we need to calculate the probabilities of each event occurring given that the class is positive (+).

Let's analyze the given data and calculate the conditional probabilities:

Out of the 8 instances provided, there are 4 instances where the class is positive (+). Let's denote these instances as +1, +2, +5, and +6.

For Pr(A = 1|+), we calculate the proportion of instances among the positive class where A = 1. Out of the four positive instances, +2 and +5 have A = 1. Therefore, Pr(A = 1|+) = 2/4 = 0.5.

For Pr(B = 1|+), we calculate the proportion of instances among the positive class where B = 1. Out of the four positive instances, +5 has B = 1. Therefore, Pr(B = 1|+) = 1/4 = 0.25.

For Pr(C = 1|+), we calculate the proportion of instances among the positive class where C = 1. Out of the four positive instances, +5 and +6 have C = 1. Therefore, Pr(C = 1|+) = 2/4 = 0.5.

To summarize:

- Pr(A = 1|+) = 0.5

- Pr(B = 1|+) = 0.25

- Pr(C = 1|+) = 0.5

It's important to note that these probabilities are estimated based on the given data. Depending on the context and the underlying distribution of the data, these probabilities might not be accurate representations in other scenarios.

For more such questions on  conditional probabilities.

https://brainly.com/question/10739947

#SPJ8

For each of the following statements, determine if it is true or false. If it's true, give a brief explanation of why. If it's false, find a counterexample. Let the vector fields in question be fields in R³. (a) A result from Calculus 1 gives us the fact that for a function f(z), if f'(z)=0 for all in the domain, then f is a constant function. True or false: If V F-0 for all points in the domain then F is constant. (b) True or false: If V x F-6, then F is constant. I (c) True or false: A vector field consisting of parallel vectors has zero curl. (d) True or false: A vector field consisting of parallel vectors has zero divergence. (e) True or false: The vector field curlf is orthogonal to F at every point.

Answers

(a) True. If a vector field V F is zero for all points in its domain, then F is a constant vector field. (b) False. The cross product V × F being 6 does not imply that F is constant. (c) True. A vector field consisting of parallel vectors has zero curl. (d) False. A vector field consisting of parallel vectors can have a non-zero divergence. (e) True. The vector field curl f is orthogonal to F at every point.

(a) True. The statement is true. In Calculus 1, the result known as the Mean Value Theorem states that if a function has derivative zero on an interval, then the function is constant on that interval. This result can be extended to vector fields. If the vector field V F is zero at all points in its domain, then each component function of F has derivative zero, implying that each component function is constant. Therefore, F is a constant vector field.

(b) False. The statement is false. If the vector field V × F is equal to 6, it does not necessarily imply that F is constant. The cross product of two vector fields can give a non-zero vector field, even if one of the vector fields is constant.

(c) True. The statement is true. If a vector field consists of parallel vectors, it means that the vectors have the same direction at every point in the field. The curl of a vector field measures the rotation or circulation of the vectors. Since parallel vectors do not exhibit rotation or circulation, the curl of a vector field consisting of parallel vectors is zero.

(d) False. The statement is false. A vector field consisting of parallel vectors can have a non-zero divergence. The divergence of a vector field measures the flux or flow of the vectors. Even if the vectors in the field are parallel, they can still have varying magnitudes, resulting in a non-zero divergence.

(e) True. The statement is true. The vector field curl f is orthogonal to F at every point. The curl of a vector field measures the rotation or circulation of the vectors. When the curl of a vector field is calculated, the result is a vector that is orthogonal (perpendicular) to the original vector field at every point. Therefore, the vector field curl f is orthogonal to F at every point.

To know more about vector field,

https://brainly.com/question/32565585

#SPJ11

Use the Laplace transform to solve each initial value problem: (a) {yci (0) + 5% = ¹44 = 20 } (b) { = = (c) { y" + 2y + 5y = 40 sin t y(0) = 2 & y'(0) = 1 -3t y" + 6y' +9y = (t² — 5t)e¯ = =

Answers

(a) The Laplace transform is used to solve the initial value problem yc''(0) + 5yc'(0) + 4yc(0) = 20 with initial conditions yc(0) = 2 and yc'(0) = 1.

(b) The Laplace transform is applied to solve the initial value problem y'' + 2y + 5y = 40sin(t) with initial conditions y(0) = 2 and y'(0) = 1.

(a) The initial value problem (IVP) is given by the equation yc''(0) + 5yc'(0) + 4yc(0) = 20, with initial conditions yc(0) = 2 and yc'(0) = 1. To solve this using Laplace transform, we take the Laplace transform of the equation and substitute the initial conditions. Applying the Laplace transform to the given equation yields s²Y(s) - sy(0) - y'(0) + 5sY(s) - 5y(0) + 4Y(s) = 20s²Y(s) - 2s - 1 + 5sY(s) - 10 + 4Y(s) = 20. Rearranging the equation and solving for Y(s) gives Y(s) = (20 + 2s + 1) / (20s² + 5s + 4). Applying inverse Laplace transform to Y(s), we find the solution yc(t) of the IVP.

(b) For the IVP given by y'' + 2y + 5y = 40sin(t), with initial conditions y(0) = 2 and y'(0) = 1, we can use Laplace transform to solve it. Taking the Laplace transform of the given equation yields s²Y(s) - sy(0) - y'(0) + 2Y(s) + 5Y(s) = 40 / (s² + 1). Substituting the initial conditions and rearranging the equation, we have s²Y(s) - 2s - 1 + 2Y(s) + 5Y(s) = 40 / (s² + 1). Simplifying further, we get Y(s) = (40 / (s² + 1) + 2s + 1) / (s² + 2s + 5). By applying the inverse Laplace transform to Y(s), we obtain the solution y(t) of the IVP.

Learn more about Laplace transform here: https://brainly.com/question/30759963

#SPJ11

Solve the given differential equation by using an appropriate substitution. The DE is homogeneous. dy y-x m dx y + x

Answers

The given homogeneous differential equation can be solved by substituting y = ux. This leads to a separable differential equation in terms of u and x, which can be solved to obtain the general solution.

To solve the homogeneous differential equation, we can make the substitution y = ux, where u is a new variable. We then differentiate both sides of the equation with respect to x and substitute the values of dy/dx and y in terms of u and x.

This leads to a separable differential equation in terms of u and x. Solving this new equation will give us the general solution in terms of u and x. Finally, substituting y = ux back into the general solution will give the solution to the original differential equation.

To learn more about homogeneous differential equation  click here:

brainly.com/question/30624850

#SPJ11

y = Find and 4X 3z ду x дz 10. y = (3x + 1)(6x2 + 3). Find х ду

Answers

To find ∂y/∂x, we differentiate y with respect to x while treating z as a constant. Using the product rule, we have:
∂y/∂x = ∂(3x + 1)(6x^2 + 3)/∂x
      = (3)(6x^2 + 3) + (3x + 1)(12x)
      = 18x^2 + 9 + 36x^2 + 12x
      = 54x^2 + 12x + 9
To find ∂y/∂z, we differentiate y with respect to z while treating x as a constant. Since there is no z term in the expression for y, the derivative ∂y/∂z is zero:
∂y/∂z = 0

Finally, to find ∂x/∂y, we differentiate x with respect to y while treating z as a constant. This involves solving for x in terms of y:
y = (3x + 1)(6x^2 + 3)
6x^3 + 3x + 2x^2 + 1 = y
6x^3 + 2x^2 + 3x + 1 - y = 0
Since this is a cubic equation, finding an explicit expression for x in terms of y may not be straightforward. However, we can still find ∂x/∂y using implicit differentiation or numerical methods.

 To  learn  more  about derivative click here:brainly.com/question/30365299

#SPJ11

Determine the value of k that will make the given lines perpendicular: (x, y) = (3,-2) + s(1,4); s E R and 12x + ky = 0.

Answers

The value of k that will make the given lines perpendicular: (x, y) = (3,-2) + s(1,4); s E R and 12x + ky = 0 is -48.

To determine the value of k that will make the given lines perpendicular, we need to find the slopes of the two lines and set them equal to the negative reciprocal of each other.

The equation of the first line is given by:

(x, y) = (3, -2) + s(1, 4)

The direction vector of this line is (1, 4), so the slope of the line is 4.

The equation of the second line is given by:

12x + ky = 0

To find the slope of this line, we can rewrite the equation in slope-intercept form (y = mx + b):

ky = -12x

y = (-12/k)x

Comparing this equation to y = mx + b, we can see that the slope is -12/k.

For the lines to be perpendicular, the slopes must be negative reciprocals of each other. Therefore, we have the equation:

4 × (-12/k) = -1

Simplifying the equation:

-48/k = -1

Cross-multiplying:

48 = -k

Dividing both sides by -1:

k = -48

Therefore, the value of k that will make the given lines perpendicular is -48.

Learn more about slope-intercept form here:

https://brainly.com/question/32634451

#SPJ11

Bay Street Vending received an invoice dated May 11 with terms 3/10, n/30. The amount stated on the invoice was $2490.00. (a) What is the last day for taking the cash discount? (b) What is the amount due if the invoice is paid on the last day for taking the discount? www (a) The last day to take the cash discount is (b) The amount due is $ (Round to the nearest cent as needed.)

Answers

(a) The last day to take the cash discount is May 14.

(b) The amount due if the invoice is paid on the last day for taking the discount is $2241.00.

(a) To determine the last day for taking the cash discount, we need to consider the terms provided. In this case, the terms are 3/10, n/30. The first number, 3, represents the number of days within which the cash discount can be taken. The second number, 10, represents the percentage discount offered. The "n" in n/30 indicates that the full amount is due within 30 days.

To find the last day for taking the cash discount, we add the number of days mentioned in the terms to the invoice date. In this case, the invoice date is May 11. Therefore, the last day for taking the cash discount would be May 11 + 3 days, which is May 14.

(b) If the invoice is paid on the last day for taking the discount, we can subtract the discount amount from the total amount to find the amount due. The discount is calculated by multiplying the discount percentage (10%) by the invoice amount ($2490.00).

Discount = 10% × $2490.00 = $249.00

To find the amount due, we subtract the discount from the total amount:

Amount due = $2490.00 - $249.00 = $2241.00

Therefore, (a) the last day to take the cash discount is May 14, and (b) the amount due if the invoice is paid on the last day for taking the discount is $2241.00.

Learn more about percentage here:

https://brainly.com/question/14319057

#SPJ11

which property justifies this statement? if 4x = 20, then x=5

Answers

The division property of equality and dividing both sides of the equation by 4, we can conclude that if 4x = 20, then x = 5.

The property that justifies the statement "if 4x = 20, then x = 5" is the division property of equality.

According to the division property of equality, if both sides of an equation are divided by the same nonzero value, the equation remains true. In this case, we have the equation 4x = 20. To isolate x, we divide both sides of the equation by 4:

(4x) / 4 = 20 / 4

This simplifies to:

x = 5

Therefore, by applying the division property of equality and dividing both sides of the equation by 4, we can conclude that if 4x = 20, then x = 5.

​for such more question on division property

https://brainly.com/question/29667212

#SPJ8

Find the area of the shaded region. 15 KP m A = -0.5 0 0.5 squared units 25 -y=-(x - 1)² + 1 -y = x²

Answers

The area of the shaded region is 0.25 square units. The shaded region is formed by the overlapping area between two curves: y = x² and y = -(x - 1)² + 1.

To find the area of the shaded region, we first need to determine the points of intersection between the two curves. Setting the two equations equal to each other, we have x² = -(x - 1)² + 1. Simplifying this equation, we get 2x² - 2x = 0, which further simplifies to x(x - 1) = 0. So, the points of intersection are x = 0 and x = 1.

Next, we integrate the difference between the two curves with respect to x, from x = 0 to x = 1, to find the area of the shaded region. The integral becomes ∫[0,1] (x² - (-(x - 1)² + 1)) dx. Expanding and simplifying the expression, we get ∫[0,1] (2x - x²) dx. Evaluating this integral, we find the area of the shaded region to be 0.25 square units.

Therefore, the area of the shaded region is 0.25 square units, which represents the overlapping area between the curves y = x² and y = -(x - 1)² + 1.

Learn more about points of intersection here:

https://brainly.com/question/14217061

#SPJ11

Other Questions
Disseminated by Kodak to labs that processed film, the Shirley card was a reference card used to calibrate skin tone. The original Shirley card, named for the first woman who sat for it, and many subsequent versions, used only one model in the image, and she was white. This lasted until 1995, when Kodak introduced a reference card featuring a white, Asian, and black woman with different skin tones. The Shirley card serves as an example of the ways in which ____________ are embedded in machine design, put into play just by using them.A. countervisual strategiesB. social and political perspectivesC. algorithmsD. technological advancements What word would be used to refer to a patient's rapid breathing? A. Dyspnea B. Tachycardia C. Dyseffusion D. Tachypnea. If you were constructing a99%confidence interval of the population mean based on a sample ofn=30where the standard deviation of the sampleS=0.05, the critical value oftwill be2.75642.49222.7969 Sponges feed differently than comb jellies because a sponge feeds by - acting as a net in a current that sweeps food particles into its central cavity and digests them externally.- squeezing the spongocoel cavity and sucking debris in and out through the osculum.- the beating of collar cells' flagellae, which form a current; the current brings food particles which are engulfed and digested by collar cells.- the beating collar cells form a current from osculum to pores; the food is engulfed by amoebocytes in the central cavity of the sponge. Recall that an angle making a full rotation measures 360 degrees or 27 radians. a. If an angle has a measure of 150 degrees, what is the measure of that angle in radians? b. Write a formula that expresses the radian angle measure of an angle, 0, in terms of the degree measure of that angle, d. 0= Preview syntax error Hint: d degrees is what portion (or percent) of a full rotation? A rectangular prism has the following remarkable properties:a. Its depth is the geometric mean of its length and width.b. Its volume (measured in cubic meters) is equal to its surface area (measured in square meters).What is the rate of change of the length of the prism with respect to its width? Use a suitable transformation to transform 2T 1 2 1 So de to 13 - 5cos 0 5i z |z|=1 (26/5)z +1 and hence evaluate the real integral. b. Use contour integration to evaluate the real integral x cos(x) S -dx (x + 1)(x + 4) [infinity]0 dz (6 marks) (6 marks) The nominal GDP of Jakku is $52 billion USD and the GDP deflator is 104 . What is the real GDP? a. 2 b. 54 c. 0.5 d. 50 DBA 3.06 Review Questions: What is oral tradition? Describe the Sahara, the inland delta & the Sahel; How did Mansa Musa go about promoting his religion? With which ancient civilization would you rather live? The Aztecs, the Mayans or the Incas? Why? A firm could install an improved piece of machinery at cost of $20,000 (has to be paid immediately, In 2022). This machine will save $1,000 every year starting from 2023. a. Would the firm install the machine if the interest rate is 4%? Explain. (2) b. Would the firm install the machine if the interest rate is 8%? explain. (2) c. At what interest rate is the firm indifferent between install the machine and ignoring this improvement? explain. (2) October 25, 2016LEGAL ENVIRONTMENT/ BUSINESSLAW I, 13 WEEK FALLTERM, 2016, CAMDENCITY CAMPUS, FIRSTTEST, TAKE HOMESHORT ANSWER ESSAYDUE TUESDAY, NOVEMBER 8, 2016CASE1. Jacob just won the state lottery. Discuss his right to privacy. 2. A new state law mandates that all employers must prohibit smoking employer premises. The law further provides that any employer who allows an employee or a client customer to smoke on its premises is subject to a court order requiring the employer to on force the law. Describe this statute in terms of all possible classification methods. Provide a summary in your own words highlighting the differences between what you have studied in the text books and what you have observed in the practical institutions and also recommend any solutions to fill this theory and practice gap and also how organizations can improve using HR knowledge. Match the expression with its derivative Expression: e +1 a. f(x) = e er +1 b. f (x)= e = c. f(x) = d. f (x) = Derivative: 1. f'(x) == 2. f(e) = - 3. f'(2) 4. f'(2) = 10 b d e e e2x ez 2+1 6 e2-1 et et [Choose ] [Choose ] [Choose ] [Choose ] 14 pts Consider the PDE ut = xuxx + ux for x = (0,1). Does the maximum principle hold in this case? Justify your answer. Pier10 Inc. entered into a 5-year lease and recorded a right-of-use asset and lease liability of $281,600 on January 1, 2020. Pier10 Inc. was aware of the lessors implicit rate of interest of 5%. The equipment under lease had an estimated 5-year useful life with no residual value. The first lease payment of $61,945 was due upon commencement of the lease. Record Pier10 Inc.s journal entries during the year of 2020 assuming that the lease is properly classified as a finance lease.a. January 1, 2020 Record the right-of-use asset and lease liability.b. January 1, 2020 Record the lease payment.c. December 31, 2020 Record the adjusting entries. Select the correct answer.Read this adapted excerpt from "The Third Philippic," written by Demosthenes in 342 B.C.:It is this fate, I solemnly assure you, that I dread for you, when the time comes that you make your reckoning, and realize that there is no longeranything that can be done. May you never find yourselves, men of Athens, in such a position! Yet in any case, it were suffer greatly, than to doanything out of servility towards Philip (or to sacrifice any of those who speak for your good). A noble recompense did the people in Oreusreceive, for entrusting themselves to Philip's friends, and thrusting Euphraeus aside! And a noble recompense the democracy of Eretria, fordriving away your envoys, and surrendering to Cleitarchus! A noble clemency did he show to the Olynthians, who elected Lasthenes tocommand the cavalry, and banished Apollonides! It is folly, and it is cowardice, to cherish hopes like these, to give way to evil counsels, to refuseto do anything that you should do, to listen to the advocates of the enemy's cause, and to fancy that you dwell in so great a city that, whateverhappens, you will not suffer any harm.In this speech, Demosthenes tries to warn people about an attack on Greece. Which statement best describes Demosthenes's claim?A.B.C.O D.Demosthenes wants Athenians to believe that Athens is secure and no enemy can enter their country.Demosthenes warns Athenians not to be naive and to be prepared for any circumstances.Demosthenes assures Athenians that nothing will change as long as their enemies don't attack the city.Demosthenes claims that Athens will be destroyed because several Athenians have joined the enemy's side. Suppose C is the range of some simple regular curve : [a, b] R. Suppose : [c, d] R is another simple regular parameterization of C. We'd like to make sure that the are length of C is the same whether we use o or . a. Assume without loss of generality that o(a) = (c) and (b) = [c, d] be the function f = oo. Let u = f(t) and show that (d). Let f: [a,b] di du do dt du dt b. Carefully justify the equality: [" \o (10)\ dt = [" \' (u)\ du. 1.2.2 FINANCIAL MANAGEMENT [100] QUESTION ONE [25]The following data was extracted from the records of DT Ltd on 28 February 2021, the end of their financial year:RR Share capital (900 000 shares at R2 par value) 1 800 000Retained income 160 000Non-Current Assets 1 750 000Inventories 220 000Receivables 600 000Cash/Bank 300 000Payables 730 000Loans at 15% p.a. 180 000Net profit after tax 765 000Market price of share 270cDividends per share 65cRequired:1.1. Calculate and comment on each of the following ratios:1.1.1. Current ratio (last year 2.33 : 1) (4)1.1.2. Acid test ratio (last year 1.58 : 1) (4)1.2. Calculate the Price Earnings (PE) ratio and explain what a low PE ratio could mean. (4)1.3. Calculate the earnings per share. Will shareholders be happy with this? Why? (4)1.4. Calculate the market to book ratio and explain the significance of this ratio. (4)1.5. Calculate and comment on the debt equity ratio. (3)1.6. Calculate the retained income for the year. (2) if small batches go through the system faster with lower variability what is the longest-running jukebox musical in broadway history