step by step write clear
4) (10 points) Use the equations given below to convert complex numbers in polar form to rectangular form. Convert the following complex numbers to rectangular form. Show all your calculation for full

Answers

Answer 1

The magnitude of the rectangular form of the given complex number is[tex]`z = 75\sqrt{3} + 75i`[/tex].

The equation to convert complex numbers in the polar form rectangular form is[tex]`z = a + ib = r(cosθ + isinθ)`[/tex].

Here, the modulus of the complex number is r and the argument of the complex number is θ. The modulus of the complex number is the magnitude or the absolute value of the complex number and the argument of the complex number is the angle that the line joining the origin to the complex number makes with the positive x-axis.

Steps to convert complex numbers in the polar form to the rectangular form:

1. Identify the modulus and argument of the complex number.

2. Apply the formula[tex]`z = a + ib = r(cosθ + isinθ)`[/tex]

3. Substitute the values of [tex]`r`, `cosθ` and `sinθ`[/tex] to find the real and imaginary parts of the complex number.

4. Combine the real and imaginary parts of the complex number to obtain the rectangular form of the complex number. Given,[tex]`z = 150(cos(30°) + isin(30°))`[/tex]

Step 1:Identify the modulus and argument of the complex number.[tex]`r = 150` and `θ = 30°`[/tex]

Step 2:Apply the formula [tex]`z = a + ib = r(cosθ + isinθ)`.`z = 150(cos30° + isin30°)`[/tex]

Step 3:Substitute the values of [tex]`r`, `cosθ` and `sinθ`[/tex]to find the real and imaginary parts of the complex number.[tex]`z = 150(cos30° + isin30°)`[/tex][tex]`r`, `cosθ` and `sinθ`[/tex]

Real part of [tex]`z = r cosθ``= 150 cos30°``= 150 × (√3/2)`$`= 75\sqrt{3}`[/tex]

Imaginary part of [tex]`z = r sinθ``= 150 sin30°``= 150 × (1/2)`$`= 75`[/tex]

Step 4:Combine the real and imaginary parts of the complex number to obtain the rectangular form of the complex number.[tex]`z = 75\sqrt{3} + 75i`[/tex]

Learn more about magnitude

https://brainly.com/question/31022175

#SPJ11


Related Questions

Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate for the databelon Car lengths measured in feet Choose the correct answer below A. The ratio level of measurement is most appropriate because the data can be ordered, aftorences can be found and are meaning, and there is a nature starting zoo port OB. The ordinal level of measurement is most appropriate because the data can be ordered, but differences (obtained by subtraction cannot be found or are meaning OC. The interval level of measurement is most appropriate because the data can be ordered, differences (obtained by subtraction can be found and are meaning and there is no natural starting point OD. The nominal level of measurement is most appropriate because the data cannot be ordered

Answers

The level of measurement most appropriate for the data table on car lengths measured in feet is the ratio level of measurement. The ratio level of measurement is the most appropriate because the data can be ordered, differences can be found and are meaningful, and there is a natural starting point.

The ratio level of measurement is the highest level of measurement scale, and it is the most precise. In a ratio scale, data are collected, categorized, and ranked based on how they relate to one another. The scale allows for the calculation of the degree of difference between two data points.In addition, the scale includes a natural, non-arbitrary zero point from which ratios may be derived. Thus, measurement ratios have equal intervals and are quantitative.

For such more question on quantitative

https://brainly.com/question/29787432

#SPJ8

Find the number of units that must be produced and sold in order to yield the maximum profit, given the following equations for revenue and cost R(x)= 20x-0.5x^2
C(x)= 6x+5
• 26 units
• 15 units
• 19 units
• 14 units

Answers

The number of units that must be produced and sold in order to yield the maximum profit is 14 units. Therefore, the correct answer is "14 units."

To find the number of units that must be produced and sold in order to yield the maximum profit, we need to determine the quantity that maximizes the profit function. The profit function is calculated by subtracting the cost function from the revenue function: P(x) = R(x) - C(x).

Given the revenue function R(x) = 20x - 0.5x^2 and the cost function C(x) = 6x + 5, we can substitute these equations into the profit function:

P(x) = (20x - 0.5x^2) - (6x + 5)

P(x) = 14x - 0.5x^2 - 5

To find the maximum profit, we take the derivative of the profit function with respect to x and set it equal to zero: P'(x) = 14 - x = 0 x = 14

So, the number of units that must be produced and sold in order to yield the maximum profit is 14 units. Therefore, the correct answer is "14 units."

learn more about profit function

https://brainly.com/question/33000837

#SPJ11

Find the equation of the sphere centered at (2, -4, −9) with radius 3.
x^2 + y^2 + z^2 − 4x + 8y + 18z +92 = 0.

Give an equation which describes the intersection of this sphere with the plane z = -8.
_____= 0

Answers

The equation that describes the intersection of this sphere with the plane [tex]z = -8 is x² + y² - 4x + 8y - 122 = 0[/tex].

To obtain the equation of the intersection of the sphere with the plane z = -8, substitute z with [tex]-8x² + y² + (-8)² - 4x + 8y + 18(-8) + 92 = 0x² + y² - 4x + 8y - 122 = 0.[/tex]. Therefore, the equation that describes the intersection of this sphere with the plane [tex]z = -8 is x² + y² - 4x + 8y - 122 = 0[/tex].

learn more about intersection

https://brainly.com/question/12089275

#SPJ11

7. Let x[n]={1,2,3,4,5} and h[n]={1,3,5} a) Can you compute y[n]=x[n]∗h[n] with N=5 point DFT? If yes, explain your algorithm. If no, explain your reason. b) Compute the convolution with N=10 point DFT and compare your result with part (a). 8. Compute the 4-point DFT of x[n]={1,1,1,1} using the flow diagram of Decimation-in-time FFT algorithm.

Answers

The inverse DFT of the resulting product to obtain the convolution y[n].

a) To compute y[n] = x[n] * h[n] using a 5-point DFT, we can follow these steps:

Pad x[n] and h[n] with zeros to make them of length 5, if necessary. In this case, both x[n] and h[n] are already of length 5, so no padding is required.

Take the DFT of x[n] and h[n] using a 5-point DFT algorithm. You can use algorithms like the Cooley-Tukey algorithm or any other efficient DFT algorithm to compute the DFT.

Multiply the corresponding frequency components of x[n] and h[n] element-wise.

Take the inverse DFT of the resulting product to obtain y[n].

However, in this case, x[n] has length 5 and h[n] has length 3. To perform linear convolution, the lengths of x[n] and h[n] should be the sum of their individual lengths minus one. In this case, the length of y[n] should be 5 + 3 - 1 = 7. Since the DFT requires the input sequences to have the same length, we cannot directly compute y[n] using a 5-point DFT.

b) To compute the convolution of x[n] and h[n] using a 10-point DFT, we can follow these steps:

Pad x[n] and h[n] with zeros to make them of length 10. Pad x[n] with 5 zeros at the end and h[n] with 7 zeros at the end.

Take the DFT of x[n] and h[n] using a 10-point DFT algorithm.

Multiply the corresponding frequency components of x[n] and h[n] element-wise.

Take the inverse DFT of the resulting product to obtain the convolution y[n].

To know more about DFT algorithm, visit:

https://brainly.com/question/31150048

#SPJ11

For the function f(x) = x^4e^x

a) Determine the intervals of increase and decrease
b) Determine the absolute minimum value and the local maximum value

Answers

The function f(x) = x^4e^x has one critical point at x = -4 and two intervals of increase and decrease. It has no local maximum value but has an absolute minimum value of -4e^-4.

To determine the intervals of increase and decrease, we need to find the derivative of the function f(x) with respect to x. Taking the derivative, we get: f'(x) = 4x^3e^x + x^4e^x = x^3e^x(4 + x)

Setting f'(x) equal to zero, we find the critical point: x^3e^x(4 + x) = 0

This equation is satisfied when x = -4 or x = 0. However, x = 0 does not affect the intervals of increase and decrease since it does not change the sign of the derivative. Therefore, the critical point is x = -4.

Next, we examine the intervals around the critical point. For x < -4, f'(x) is negative, indicating a decreasing interval. For x > -4, f'(x) is positive, indicating an increasing interval. Thus, we have one interval of decrease (-∞, -4) and one interval of increase (-4, +∞).

To find the absolute minimum value, we evaluate the function at the critical point and the endpoints of the intervals. Plugging x = -4 into f(x), we get f(-4) = (-4)^4e^(-4) = 256e^-4 ≈ 0.0114. Evaluating the function at the endpoints of the intervals, we find that as x approaches ±∞, f(x) also approaches ±∞. Therefore, the absolute minimum value occurs at x = -4 and is approximately -4e^-4.

In summary, the function f(x) = x^4e^x has one critical point at x = -4 and two intervals of increase and decrease. It has no local maximum value but has an absolute minimum value of -4e^-4.

Learn more about derivative here: brainly.com/question/29144258

#SPJ11

2.47. Compute the convolution sum y[n] = x[n] *h[n] of the following pairs of sequences:

(a) x[n]u[n], h[n] = 2^nu[n]
(b) x[n]u[n] - u[n - N], h[n] = a^nu[n], 0 <α<1
(c) x[n] = (1/2)^n u[n], h[n] = [n] − ½ d[n − 1]

Answers

The coordinates of the equilibrium point are (70, 2600).

To find the equilibrium point, we need to set the consumer willingness to pay equal to the producer willingness to accept. In other words, we need to find the value of x that makes D(x) equal to S(x).

Given:

D(x) = 4000 - 20x

S(x) = 850 + 25x

Setting D(x) equal to S(x), we have:

4000 - 20x = 850 + 25x

To solve this equation, we can combine like terms:

45x = 4000 - 850

45x = 3150

Now, divide both sides by 45 to isolate x:

x = 3150 / 45

x = 70

So the equilibrium quantity is 70 units.

To find the equilibrium price, we substitute this value of x back into either D(x) or S(x). Let's use D(x) = 4000 - 20x:

D(70) = 4000 - 20(70)

D(70) = 4000 - 1400

D(70) = 2600

Therefore, the equilibrium price is $2600 per unit.

The coordinates of the equilibrium point are (70, 2600).

To know more about equation click-

http://brainly.com/question/2972832

#SPJ11

If f(-3) = 7 and f'(x) ≤ 9 for all x, what is the largest possible value of f(4)?

Answers

Answer:

The maximum value f(4) can have is 70

f(4) = 70

Step-by-step explanation:

For the largest possible value, the derivative must be greatest,

so, for our case, since f'(x) ≤ 9,

but for largest value, f'(x) must be greatest, hence it must be,

f'(x) = 9.

With this derivative,

Using the value,

f(-3) = 7,

with each step, we increase by 9 units

so, f(-2) = f(-3) + 9 = 7 + 9 = 16

f(-2) = 16

going till f(4),

f(-1) = 16+9

f(-1) = 25

f(0) = 25 + 9 = 34

f(1) = 34 + 9 = 43

f(2) = 43 = 9 = 52

f(3) = 52 + 9 = 61

f(4) = 70

So,

the maximum value f(4) can have is 70

If Y1​ and Yz​ are soiktions of the differential equation y′′+p(t)y4+q(t)y=0, then Y1​+y2​ is also a solutson to the same equation?

Answers

we can say that the sum of two solutions is also a solution of a second-order linear differential equation if both solutions are linearly independent from each other and the Wronskian of the two solutions is not equal to zero, that is, W(y1​(t),y2​(t)) ≠ 0.

Given a differential equation,y″+p(t)y′+q(t)y=0. If Y1​ and Y2​ are solutions of the differential equation y′′+p(t)y4+q(t)y=0, then Y1​+Y2​ is also a solution to the same equation. What is the Wronskian of solutions y1​(t) and y2​(t)? Let's assume that the Wronskian of solutions y1​(t) and y2​(t) is W(y1​(t),y2​(t)) = y1​(t)y′2(t)−y′1(t)y2​(t)

Also, let Y(t) = Y1​(t)+Y2​(t) be the sum of the two solutions to the differential equation:y″+p(t)y′+q(t)y=0Differentiating Y(t) once with respect to t, we getY′(t)=Y1​′(t)+Y2​′(t)We differentiate it one more time with respect to t, we getY″(t)=Y1​″(t)+Y2​″(t)By substituting Y(t), Y′(t) and Y″(t) in the original differential equation, we get the following: y″+p(t)y′+q(t)y=y1″(t)+y2″(t)+p(t)y1′(t)+p(t)y2′(t)+q(t)(y1​(t)+y2​(t))=0As

we know that Y1​(t) and Y2​(t) are the solutions of the differential equation,y1″(t)+p(t)y1′(t)+q(t)y1​(t)=0y2″(t)+p(t)y2′(t)+q(t)y2​(t)=0Thus, the above equation becomes:y1″(t)+p(t)y1′(t)+q(t)y1​(t)+y2″(t)+p(t)y2′(t)+q(t)y2​(t)=0On simplifying the above equation, we gety″(t)+p(t)y′(t)+q(t)y=0Hence, we can conclude that Y1​+Y2​ is also a solution to the same differential equation.

To know more about linear differential equation Visit:

https://brainly.com/question/30330237

#SPJ11

Prove that the first side is equal to the second side
A+ (AB) = A + B (A + B). (A + B) = A → (A + B); (A + C) = A + (B. C) A + B + (A.B) = A + B (A. B)+(B. C) + (B-C) = (AB) + C (A. B) + (AC) + (B. C) = (AB) + (BC)

Answers

Therefore, the given equation is true and we have successfully proved that the first side is equal to the second side.

Given, A + (AB) = A + B

First we take LHS, then expand using distributive property:

A + (AB) = A + B

=> A + AB = A + B

=> AB = B

Subtracting B from both the sides we get:

AB - B = 0

=> B (A - 1) = 0

So, either B = 0 or (A - 1) = 0.

If B = 0, then both sides are equal as 0 equals 0.

If (A - 1) = 0, then A = 1.

Substituting A = 1, the given equation is rewritten as:(1 + B) = 1 + B => 1 + B = 1 + B

Thus, both sides are equal.

Hence, we can say that the first side is equal to the second side.

Proof: A + (AB) = A + B(1 + B) = 1 + B [As we have proved it in above steps]

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

Let p= x^3 + xe^-x for x € (0, 1), compute the center of mass.

Answers

The center of mass is an average location of all the points in an object. This point also represents the point at which the object can be perfectly balanced.

The center of mass of a body is the point at which the total mass of the system is concentrated. It is an important quantity in physics and engineering and is used to determine the behavior of objects when they are subjected to forces.

[tex]Let p= x^3 + xe^-x  for x € (0, 1),[/tex]

compute the center of mass We can compute the center of mass of p= x^3 + xe^-x  for x € (0, 1) using the formula given below,[tex]`{x_c = (1/M)*int_a^b(x*f(x))dx}` where `x_c[/tex]` is the center of mass, `M` is the mass of the system, `a` and `b` are the limits of integration, and `f(x)` is the density function of the system.

[tex]`x_c = (1/M)*int_0^1(x*p(x))dx`. Substituting the values we obtained for `M` and `int_0^1(x*p(x))dx`, we get:`x_c = [(1/4) - (1/2)e^-1]/[-(1/4) + (1/2)e^-1] = (1/2) - (1/2)e^-1`[/tex]

Therefore, the center of mass of the given system is `(1/2) - (1/2)e^-1`.

To know more about mass visit:

brainly.com/question/20579920

#SPJ11

A function f and a point P are given. Let θ correspond to the direction of the directional derivative. Complete parts

f(x,y) = In (1 + 4x^2 + 6y^2), P(1/2 -√2)
a. Find the gradient and evaluate it at P.
b. Find the angles θ (with respect to the positive x-axis) between 0 and 2π associated with the directions of maximum increase, maximum decrease, and zero change. What angles are associated with the direction of maximum increase?
(Type your answer in radians. Type an exact answer in terms of π. Use a comma to separate answers as needed.)

Answers

The unit vector u along the direction of maximum increase is obtained by setting α = 0∴ u1 = cos (0) i + sin (0) j = i. The unit vector u along the direction of maximum decrease is obtained by setting α = π∴ u2 = cos (π) i + sin (π) j = -i. The unit vector u along the direction of zero change is obtained by setting α = π/2∴ u3 = cos (π/2) i + sin (π/2) j.

We have given a function f(x, y) = In (1 + 4x^2 + 6y^2) and point P (1/2 -√2).

The gradient of the function f(x, y) is obtained by differentiating with respect to both variables x and y separately.f(x, y) =

In (1 + 4x^2 + 6y^2)f'x (x, y)

= 8x / (1 + 4x^2 + 6y^2) . . .(1)f'y (x, y)

= 12y / (1 + 4x^2 + 6y^2) . . .(2)

Therefore, the gradient of the function f(x, y) is (f'x(x, y), f'y(x, y)).At the point P (1/2 -√2),x = 1 / 2, y = - √2We will substitute these values in equations (1) and (2)

f'x (x, y) = 8x / (1 + 4x^2 + 6y^2)

= 8 (1/2) / (1 + 4 (1/2)^2 + 6 (- √2)^2)

= 2 / 15f'y (x, y)

= 12y / (1 + 4x^2 + 6y^2)

= 12 (- √2) / (1 + 4 (1/2)^2 + 6 (- √2)^2)

= -4√2 / 15

Hence, the gradient of the function at P is (2/15, -4√2/15

b) Directional derivative:Directional derivative of the function f(x, y) with respect to a unit vector u = ai + bj at a point (x0, y0) is defined as,fu(x0, y0) = lim h→0 {f (x0 + ah, y0 + bh) - f (x0, y0)}/hThe directional derivative is a maximum if the unit vector u is parallel to the gradient vector (∇f).

Similarly, the directional derivative is a minimum if the unit vector u is antiparallel to the gradient vector (∇f). For zero directional derivative, the unit vector u is perpendicular to the gradient vector (∇f).

At point P, x = 1 / 2 and y = -√2,

Let α be the angle made by the vector with the positive x-axis.∇f = (2/15, -4√2/15)

The unit vector u along the direction of maximum increase is obtained by setting α = 0∴ u1 = cos (0) i + sin (0) j = iThe unit vector u along the direction of maximum decrease is obtained by setting α = π∴ u2 = cos (π) i + sin (π) j = -iThe unit vector u along the direction of zero change is obtained by setting α = π/2∴ u3 = cos (π/2) i + sin (π/2) j.

To know more about unit vector visit:-

https://brainly.com/question/28028700

#SPJ11

-5-4-3
K
5-
4+
3-
2+
1+
-2
b b & N
-3+
1 2 3 4 5 x
What is the domain of the function on the graph?
all real numbers
O all real numbers greater than or equal to 0
O all real numbers greater than or equal to -2
O all real numbers greater than or equal to -3

Answers

Answer:

It c

Step-by-step explanation:

i had this question just a min ago

A system of equations is shown below.
(2x
2x - y = 4
X - 2y = -1
Which operations on the system of equations could
be used to eliminate the x-variable?
Divide the first equation by 2 and add the result
to the first equation.
Divide the first equation by -4 and add the
result to the first equation.
Multiply the second equation by 4 and add the
result to the first equation.
Multiply the second equation by -2 and add
the result to the first equation.

Answers

The operations on the system of equations that could be used to eliminate the x-variable is: D. Multiply the second equation by -2 and add the result to the first equation.

How to solve these system of linear equations?

In order to determine the solution to a system of two linear equations, we would have to evaluate and eliminate each of the variables one after the other, especially by selecting a pair of linear equations at each step and then applying the elimination method.

Given the following system of linear equations:

2x - y = 4               .........equation 1.

x - 2y = -1               .........equation 2.

By multiplying the second equation by -2, we have:

-2(x - 2y = -1) = -2x + 4y = -2

By adding the two equations together, we have:

2x - y = 4

-2x + 4y = -2

-------------------------

3y = 2

y = 2/3

Read more on elimination method here: brainly.com/question/28405823

#SPJ1

Use a graphing utility to find the point(s) of intersection of f(x) and g(x) to two decimal places. [Note that there are three points of intersection and that e^x is greater than x^2 for large values of x.]

f(x) = e^x/20; g(x)=x^2 ...

Answers

From the graph, we can see that the functions intersect at three points approximately located at: `(-4.43, 0.085)`, `(0.95, 0.452)`, and `(3.53, 10.69)` (rounded to two decimal places).Therefore, the points of intersection of `f(x)` and `g(x)` to two decimal places are:`(-4.43, 0.085)`, `(0.95, 0.452)`, and `(3.53, 10.69)`.

The given functions are: `f(x)

= e^x/20` and `g(x)

= x^2`Graph of the functions:Therefore, we need to find the points of intersection of `f(x)` and `g(x)`.To find the points of intersection, we need to solve the equation `f(x)

= g(x)` or `e^x/20

= x^2`We can also write the given equation as `e^x

= 20x^2` or `x^2

= (1/20)e^x`Let's graph the functions using an online graphing calculator: From the graph, we can see that the functions intersect at three points approximately located at: `(-4.43, 0.085)`, `(0.95, 0.452)`, and `(3.53, 10.69)` (rounded to two decimal places).Therefore, the points of intersection of `f(x)` and `g(x)` to two decimal places are:`(-4.43, 0.085)`, `(0.95, 0.452)`, and `(3.53, 10.69)`.

To know more about intersection visit:

https://brainly.com/question/12089275

#SPJ11

Let(yn) be a divergent sequence and let (xn) be sequence xn = yn + (-1)^n/n for every nEN1 .
Show that sequence (xn) diverges.
Thank you in advance

Answers

The sequence (xn) = yn + (-1)^n/n, where (yn) is a divergent sequence, also diverges.

To prove that the sequence (xn) diverges, we need to show that it does not have a finite limit.

Assuming that (xn) converges to a finite limit L, we can write:

lim(n→∞) xn = L

Since (yn) is a divergent sequence, it does not converge to any finite limit. Let's consider two subsequences of (yn), namely (yn1) and (yn2), such that (yn1) → ∞ and (yn2) → -∞ as n → ∞.

For the subsequence (yn1), we have:

xn1 = yn1 + (-1)^n/n

As n approaches infinity, the term (-1)^n/n oscillates between positive and negative values, which means that (xn1) does not converge to a finite limit.

Similarly, for the subsequence (yn2), we have:

xn2 = yn2 + (-1)^n/n

Again, as n approaches infinity, the term (-1)^n/n oscillates, leading to the divergence of (xn2).

Since we have found two subsequences of (xn) that do not converge to a finite limit, it follows that the sequence (xn) = yn + (-1)^n/n also diverges.

Therefore, the sequence (xn) diverges.

learn more about sequence here:

https://brainly.com/question/30262438

#SPJ11

In predator-prey relationships, the populations of the predator and prey are often cyclical. In a conservation area, rangers monitor the population of carnivorous animals and have determined that the population can be modeled by the function P(t)=40cos(πt/6)+110 where t is the number of months from the time monitoring began. Use the model to estimate the population of carnivorous animals in the conservation area after 10 months, 16 months, and 30 months.

The population of carnivorous animals in the conservation area 10 months is ____ animals.

Answers

The population of carnivorous animals in the conservation area 10 months from the time monitoring began can be found by substituting t=10 into the given model.

That is,P(10) = 40cos(π(10)/6)+110

= 40cos(5π/3)+110

= 40(-1/2)+110

=90 animals.

So, the population of carnivorous animals in the conservation area 10 months is 90 animals.The population of carnivorous animals in the conservation area 16 months is ____ animals.

The population of carnivorous animals in the conservation area 16 months from the time monitoring began can be found by substituting t=16 into the given model. .So, the population of carnivorous animals in the conservation area 16 months is 130 animals.The population of carnivorous animals in the conservation area 30 months is ____ animals.T

To know more about conservation visit :

https://brainly.com/question/30721594

#SPJ11

Find dy/dx
Y = x^4 sin x
dy/dx = _____

Answers

The derivative of y = x^4 sin(x) with respect to x is dy/dx = 4x^3 sin(x) + x^4 cos(x).

To find the derivative of y = x^4 sin(x), we use the product rule of differentiation. Let's denote f(x) = x^4 and g(x) = sin(x). Applying the product rule, we have:

dy/dx = f'(x)g(x) + f(x)g'(x).

Differentiating f(x) = x^4 with respect to x gives f'(x) = 4x^3, and differentiating g(x) = sin(x) with respect to x gives g'(x) = cos(x). Substituting these values into the product rule formula, we get:

dy/dx = 4x^3 sin(x) + x^4 cos(x).

Therefore, the derivative of y = x^4 sin(x) with respect to x is dy/dx = 4x^3 sin(x) + x^4 cos(x).

Learn more about product rule here: brainly.com/question/30340084

#SPJ11

For this experiment all you have to do is distribute your 10 points into two accounts. One account called KEEP and one account called GIVE. The GIVE account is a group account between you and your group member. For every point that you (or your group member) put in the GIVE account, I will add to it 50% more points and then redistribute these points evenly to you and your group member. The sum of the points you put in KEEP and GIVE must equal the total 10 points. Any points you put in the KEEP account are kept by you and are part of your score on this experiment. Your score on the experiment is the sum of the points from your KEEP account and any amount you get from the GIVE account. For example, suppose that two people are grouped together. Person A and Person B. If A designates 5 points in KEEP and 5 points in GIVE and person B designates 10 points to KEEP and 0 points to GIVE then each person’s experiment grade is calculated in this manner: Person A’s experiment grade = (A’s KEEP) + 1.5(Sum of the two GIVE accounts)/2 = 5 +(1.5)(0+5)/2= 5 + 3.75 = 8.75. Person A’s score then is 8.75 out of 10. Person B’s experiment grade = (B’s KEEP) + 1.5(Sum of the two GIVE accounts)/2 = 10 +(1.5)(0+5)/2 = 10 + 3.75. Person B’s score then is 13.75 out of 10. (you can think of any points over 10 as extra credit) Please send me the email before the deadline and clearly tell me how many points you want to put in the KEEP account and how many you want to put in the GIVE account.

Answers

I understand the instructions and will distribute the points in a way that maximizes the total earned for both participants. Here is how I would allocate the points:

KEEP account: 0 points

GIVE account: 10 points

By allocating all 10 points to the GIVE account, both participants will receive 15 points after the 50% multiplier is applied (10 * 1.5 / 2 = 15). This results in the highest total score compared to any other allocation.

three friends Jessica Tyree and Ben, are collecting canned food for a culinary skills class. Their canned food collection goal is represented by the expression 9x^2-5xy+6. The friends have already collected the following number of cans:

Jessa: 3xy - 7
Tyree: 3x^2 + 15
Ben: x^2

Part A: write an expression to represent the amount of canned food collected so far by the three friends. Show all your work

Part B: write an expression that represents the number of cans. The friends still need to collect to meet their goal. Show all your work.

Answers

Part A: The expression to represent the amount of canned food collected so far by the three friends is 4x² + 3xy + 8.

Part B: The expression representing the number of cans the friends still need to collect to meet their goal is 5x² - 8xy - 2.

How to find the expressions?

Part A: We shall sum the number of cans collected by each friend to find the amount of canned food collected by the three.

Given:

Jessa collected: 3xy - 7 cans.

Tyree collected: 3x² + 15 cans.

Ben collected: x² cans.

First, we sum the number of cans collected by each:

Total = (3xy - 7) + (3x² + 15) + (x²)

Then we combine the  like terms:

Total = 3xy + 3x² + 15 + x² - 7  

Simplify:

Total = 4x² + 3xy + 8

So, the expression to represent the amount of canned food collected so far by the three friends is 4x² + 3xy + 8.

Part B: We subtract the total amount collected by the three friends from their goal expression, 9x² - 5xy + 6 to find the number of cans the friends still need to collect to meet their goal.

Amount needed = (9x² - 5xy + 6) - (4x² + 3xy + 8)

Amount needed = 9x² - 5xy + 6 - 4x² - 3xy - 8

Join the like terms:

Amount needed = (9x² - 4x²) + (-5xy - 3xy) + (6 - 8)

Simplifying:

Amount  needed = 5x² - 8xy - 2

Hence, 5x² - 8xy - 2 is the expression representing the number of cans the friends still need to collect to meet their goal.

Learn more about an expression at brainly.com/question/1859113  

#SPJ1

Evaluate 2/3 - 1/6 .

A. 1/2

B. 1

C. 1/6

D. 5/6

Answers

Answer:

The answer is,

A. 1/2

Step-by-step explanation:

2/3 - 1/6,

We make the denominators equal,

multiplying and dividing 2/3 by 2, we get,

(2/2)(2/3) = 4/6,

then,

(NOTE: 2/2 = 1, and multiplying with 1 makes no difference)

2/3 - 1/6

= (2/2)(2/3) - 1/6

= 4/6 - 1/6

= (4-1)/6

=3/6

=1/2

Find the Derivative of the given function.
If y=cot^−1√(t−7), then
dy/dt = _______
Find the Derivative of the given function.
If y=cos^−1x+x√(1−x^2), then
dy/dx= _______
Note: simplifying the derivative function will make it much easier to enter.

Answers

The given function is [tex]y=cot⁻¹√(t−7). We are required to find dy/dt. The derivative of cot⁻¹(x) is -1/(1+x²).[/tex] Using the chain rule, the derivative.

[tex]y=cot⁻¹√(t−7) is given asdy/dt = -1/(1+(√(t-7))²) * d/dt (√(t-7)).Therefore, dy/dt = -1/(1+(t-7)) * 1/(2√(t-7))= -1/(2t-15) * 1/√(t-7)Hence, dy/dt = -1/[√(t-7)*(2t-15)].[/tex]

[tex]2. The given function is y=cos⁻¹(x)+x√(1−x²). cos⁻¹(x) is -1/√(1-x²).[/tex]

Using the product rule, the derivative of y=cos⁻¹(x)+x√(1−x²) is given asdy/dx = -1/√(1-x²) + √(1-x²)*d/dx (x) + x*d/dx (√(1-x²)).

Therefore,[tex]dy/dx = -1/√(1-x²) + √(1-x²)*1 + x * (-1/2)(1-x²)-½ * (-2x) = -1/√(1-x²) + √(1-x²) + x²/√(1-x²).Therefore, dy/dx = (x²-1)/√(1-x²)[/tex].

Hence, the derivative of [tex]y=cos⁻¹x+x√(1−x²) with respect to x is dy/dx=(x²-1)/√(1-x²).[/tex]

To know more about  function visit:

brainly.com/question/21426493

#SPJ11

Elabora un cartel donde expreses valores que fomentan la armonía unión confianza y la solidaridad en el hogar

Answers

Título: Valores para fomentar la armonía, unión, confianza y solidaridad en el hogar

[Imagen ilustrativa de una familia feliz y unida]

1. Armonía: Cultivemos un ambiente pacífico y respetuoso donde todos puedan convivir en armonía, valorando las opiniones y sentimientos de cada miembro de la familia.

2. Unión: Promovamos la unión familiar, fortaleciendo los lazos afectivos y compartiendo momentos especiales juntos. Recordemos que somos un equipo y podemos apoyarnos mutuamente en los momentos buenos y difíciles.

3. Confianza: Construyamos la confianza mutua a través de la comunicación abierta y sincera. Seamos honestos y respetuosos en nuestras interacciones, brindándonos apoyo y seguridad emocional.

4. Solidaridad: Practiquemos la solidaridad dentro de nuestro hogar, mostrando empatía y ayudándonos unos a otros. Colaboremos en las tareas domésticas, compartamos responsabilidades y mostremos compasión hacia las necesidades de los demás.

[Colores cálidos y llamativos para transmitir alegría y positividad]

¡Un hogar donde se promueven estos valores es un hogar lleno de amor y felicidad!

[Nombre de la familia o mensaje final inspirador]

learn more about Armonía here:
https://brainly.com/question/17250394

#SPJ11

Find the length of \( \overline{D F} \) if the following are true. (a) \( D E=16 \) and \( E F=12 \) \[ D F= \] (b) \( D E=7 \) and \( E F=5 \)

Answers

The, (overline{DF} ) has a length of ( sqrt{74} ) units in case (b).

To find the length of (overline {DF} ) in both cases, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

(a) Given ( DE = 16) and ( EF = 12 ), we can find ( DF ) using the Pythagorean theorem:

\[ DF^2 = DE^2 + EF^2 \]

\[ DF^2 = 16^2 + 12^2 \]

\[ DF^2 = 256 + 144 \]

\[ DF^2 = 400 \]

Taking the square root of both sides, we get:

[ DF = sqrt{400} = 20 ]

Therefore, (overline{DF} ) has a length of 20 units in case (a).

(b) Given ( DE = 7 ) and ( EF = 5 ), we can apply the Pythagorean theorem again to find ( DF ):

\[ DF^2 = DE^2 + EF^2 \]

\[ DF^2 = 7^2 + 5^2 \]

\[ DF^2 = 49 + 25 \]

\[ DF^2 = 74 \]

Taking the square root of both sides, we have:

[ DF =sqrt{74} ]

Therefore, (overline{DF} ) has a length of (sqrt{74} ) units in case (b).

to learn more about length.

https://brainly.com/question/32060888

#SPJ11

Express the equations in polar coordinates.

x = 2
5x−7y = 3
x^2+y^2 = 2
x^2+y^2−4x = 0
x^2+y^2+3x−4y = 0

Answers

1. cos(θ) - 25cos(θ) + 7sin(θ) = 0, 2.  r^2 - 4r*cos(θ) = 0, 3. r^2 + 3r*cos(θ) - 4r*sin(θ) = 0. To express the equations in polar coordinates, we need to substitute the Cartesian coordinates (x, y) with their respective polar counterparts (r, θ).

In polar coordinates, the variable r represents the distance from the origin, and θ represents the angle with the positive x-axis.

Let's convert each equation into polar coordinates:

1. x = 25x - 7y

  Converting x and y into polar coordinates, we have:

  r*cos(θ) = 25r*cos(θ) - 7r*sin(θ)

  Simplifying the equation:

  r*cos(θ) - 25r*cos(θ) + 7r*sin(θ) = 0

  Factor out the common term r:

  r * (cos(θ) - 25cos(θ) + 7sin(θ)) = 0

  Dividing both sides by r:

  cos(θ) - 25cos(θ) + 7sin(θ) = 0

2. 3x^2 + y^2 = 2x^2 + y^2 - 4x

  Simplifying the equation:

  x^2 + y^2 - 4x = 0

  Converting x and y into polar coordinates:

  r^2 - 4r*cos(θ) = 0

3. x^2 + y^2 + 3x - 4y = 0

  Converting x and y into polar coordinates:

  r^2 + 3r*cos(θ) - 4r*sin(θ) = 0

These are the expressions of the given equations in polar coordinates.

Learn more about polar coordinates here: brainly.com/question/31904915

#SPJ11

This answer has not been graded yet. (b) The capacity is \( 5175.5 \) liters. bathtub swimming pool
(c) The length is \( 153.6 \) centimeters. bathitub swimming pool Explain your reasoning.

Answers

The volume of a cylinder is given as `pi * r² * h`, where `r` is the radius of the cylinder, `h` is the height, and `pi` is a constant that equals `3.1416`.

Given that the capacity is \(5175.5\) liters, and the length is \(153.6\) centimeters. We need to explain the reasoning of how we calculated the capacity of the bathtub or swimming pool.

We know that the volume of a cylinder is given as;`Volume = pi * r² * h`

Where `r` is the radius of the cylinder, `h` is the height, and `pi` is a constant that equals `3.1416`.We can make a few observations to start with;

A swimming pool has a flat bottom and a rectangular shape. Therefore, the volume of the pool will be given by;`Volume = l * w * h`Where `l` is the length, `w` is the width, and `h` is the height.The volume of a bathtub, on the other hand, is typically given by the manufacturer. The volume is indicated in liters or gallons, depending on the country and the standard of measure in use.

The volume of a cylinder is given as `pi * r² * h`, where `r` is the radius of the cylinder, `h` is the height, and `pi` is a constant that equals `3.1416`. The capacity of a bathtub or swimming pool depends on the volume of the cylinder that represents the shape of the pool or the bathtub. The length of the pool is not enough to calculate the capacity, we need to know either the width or the radius of the pool.

To know more about volume of a cylinder visit:

brainly.com/question/15891031

#SPJ11

Evaluate the logarithmic expression. log1/2​ a) 4 b) −3 c) 3 d) −2

Answers

a = 2.So, `log_1/2 = log_2 1 = 0`.Therefore, the answer is none of the given options. It is 0.

The given expression is `log_1/2`. We can write it as `log_2 1`. Now, applying the formula `log_a (1) = 0` for all values of a except a = 1 which is undefined.

To know more about log_1 visit:

brainly.com/question/13669288

#SPJ11

Find the indefinite integral. sech² (3x) dx. Find the derivative of the function: y = tanh-¹ (sin 2x) Find the indefinite integral.

Answers

1. Indefinite Integral: To find the indefinite integral of sech² (3x) dx, let us proceed with the steps below: Let y = sech² (3x) dx We know that sech x = 1 / cosh x= 2 / [ e^x + e^(-x)] So, sech² x = (2 / [ e^x + e^(-x)])²= 4 / [e^(2x) + 2 + e^(-2x)]

Therefore, y = 4 / [e^(2(3x)) + 2 + e^(-2(3x))]dx

= 4 / [e^(6x) + 2 + e^(-6x)]dx

Let u = e^(6x)u²

= e^(12x)du

= 6e^(6x)dx

So, we can rewrite the expression as,

y = 4 / [(u² / u²) + 2(u / u²) + 1]

= 4 / [u² + 2u + 1 - u²]

= 4 / [(u + 1)² - 1]

Substituting the value of u back, we get the final expression as:

y = 4 / [(e^(6x) + 1)² - 1]

Now, using the formula of integration, we can write,

∫ sech² (3x) dx

= ∫ 4 / [(e^(6x) + 1)² - 1] dx

= 2 / tanh (3x + C),

where C is a constant of integration.

2. Derivative of the Function:

To find the derivative of y

= tanh-¹ (sin 2x),

let us first find the derivative of tanh y

=y

=tanh^-1 (sin 2x)We know that tanh y

= sin 2xWe know that sech² y dy/dx

=[tex]2 cos 2xdy/dx[/tex]

=[tex]2 cos 2x / sech² ydy/dx[/tex]

= [tex]2 cos 2x / (1 - tanh² y)dy/dx[/tex]

= [tex]2 cos 2x / [1 - sin² (tanh y)][/tex]

Now, we can use the identity, sin² a + cos² a

= 1 and

sin² a

= tanh² b, to get,

dy/dx

=[tex]2 cos 2x / [1 - tanh² (tanh^-1 (sin 2x))]dy/dx[/tex]

=[tex]2 cos 2x / [1 - sin² (2x)]dy/dx[/tex]

=[tex]2 cos 2x / cos² (2x)dy/dx[/tex]

[tex]= 2 / cos (2x)[/tex]

= 2 sec (2x)

Hence, the derivative of y

= tanh-¹ (sin 2x) is dy/dx

= 2 sec (2x).

3. Indefinite Integral:

To find the indefinite integral of, let us proceed with the steps below:

Let y = (sin³x)(cos x) dx

We know that sin³ x

= sin² x * sin xWe also know that sin

2x = 2 sin x cos xsin² x

= (1 - cos 2x) / 2

Therefore, sin³ x

= (1 - cos 2x) / 2 * sin x

So, y = (1 - cos 2x) / 2 * sin x * cos x dx

= 1/4 sin 2x - 1/2 ∫ cos² x sin x dx

Now, we can use the formula, d/dx [sin x]

= cos x, to get,

[tex]∫ cos² x sin x dx[/tex]

= - 1/2 ∫ sin x d(cos x)

[tex]=- 1/2 sin x cos x + 1/2 ∫ cos x d(sin x)= - 1/2 sin x cos x + 1/2 sin² x+ C[/tex]

= [tex]1/2 sin x (sin x - cos x) + C[/tex]

Now, substituting this back to y, we get the final expression as,∫ (sin³ x)(cos x) dx= 1/4 sin 2x - 1/2 ∫ cos² x sin x dx= 1/4 sin 2x - 1/2 [1/2 sin x (sin x - cos x)]+ C= 1/4 sin 2x - 1/4 sin x (sin x - cos x) + C, where C is a constant of integration.

To know more about Integral visit :

https://brainly.com/question/31433890

#SPJ11

y=mx+b is the equation of the line that passes through the points (2,12) and ⋯ (−1,−3). Find m and b. A. m=−2b=3 B. m=2b=3 C. m=5b=2 D. m=−5b=2

Answers

The values of m and b are m = 5 and b = 2.

Option C is the correct answer.

The given equation of the line that passes through the points (2, 12) and (–1, –3) is y = mx + b.

We have to find the values of m and b.

Let’s begin.

Using the points (2, 12) and (–1, –3)

Substitute x = 2 and y = 12:12 = 2m + b … (1)

Substitute x = –1 and y = –3:–3 = –1m + b … (2)

We have to solve for m and b from equations (1) and (2).

Let's simplify equation (2) by multiplying it by –1.–3 × (–1) = –1m × (–1) + b × (–1)3 = m – b

Adding equations (1) and (2), we get:12 = 2m + b–3 = –m + b---------------------15 = 3m … (3)

Now, divide equation (3) by 3:5 = m … (4)

Substitute the value of m in equation (1)12 = 2m + b12 = 2(5) + b12 = 10 + b2 = b

The values of m and b are m = 5 and b = 2.

Option C is the correct answer.

To know more about equation, visit:

https://brainly.com/question/29657983

#SPJ11

Answer two questions about Equations A and B:
A. 2x-1=5x
B. -1=3x
How can we get Equation B from Equation A?
Choose 1 answer:
(A) Add/subtract the same quantity to/from both sides
(B) Add/subtract a quantity to/from only one side
(C) Rewrite one side (or both) by combining like terms
(D) Rewrite one side (or both) using the distributive property

2) Based on the previous answer, are the equations equivalent? In other words, do they have the same solution?
Choose 1 answer:
(A) Yes
(B) No

Answers

Part A: the answer choice is A

Part B: They have the same solution (A)

Find the equation of line tangent to the graph of the given function at the specified point.
a. y = 4x^3+2x−1 at (0,−1)

b. g(x)=x/(x2+4) at the point where x=1.

Answers

a. The equation of tangent line is  : y = 2x + 1.

b. The equation of the tangent line is y = (3/25)x + 16/75.

a. y = 4x³ + 2x - 1 at (0,-1)

The equation of the tangent to the curve y = f (x) at the point where x = a is given by

y - f (a) = f'(a) (x - a).

Thus, in the first case, we need to find f'(a) and substitute the values of x, y, and a to find the tangent equation.

f(x) = 4x³ + 2x - 1

Taking the derivative of the function,

f'(x) = 12x² + 2

The slope of the tangent line at (0, -1) can be found by substituting x = 0, which yields f'(0) = 2.

Substituting the point (0,-1) and the value of the slope m = f'(0) = 2 in the point-slope form,

we have the equation of the tangent line,

y - (-1) = 2(x - 0)

y + 1 = 2x + 0

b. g(x) = x/(x²+4) at the point where x=1.

The slope of the tangent to g(x) at x = a is given by

f'(a).g(x) = x/(x²+4)

Taking the derivative of the function,

g'(x) = [x² + 4 - x (2x)]/(x² + 4)²

g'(x) = (4 - x²)/(x² + 4)²

The slope of the tangent line at x = 1 can be found by substituting x = 1, which yields

g'(1) = 3/25.

Substituting the point (1, 1/5) and the value of the slope m = g'(1) = 3/25 in the point-slope form, we have the equation of the tangent line,

y - 1/5 = 3/25(x - 1)

y - 3x + 16/25 = 0

Know more about the tangent equation.

https://brainly.com/question/30760562

#SPJ11

Other Questions
EXPLAIN how to Convert Single Phase to 3 Phase Power. Three-phase power is a widely used method for generating and transmitting electricity, but the calculations you'll need to perform are a little mo Horton plc makes complex products in a dynamic and highly competitive industry , Managers are extremely concerned by any cost over - runs against budget in the factory , as the causes usually take a long time to rectify. Managers receive daily data but they also depend on a detailed monthly variance report from the finance function to help them find the causes of cost over - runsHorton plc's monthly variance report is an example of which type of management information ?OA Strategic informationOB Operational informationOC Tactical informationOD Planning information what are 3 quotes from romeo and juliet at explains why friar is at fault for there death An RC circuit in series with a voltage source x(t) is represented by an ordinary differential equation:.Where y(t) is the voltage across the capacitor. Assume y(0) is the initial voltage across the capacitor.Calculate the resistance R if C = 1 F. Troy is the plant general manager for one of the two manufacturing plants for Galaxy RV, a company that builds recreational vehicles. The vehicles Galaxy builds have a sticker price of around $150,000, and classify as motorhomes rather that trailers attached to an automobile or pickup truck. Sales for the various Galaxy models have accelerated in recent years, but the pandemic provided an enormous sales boost. In fear of being contaminated in hotels, other resorts, and in public transportation, thousands of people thought that an RV would protect them from the dangers of COVID-19. As one customer said in reference to an RV parked on a dealers lot, "Its got a sink, a stove, and a shower. Ill take it."When the pandemic subsided, the enlarged fan base for RVs remained loyal. Although market forecasts vary, it appears that the motorhome outlook for the next decade is positive. Troy became quite optimistic about the present and future of Galaxy, but he thought that not all members of his management team and the rest of the workforce shared his enthusiasm. Troy thought that he could do a better job of inspiring Galaxy workers to take their work more seriously.Troys first attempt at inspiration was during a management team meeting conducted at 8:30 one Monday morning. He stood up and addressed the rest of the team seated around a table, with these words. "Do you folks realize that we are on the cusp of a revolution at Galaxy RV? We are helping change the way people in the United States, Canada, and other countries are spending their leisure time. Instead of being confined to a hotel or an Airbnb, our customers are hitting the open road so they can cruise along in their own motorized home. In some of our bigger models, two families at a time are experiencing joy, happiness, and love at the same time."To capitalize on this revolution in recreation, I need every one of you and your direct and indirect reports to work harder and smarter. I want to see Galaxy RVs built more quickly and with fewer defects. Our sales are climbing, but we have to work harder to get some inventory to meet dealer demand. Think of each Galaxy we build as a potential safe and trusted home on wheels for loved ones of your own. If we can build more of these world class queens of the road, our dealers will find more customers. Our future is up to you."Lance, the operations manager, responded, "I hear you Troy, but our entire manufacturing group is already working at top speed. If we work any faster, that could mean manufacturing defects, and possible recalls."Wendy, the procurement and materials manager, said with her eyes close to tearing, "Troy, thanks for framing the importance of what we do here at Galaxy. Im sure that your words will help my staff be even more productive."Based on these first two comments, Troy thought that his message might be working, but that he might have to try again. One possibility would be to deliver a similar message to the entire plant via a videoconference.What is your evaluation of the effectiveness of Troy's inspirational message?What other influence tactics might Troy use to ramp up production at his Galaxy RV plant? the sculptural technique of manipulation is also called group of answer choices A. modeling B. articulation C. construction D. substitution In 2022 , Cullumber Ltd. issued $60,000 of 9% bonds at par, with each $1,000 bond being convertible into 100 common shares. The company had revenues of $76,000 and expenses of $42,800 for 2023 , not including interest and tax. (Assume a tax rate of 20%.) Throughout 2023, 2,000 common shares were outstanding, and none of the bonds were converted or redeemed. (For simplicity. assume that the convertible bonds' equity element is not recorded.) (a) Calculate income available to common shareholders. Income available to common shareholders 11)When you must create several objects that share most of theirproperties and methods, _____.a.the best approach is to use methods rather than objectsb.the best approach is to use object litera Phillip is a broker who was hired by Sam to help him find a new investment property. Phillip identifies a property that fits Sam's investing criteria. Sam asks Phillip to do some research and provide him with an opinion of title on the property. Is Phillip permitted to do this?No. This would be considered an unauthorized practice of law.Yes. As long as Phillip notifies FREC, he can issue an opinion of title.No. Phillip needs his sales associates license in order to issue an opinion of title.Yes. Brokers are always permitted to issue an opinion of title. Q1. (a) is an angle. You can assume that the angle will bebetween 0 and 180 .Q2. (b1) is base1, or the bottom base.(b2) is base2, or the top measurement that is parallel to thebottom base(h) 1. The vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) is perpendicular to which one of the following vectors? a. \( 5 \hat{a}_{x}+2 \hat{a}_{y}+2 \hat{a}_{z} \) b. \( 5 \hat{a}_{x}+2 \hat{a}_{y} \) Find the relative maxima and relative minima, If any, of the function. (If an answer does not exist, enteF(t)=3t520t3+24relative maximum(t,y)=(relative minimum(t,y)=___ PLEASE HELPCalculate the answer to the correct number of significant digits. 1.268 +8.46 You may use a calculator. But remember, not every digit the calculator gives you is a significant digit! pilot projects get diffused when employees have _____, that is, when they understand how the practices in a pilot project apply to them even though they are in a completely different functional area. How does Execute the Change Management Plan address the implementation processes for performing the changeactivities?Select one:O a.It indicates readiness to complete the planO b. It updates the change management plan as circumstances changeO c.It monitors, measures and controls delivery against the baseline plansO d. It identifies gaps between what is expected and what is completed what is false regarding the two methods for recording inventories in governmental funds? Code it in C++. you have to write both codes andexplanation.Write a function that determines if two strings are anagrams.The function should not be case sensitive and should disregard anypunctuati multiple defendants who act independently cannot be jointly and severally liable for a plaintiffs injuries unless their actions produce a(n) _________ injury. On June 30, 2020, County Company issued 12% bonds with a par value of $800,000 due in 20 years. The bonds pay interest annually on June 30 . They were issued at 98 and were callable at 104 at any date after June 30, 2021. County Company uses straightline amortization. Because of lower interest rates and a significant change in the company's credit rating, it was decided to call the entire issue on July 1, 2021, and to issue new bonds. New 10% bonds were sold in the amount of $1,000,000 at 102 ; they mature in 20 years. Interest payment dates are December 31 and June 30. a) Prepare the journal entry to record the redemption of the old bond issue. b) Prepare the journal entry to record the new bond issue. leah stared with this polynomial -x^3-4 she added another polynomial the sum was -x^3+5x^2+3x-9 what was the second polynomial