Suppose that a roulette wheel is spun. What is the probability that a number between 12 and 27 (inclusive) comes up?

Answers

Answer 1

The probability that a number between 12 and 27 comes up when spinning a roulette wheel can be determined by calculating the ratio of favorable outcomes  to the total number of possible outcomes.

A standard roulette wheel consists of 38 numbered slots: numbers 1 to 36, a 0, and a 00. To calculate the probability of a number between 12 and 27 (inclusive) coming up, we need to determine the number of favorable outcomes and divide it by the total number of possible outcomes.

The favorable outcomes in this case are the numbers 12, 13, 14, ..., 26, 27, which amounts to a total of 16 numbers. The total number of possible outcomes on the wheel is 38.

Therefore, the probability of a number between 12 and 27 (inclusive) coming up can be calculated as:

[tex]Probability = Number of favorable outcomes / Total number of possible outcomes[/tex]

[tex]Probability = 16 / 38[/tex]

Simplifying this fraction, we get:

[tex]Probability = 8 / 19[/tex]

Hence, the probability that a number between 12 and 27 (inclusive) comes up when spinning a roulette wheel is 8/19 or approximately 0.421 (rounded to three decimal places).

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11


Related Questions

"given that sin.. calculate tan..
Given that sin θ = 4/8 calculate tan θ.
a. √3/8
b. 2
c. √3/3
d. √3
e. None of these are correct."

Answers

Using the given sin θ = 4/8, we can calculate the value of tan θ to determine the correct option. The correct option is option (d) .

To find the value of tan θ, we can use the identity tan θ = sin θ / cos θ. Given sin θ as 4/8, we need to find cos θ in order to calculate tan θ. Using the Pythagorean identity sin² θ + cos² θ = 1, we can solve for cos θ by substituting the value of sin θ: (4/8)² + cos² θ = 1.

Simplifying, we get 16/64 + cos² θ = 1, which further simplifies to 1/4 + cos² θ = 1. Solving for cos θ, we find cos θ = √3/2.

Now we can calculate tan θ using tan θ = sin θ / cos θ, which gives us (4/8) / (√3/2) = 4/(8√3/2) = 4√3/8 = √3/2. Therefore, option (d) is the correct answer.


Learn more about Trigonometry identities click here :brainly.com/question/29131702

#SPJ11

Using the data below, form a 90% confidence interval for the average weight of a turkey. State your result in language that pertains to the context of the problem. State your result with at least 3 digits after the decimal point Turkey weight 19 21 15 14 12 20 10 18 12.5 15 13 12 15.4 18 16 (lbs) Using methods that are correct 90 percent of the time, we estimate that the mean weight of cats is between 13.914, and 16.872. 13.914, 16.872

Answers

In language pertaining to the context of the problem, we can say:

Using methods that are correct 90% of the time, we estimate that the average weight of turkeys is between 14.0498 lbs and 16.6036 lbs.

To form a 90% confidence interval for the average weight of a turkey using the given data, we can use the following steps:

1. Calculate the sample mean:

Sum up all the turkey weights and divide by the total number of turkeys:

Mean = (19 + 21 + 15 + 14 + 12 + 20 + 10 + 18 + 12.5 + 15 + 13 + 12 + 15.4 + 18 + 16) / 15 ≈ 15.3267

2. Calculate the sample standard deviation:

Find the square root of the sum of squared deviations from the mean divided by (n-1):

Standard deviation = sqrt(((19-15.3267)^2 + (21-15.3267)^2 + ... + (16-15.3267)^2) / (15-1)) ≈ 2.9561

3. Calculate the margin of error:

The margin of error is determined by multiplying the critical value (z-score) by the standard deviation and dividing by the square root of the sample size. For a 90% confidence level, the critical value is approximately 1.645:

Margin of error = 1.645 * (2.9561 / sqrt(15)) ≈ 1.2769

4. Calculate the confidence interval:

The confidence interval is obtained by subtracting the margin of error from the sample mean and adding it to the sample mean:

Lower bound = Mean - Margin of error = 15.3267 - 1.2769 ≈ 14.0498

Upper bound = Mean + Margin of error = 15.3267 + 1.2769 ≈ 16.6036

with 90% confidence, we estimate that the mean weight of turkeys is between approximately 14.0498 lbs and 16.6036 lbs.

To know more about number visit:

brainly.com/question/3589540

#SPJ11

If 30% of the people in the community use the library in one year, find these probabilities for a sample of 15 persons. a) What is the probability that exactly fourteen (14) persons used the library?

Answers

Given, P(using library) = 30% = 0.3 (probability of using library)P(not using library) = 1 - P(using library) = 1 - 0.3 = 0.7 (probability of not using library)

Now, if we take a sample of 15 persons, and we need to find the probability that exactly fourteen (14) persons used the library, then we can use the binomial probability formula:P(X=k) = (n C k) * p^k * (1-p)^(n-k)Where, X = number of successesk = 14 (14 persons used the library)P(X=k) = probability of k successesn = 15 (sample size)p = P(using library) = 0.3 (probability of success in each trial)q = 1-p = P(not using library) = 0.7 (probability of failure in each trial)

Now, substituting the given values, we have:P(X=14) = (15 C 14) * 0.3^14 * 0.7^(15-14) = 15 * 0.3^14 * 0.7^1 = 0.0221Therefore, the probability that exactly fourteen (14) persons used the library is 0.0221.

To know more about binomial visit:

https://brainly.com/question/30339327

#SPJ11

3. Consider the following questions related to continuous random variables. (a) (3 points) Suppose I am sitting in the oval in the fall and am timing how long it takes until another leaf falls off of

Answers

A continuous random variable is a variable that can take on any value within a certain range. A continuous random variable is defined as a random variable whose value is a real number. It has a range of possible values. Since the variables can take on a continuum of possible values, they cannot be counted.

Continuous random variables are numerical variables that may take on any value between two points. An example of a continuous random variable is the time it takes for a leaf to fall from a tree. The time it takes for a leaf to fall can take on any value between zero and infinity. The probability distribution of a continuous random variable is described using a probability density function (pdf).Continuous random variables are typically measured using an infinite number of decimal points. This is in contrast to discrete random variables, which are typically measured using whole numbers. Since continuous random variables can take on an infinite number of values, the probability of any one value occurring is typically zero. Instead, we describe the probability distribution using a probability density function (pdf).

Continuous random variables are numerical variables that may take on any value between two points. An example of a continuous random variable is the time it takes for a leaf to fall from a tree. The time it takes for a leaf to fall can take on any value between zero and infinity. The probability distribution of a continuous random variable is described using a probability density function (pdf).A probability density function is a mathematical function that describes the likelihood of a continuous random variable falling within a particular range of values. The pdf is often represented graphically as a curve. The total area under the curve is equal to one. The probability of a continuous random variable falling within a particular range of values is equal to the area under the curve that corresponds to that range of values.The expected value of a continuous random variable is calculated using an integral. The integral is the sum of the product of each possible value of the random variable and its probability density. The variance of a continuous random variable is calculated using a similar formula, but the sum is squared.This is in contrast to discrete random variables, which are typically measured using whole numbers. Since continuous random variables can take on an infinite number of values, the probability of any one value occurring is typically zero. Instead, we describe the probability distribution using a probability density function (pdf).

To know more about random variable visit :-

https://brainly.com/question/30789758

#SPJ11

9) Suppose the finishing times of a marathon are normally distributed with a mean of 180 minutes and a standard deviation of 30 minutes (this is completely made up so don't worry if these numbers are

Answers

The probability that the marathon runners finish in less than 150 minutes is approximately 0.1587.

The given distribution is a normal distribution with a mean of 180 minutes and a standard deviation of 30 minutes.

Let x be a random variable representing the finishing times of a marathon.

Thus, x ~ N (180, 30²).

To find the probability that the marathon runners finish in less than 150 minutes, we need to find P(x < 150).

Here's how we can find it:

z = (x - μ) / σ,

where μ = 180,

σ = 30.z

= (150 - 180) / 30

= -1.p(z < -1)

= 0.1587, using a standard normal distribution table.

Thus,P(x < 150) = P(z < -1) = 0.1587 (approx).

Therefore, the probability that the marathon runners finish in less than 150 minutes is approximately 0.1587.

Know more about probability  here:

https://brainly.com/question/251701

#SPJ11

If the sequence is geometric, find the common ratio. If the sequence is not geometric, say so. 3/4,3/16, 3/64, 3/256, 3/1024 a. 1/40
b. 4
c. 40
d. 1/4

Answers

Answer:

This is a geometric sequence with common ratio 1/4.

The correct answer is d.

describe the shape of your cross sections if you slice the banana at a 45 angle to its base. draw a picture of the shape.

Answers

If you slice a banana at a 45-degree angle to its base, the cross-section would be an elliptical shape.

When you slice a banana at a 45-degree angle to its base, the resulting cross section will resemble an elliptical shape. The elliptical shape is obtained because the slice is made at an angle that cuts through the cylindrical structure of the banana.

An ellipse is a closed curve that resembles a stretched or squashed circle. It has two main axes, a major axis and a minor axis. In the case of slicing a banana, the major axis of the ellipse will be longer and the minor axis will be shorter. The length and width of the elliptical cross section will depend on the size and shape of the banana itself.

To visualize the shape, imagine cutting a banana diagonally with a knife. The resulting cross section will have a curved outer edge, similar to the curved edge of an ellipse, and the inner portion of the slice will also exhibit a curved shape.

In conclusion, if you slice a banana at a 45-degree angle to its base, the cross section will have an elliptical shape with a longer major axis and a shorter minor axis.

Learn more about angle here:

https://brainly.com/question/30147425

#SPJ11

Find the complex power, the average power, and the reactive power. v (t) = 160 cos (377t) V and i(t) = 12 cos (377t +45) A The complex power is 1-1 VA. The average power is W. The reactive power is VAR

Answers

The complex power is 1920 ∠ (-45°) VA, the average power is approximately 1357.1 W, and the reactive power is approximately -1357.1 VAR.

To find the complex power, average power, and reactive power, we need to calculate the complex power S, which is the product of the voltage and current phasors.

Given:

v(t) = 160 cos(377t) V

i(t) = 12 cos(377t + 45) A

The complex power is given by:

S = V * I*

where V is the phasor representing the voltage and I* is the complex conjugate of the phasor representing the current.

In phasor form:

V = 160 ∠ 0° V

I = 12 ∠ 45° A

Taking the complex conjugate of I:

I* = 12 ∠ (-45°) A

Now, we can calculate the complex power:

S = V * I*

S = (160 ∠ 0° V) * (12 ∠ (-45°) A)

Multiplying the magnitudes and adding the angles:

S = (160 * 12) ∠ (0° - 45°) VA

S = 1920 ∠ (-45°) VA

Therefore, the complex power is 1920 ∠ (-45°) VA.

To find the average power, we take the real part of the complex power:

Average Power = Re(S) = Re(1920 ∠ (-45°) VA)

Average Power = 1920 * cos(-45°) W

Average Power ≈ 1357.1 W

The reactive power can be found by taking the imaginary part of the complex power:

Reactive Power = Im(S) = Im(1920 ∠ (-45°) VA)

Reactive Power = 1920 * sin(-45°) VAR

Reactive Power ≈ -1357.1 VAR (Note: The reactive power is negative in this case.)

Know more about average power here:

https://brainly.com/question/31040796

#SPJ11

Differentiate implicitly to find the first partial derivatives of z.

x+sin(y+z)= 0

Answers

The first partial derivatives of z with respect to x and y in the equation x + sin(y + z) = 0 are ∂z/∂x = -1 and ∂z/∂y = -cos(y + z).

To find the first partial derivatives of z with respect to x and y, we need to differentiate the given implicit equation with respect to x and y while treating z as a function of x and y.

Differentiating the equation with respect to x:

∂/∂x (x + sin(y + z)) = 1 + ∂z/∂x

Differentiating the equation with respect to y:

∂/∂y (x + sin(y + z)) = cos(y + z) (1 + ∂z/∂y)

The term ∂z/∂x represents the partial derivative of z with respect to x, and ∂z/∂y represents the partial derivative of z with respect to y.

So, the first partial derivatives of z are:

∂z/∂x = -1

∂z/∂y = -cos(y + z)

These derivatives indicate how the variable z changes with respect to changes in x and y in the given equation x + sin(y + z) = 0. The value of -1 for ∂z/∂x means that for every unit increase in x, z decreases by 1. The value of -cos(y + z) for ∂z/∂y indicates how z changes with respect to changes in y, with the specific relationship determined by the trigonometric function cos(y + z).

Learn more about partial derivatives here:

https://brainly.com/question/32554860

#SPJ11

subject is production planning and control (PPC)
PLEASE PROVIDE THE SOLUTION URGENTLY
2013 2015 2016 2018 2020 Q1 122 128 125 131 Demand in thousands 03 100 110 108 105 108 n 8 F 56 64 09 Q4 60 S 56 70
2013 2015 2016 2018 2020 Q1 122 128 125 131 Demand in thousands 03 100 110 108 105

Answers

Forecast accuracy measures how accurately the forecast aligns with the actual outcome of a future event. It is an essential measure in production planning and control (PPC) to analyze the forecasting performance of the system.

PPC or production planning and control is a tool that helps in managing resources in the production process. It includes a set of functions that assists in maintaining inventory levels, scheduling of production, and managing workloads in the manufacturing process.Forecasting is one of the primary functions of PPC, which helps to estimate the future demand for a product or service.

Accurate forecasting is essential in PPC as it helps in avoiding overproduction, underproduction, and stockouts. Therefore, it is crucial to measure the accuracy of the forecast to determine the effectiveness of the PPC system in place.There are various methods to measure the forecast accuracy, such as Mean Absolute Deviation (MAD), Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE), and Tracking Signal. All these methods give a value to the difference between the forecasted demand and the actual demand.Therefore, forecast accuracy the measurement of forecast accuracy is an essential tool in PPC to estimate the effectiveness of the forecasting system.

To know more about Forecast accuracy visit :-

https://brainly.com/question/32671007

#SPJ11

Find the 99% confidence interval (CI) and margin of error (ME) for systolic blood pressures for women aged 18-24 when: n = 92, X = 114.9, o = 13.2 Interpret your results.

Answers

True mean systolic blood pressure for women aged 18-24 falls within the range of 111.3545 to 118.4545 mmHg. The margin of error (ME) of approximately 3.5455 indicates the maximum amount of error we expect in estimating the true population mean based on our sample.

To find the 99% confidence interval (CI) and margin of error (ME) for systolic blood pressures for women aged 18-24, we can use the following information:

Sample size (n): 92

Sample mean (X): 114.9

Sample standard deviation (σ): 13.2

First, let's calculate the standard error (SE) of the mean:

SE = σ / √n

SE = 13.2 / √92 ≈ 1.3762 (rounded to 4 decimal places)

Next, we can calculate the margin of error (ME) using the formula:

ME = z * SE

For a 99% confidence level, the corresponding z-value can be found using a standard normal distribution table or a calculator. The z-value for a 99% confidence level is approximately 2.576.

ME = 2.576 * 1.3762 ≈ 3.5455 (rounded to 4 decimal places)

Now, let's calculate the confidence interval (CI) using the formula:

CI = X ± ME

CI = 114.9 ± 3.5455

The lower bound of the confidence interval is:

Lower bound = 114.9 - 3.5455 ≈ 111.3545 (rounded to 4 decimal places)

The upper bound of the confidence interval is:

Upper bound = 114.9 + 3.5455 ≈ 118.4545 (rounded to 4 decimal places

Learn more about standard deviation here:

https://brainly.com/question/23907081

#SPJ11

Use log, 20.327, log, 3≈ 0.503, and log, 5≈ 0.835 to approximate the value of the given logarithm to 3 decimal places. Assume that b>0 and b# 1. log, 45 X 3

Answers

The approximate value of log base b (45 × 3) is 1.670.

To approximate the value of log base b of 45 times 3, we can use the logarithmic properties to rewrite the expression as the sum of two logarithms:

log base b (45 × 3) = log base b 45 + log base b 3

Now, using the given approximations for log base b of 20.327, log base b of 3, and log base b of 5:

log base b 45 ≈ log base b 20.327 + log base b 5

≈ 0.503 + 0.835

≈ 1.338

log base b 3 ≈ log base b 5 - log base b 2

≈ 0.835 - 0.503

≈ 0.332

Finally, we can substitute these values back into the original expression:

log base b (45 × 3) ≈ 1.338 + 0.332

≈ 1.670

Therefore, the approximate value of log base b (45 × 3) is 1.670.

To know more about logarithm , visit:

https://brainly.com/question/29504234

#SPJ11

Analyze the key features of the function f(x) = −2x³ + 12x² − 3,x € [−4,4]
a) Calculate the increase and decrease interval
b) Calculate the determine the critical point
c) Calculate the concavity
d) Calculate the any point of inflection
e) Calculate the absolute minimum and absolute maximum
f) Calculate the domain and range of f(x) in the interval above.

Answers

a) We know that f(x) is increasing at a critical point and decreasing at the other point. Hence, the critical points are the points of maximum or minimum of the function.

Here's how we calculate the intervals of increase and decrease:To calculate the intervals of increase and decrease of the function f(x), we must first calculate its derivative:f'(x) = -6x² + 24x = 6x(x - 4) x (x - 0).

We must calculate the sign of the derivative in each of the intervals determined by the critical points.

Here, we have three critical points, i.e., {-4, 0, 4}.So, in the interval of (-∞, -4) we take x = -5 and x = -3 and substitute it into the function f'(x) = -6x² + 24xThe derivative f'(x) is negative in this interval (-∞, -4), so the function is decreasing.In the interval of (-4, 0), we take x = -1 and x = -3 and substitute it into the function f'(x) = -6x² + 24x.The derivative f'(x) is positive in this interval (-4, 0),

so the function is increasing. In the interval of (0, 4), we take x = 1 and x = 3 and substitute it into the function f'(x) = -6x² + 24x.The derivative f'(x) is negative in this interval (0, 4), so the function is decreasing. b) To determine the critical point,

we need to find out where the first derivative is equal to 0. We can get critical points for a function by calculating the roots of its derivative, which we have already calculated above:f'(x) = 6x² - 24x = 6x(x - 4)(x - 0)So, the critical points are {0, 4}.c) To determine the concavity of f(x), we need to find out whether the function is concave up or down.

To do that, we calculate the second derivative of the function :f''(x) = -12x + 24.The sign of the second derivative determines the concavity of the function: if f''(x) > 0, the function is concave upif f''(x) < 0, the function is concave down.To find out where the function changes from being concave up to concave down (or vice versa), we need to find the points where the second derivative equals 0. Here, it equals zero when x = 2, where the function changes from concave up to concave down.d)

To find the point of inflection, we need to substitute x = 2 into the original function:f(2) = -2(2)³ + 12(2)² - 3 = 15The point of inflection is (2, 15).e) The absolute minimum and absolute maximum are calculated by looking at the values of the function at its endpoints. So, we substitute x = -4 and x = 4 into the original function: f(-4) = -194, f(4) = 61

Therefore, the absolute minimum is -194 and the absolute maximum is 61. f) The domain and range of the function f(x) can be defined as follows:Domain: {x| x ∈ [-4, 4]}Range: {y| y ∈ [-194, 61]}The answer, in 250 words, is given above.

To know more about original function visit:

https://brainly.com/question/16084139

#SPJ11

Timothy and Talal are playing ping pong. During the first game, Timothy was distracted by a sound and lost the game. After the first game though Timothy settled in to have a 75 % probability of winning a game after he had won the previous game. The bad part is that every time Timothy loses a game he loses confidence and only has a 50% chance of winning the next game.

What is the initial probability vector?

What is the transition matrix P?

Determine the probability that Timothy will win the second, third and fourth game?

What is the long-term probability that Timothy will win the game?

Answers

In the ping pong game between Timothy and Talal, Timothy's winning probability is influenced by his previous game results. Initially, Timothy's winning probability is not provided in the given information.

In the given scenario, it is stated that Timothy has a 75% chance of winning a game after he had won the previous game. However, if Timothy loses a game, his winning probability decreases to 50% for the next game. Based on this information, we can construct the transition matrix P.

To determine the probability that Timothy will win the second, third, and fourth game, we need the initial probability vector and the transition matrix P. Without the initial probability vector, we cannot calculate these probabilities.

The long-term probability that Timothy will win the game can be found by analyzing the behavior of the system over an extended period. We can use matrix algebra or Markov chain theory to calculate the long-term probabilities. However, without the initial probability vector, we cannot provide an accurate calculation for the long-term probability.

Overall, additional information is required to determine the initial probability vector, calculate the probabilities of winning the second, third, and fourth games, and find the long-term probability of Timothy winning the game.

Learn more about algebra here:

https://brainly.com/question/29131718

#SPJ11

Question 6 Assume that X has the exponential distribution with parameter A. Find a function G (x) such that Y = G(X) has uniform distribution over [-1, 1].

Answers

A function G (x) such that Y = G(X) has uniform distribution over [-1, 1] is :

G(x) = 2 e^(-Ax) - 1

Given that X has the exponential distribution with parameter A.

Let Y = G(X) has uniform distribution over [-1, 1].

We need to find the function G(x).

The cumulative distribution function (cdf) of Y is:

F(y) = P(Y ≤ y) = P(G(X) ≤ y) = P(X ≤ G⁻¹(y))

Here, G⁻¹(y) is the inverse function of G(x).

As Y has a uniform distribution over [-1, 1], the cdf of Y is:

F(y) = y + 1/2 for -1 ≤ y ≤ 1

Therefore, we have:

P(X ≤ G⁻¹(y)) = F(y) = y + 1/2

We know that the cdf of X is:

F(x) = P(X ≤ x) = 1 - e^(-Ax)

By using F(x) and G(x) we get:

G⁻¹(y) = -1/A ln(1 - y - 1/2)

We get the function G(x) by replacing y with F(x) in G⁻¹(y).

Thus, G(x) = 2 e^(-Ax) - 1.

To learn more about exponential distribution visit : https://brainly.com/question/22692312

#SPJ11

A normal distribution has a mean of 85 and a standard deviation of 10. Find the range of values that represent the middle 68% of the distribution.

Answers

The range of values that represent the middle 68% of the distribution is from 75 to 95.

In a normal distribution, the middle 68% of the data falls within one standard deviation from the mean. To find the range of values that represent the middle 68% of the distribution, we can calculate the upper and lower bounds.

Given:

Mean (μ) = 85

Standard Deviation (σ) = 10

To find the upper bound:

Upper Bound = Mean + Standard Deviation

Upper Bound = 85 + 10

Upper Bound = 95

To find the lower bound:

Lower Bound = Mean - Standard Deviation

Lower Bound = 85 - 10

Lower Bound = 75

Know more about range here:

https://brainly.com/question/29204101

#SPJ11

Given are five observations for two variables, and y. I 2 Yi 7 The estimated regression equation is ŷ = 1.2 + 2.4x a. Compute the mean square error using the following equation (to 3 decimals). b. Co

Answers

The coefficient of determination is 0.05.Answer: a. Mean square error = 0.25. b. Coefficient of determination (R²) = 0.05.

a. Mean square error is used to measure the goodness of fit of the linear regression model. Mean square error (MSE) is the average squared differences between the predicted value and the actual value. MSE can be calculated using the formula MSE = SSE / (n - k - 1) where SSE is the sum of squared errors, n is the number of observations and k is the number of independent variables.

The given data for two variables x and y are as follows: xi 2yi7Applying the values in the regression equation, we get:ŷ = 1.2 + 2.4x Substituting xi = 2, we get: ŷ = 1.2 + 2.4(2) = 6Therefore, the SSE can be calculated as follows: SSE = ∑(yi - ŷ)² = (7 - 6)² = 1Now, n = 5 and k = 1 (since there is only one independent variable),

Therefore, MSE = SSE / (n - k - 1)= 1 / (5 - 1 - 1)= 0.25Therefore, the mean square error is 0.25.b. The coefficient of determination (R²) is the proportion of the total variation in the dependent variable (y) that can be explained by the variation in the independent variable(s) (x).

It ranges from 0 to 1, where 0 means that the independent variable(s) does not explain any of the variation in the dependent variable, and 1 means that the independent variable(s) perfectly explain the variation in the dependent variable.R² is calculated as the ratio of the explained variation to the total variation.

It can be calculated as follows: R² = SSE / SST, where SSE is the sum of squared errors and SST is the total sum of squares. SST is calculated as follows: SST = ∑(y i - ȳ)²where ȳ is the mean of yi

Substituting the given values, we get: SST = ∑(yi - ȳ)²= (7 - 5)² + (7 - 5)² + (7 - 5)² + (7 - 5)² + (7 - 5)²= 2² + 2² + 2² + 2² + 2²= 20Now, SSE = 1 (calculated in part a)Therefore,R² = SSE / SST= 1 / 20= 0.05

Therefore, the coefficient of determination is 0.05.Answer: a. Mean square error = 0.25. b. Coefficient of determination (R²) = 0.05.

To know more about Mean visit :

https://brainly.com/question/31101410

#SPJ11

how to integrate (1-x^2)^1/2

Answers

The integral of the two terms as shown below:[tex]∫(1 - x²)^(1/2)dx = 1/2(θ + 1/2sin(2θ)[/tex] + C)where C is the constant of integration.

To integrate (1-x²)^(1/2) using substitution method, we use the following steps:

Step 1: We let x

= sin(θ)dx = cos(θ)dθ1-x²

= cos²(θ)

Step 2: We substitute the expression derived from Step 1 into the original function to obtain∫(1 - x²)^(1/2)dx=∫cos²(θ)dθ

Step 3: We then apply the double angle formula to obtain:cos²(θ) = (1 + cos(2θ))/2Step 4: We substitute this expression back into the integral to obtain:

∫(1 - x²)^(1/2)dx = ∫(1 + cos(2θ))/2dθ∫(1 - x²)^(1/2)dx

= 1/2 ∫(1 + cos(2θ))dθ

Step 5: Evaluate the integral of the two terms as shown below:∫(1 - x²)^(1/2)dx = 1/2(θ + 1/2sin(2θ) + C)where C is the constant of integration.

Finally, we substitute x = sin(θ) back into the expression above to obtain the final solution.

To know more about integral visit:-

https://brainly.com/question/31433890

#SPJ11

Find the values of k for which the vectors u = (111), v=(436) and w=(-2-7x) are linearly independent.

Answers

To determine the values of k for which the vectors u = (1, 1, 1), v = (4, 3, 6), and w = (-2, -7, x) are linearly independent, we can examine the determinant of the matrix formed by these vectors.

The vectors are linearly independent if and only if the determinant of the matrix formed by them is non-zero.Constructing the matrix, we have:

| 1 4 -2 |

| 1 3 -7 |

| 1 6 x |

To find the determinant, we can perform row operations to simplify the matrix. Subtracting the first row from the second row, we get:

| 1 4 -2 |

| 0 -1 5 |

| 1 6 x |

Now subtracting the first row from the third row, we have:

| 1 4 -2 |

| 0 -1 5 |

| 0 2 x+2 |

The determinant of the matrix is given by the product of the diagonal elements, so:

det = 1(-1)(x + 2) = -x - 2

For the vectors to be linearly independent, the determinant must be non-zero. Therefore, the values of k for which the vectors u, v, and w are linearly independent are all values except k = -2.

To learn more about determinant of the matrix click here : brainly.com/question/29574958  

#SPJ11


Suppose X is normally distributed with a mean of μ of 11.5 and
a
standard deviation of σ of 2. Find the probability of X ≤ 14.

Answers

In total there is a whole 89.44% chance that a randomly selected value from the normally distributed variable X will be less than or equal to 14.

The probability of X ≤ 14 can be calculated by standardizing the variable X using the formula z = (X - μ) / σ, where z is the standardized value. In this case, z = (14 - 11.5) / 2 = 1.25.

Next, we look up the cumulative probability corresponding to the standardized value of 1.25 in the standard normal distribution table or use statistical software/tools. The cumulative probability for z = 1.25 is approximately 0.8944.

Therefore, the probability of X ≤ 14 is 0.8944, or approximately 89.44%.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

A livestock company reports that the mean weight of a group of young steers is 1104 pounds with a standard deviation of 94 pounds. Based on the model N(1104,94) for the weights of steers, what percent of steers weight
a) over 1150 pounds?
b) under 900 pounds?
c) between 1200 and 1250 pounds?

Answers

a) The percentage of steers weighing over 1150 pounds is 31.46%

b) The percentage of steers weighing under 900 pounds is  1.43%

c) The percentage of steers weighing between 1200 and 1250 pounds is 5.82%.

The given problem is about the normal distribution of the weights of steers, with mean µ = 1104 pounds and standard deviation σ = 94 pounds.

This problem is solvable using the normal distribution table and the z-score formula. The z-score of a random variable x is given by:z = (x - µ) / σ where x is the observed value of the variable.

The z-score measures the number of standard deviations away from the mean that a value is located. Let's solve the problem part by part:

a) To find the percentage of steers weighing over 1150 pounds, we need to calculate the area under the normal distribution curve to the right of 1150.

The z-score for this value is given by:z = (x - µ) / σ = (1150 - 1104) / 94 = 0.489

The area to the right of this z-score can be found from the normal distribution table.Using the table, we find that the area to the right of z = 0.49 is 0.3146.

So, the percentage of steers weighing over 1150 pounds is:P(x > 1150) = 31.46%

b) To find the percentage of steers weighing under 900 pounds, we need to calculate the area under the normal distribution curve to the left of 900.

The z-score for this value is given by:z = (x - µ) / σ = (900 - 1104) / 94 = -2.170

The area to the left of this z-score can be found from the normal distribution table.

Using the table, we find that the area to the left of z = -2.17 is 0.0143.

So, the percentage of steers weighing under 900 pounds is:P(x < 900) = 1.43%

c) To find the percentage of steers weighing between 1200 and 1250 pounds, we need to calculate the area under the normal distribution curve between these two values.

We need to find the z-scores for these values first.

z1 = (x1 - µ) / σ = (1200 - 1104) / 94 = 1.02z2 = (x2 - µ) / σ = (1250 - 1104) / 94 = 1.54

The area between these z-scores can be found from the normal distribution table.

Using the table, we find that the area between z = 1.02 and z = 1.54 is 0.0582.

So, the percentage of steers weighing between 1200 and 1250 pounds is:P(1200 < x < 1250) = 5.82%

Know more about the normal distribution

https://brainly.com/question/23418254

#SPJ11

Survey: 100 people were asked if they like dogs or cats. Using the two-way table, what percent of the females only said they like cats?

A. 48/100 = 48%


B. 39/100 = 39%


C. 39/48 = 81%


D. 49/100 = 49%​

Answers

Answer:

C. 39/48 = 81%

Step-by-step explanation:

To determine the percentage of females who only said they like cats using the given two-way table, we need to find the number of females who selected "cats" only and divide it by the total number of females surveyed. We can then multiply the result by 100 to get the percentage.

According to the provided two-way table:

Number of females who only said they like cats = 39

Total number of females surveyed = 48

To calculate the percentage:

Percentage of females who only said they like cats = (Number of females who only like cats / Total number of females surveyed) * 100

Percentage of females who only said they like cats = (39 / 48) * 100 ≈ 81.25%

Therefore, the correct option is:

C. 39/48 = 81%

In a survey, 10 people were asked how much they spent on their child's last birthday gift. The results were roughly bell-shaped with a mean of $37 and standard deviation of $4, Construct a confidence interval at a 95% confidence level. Give your answers to one decimal place. Add Work Submit Question

Answers

To construct a confidence interval for the mean amount spent on a child's last birthday gift, we can use the formula:

Confidence Interval = sample mean ± (critical value * standard error)

Given that we have a sample size of 10, a mean of $37, and a standard deviation of $4, we can calculate the standard error as:

Standard Error = standard deviation / sqrt(sample size)

Standard Error = $4 / sqrt(10)

Standard Error ≈ $1.27

Next, we need to determine the critical value corresponding to a 95% confidence level. Since the sample size is small (n < 30), we use a t-distribution instead of a z-distribution. With 10-1 = 9 degrees of freedom, the critical value for a 95% confidence level is approximately 2.262.

Now we can calculate the confidence interval:

Confidence Interval = $37 ± (2.262 * $1.27)

Confidence Interval ≈ $37 ± $2.88

Confidence Interval ≈ ($34.12, $39.88)

Therefore, at a 95% confidence level, the confidence interval for the mean amount spent on a child's last birthday gift is approximately $34.12 to $39.88.

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11








3. A piece of sheet metal, 50cm by 20cm is to be used to make a rectangular box with an open top. Determine the dimensions that will give the box with the largest volume.

Answers

The volume of the rectangular box will be maximum when the length of the box is 7.14 cm and the height of the box is 238.10 cm³.

Let's consider the given sheet of metal.

Let the width of the rectangular box to be x.

So, the length of the box = 20 - 2x (as we have to remove width on both sides)

The height of the box = We have the formula of volume of a rectangular box as,

Volume of the rectangular box = length × width × heightV =

x(20 - 2x)yV = (20x - 2x²)yV = 20xy - 2x²y

We need to maximize the volume of the rectangular box by finding the values of x and y. We know that,

Area of metal sheet = Area of rectangular box + Area of waste metal sheet

50 × 20 = xy + 2xy + x(20 - 2x)50 × 20 =

3xy + 20x50 × 20 - 20x = 3xy50(20 - x)

= 3xySo, xy = 50(20 - x)/3Putting this value in the above equation, we get:V = 20x(50 - x)/3 - (2x²) maximizing V, dV/dx = 0dV/dx = 20(50 - 2x)/3 - 4x = 0(100 - 2x)/3 = 4x/3x = 100/14. ≈ 7.14 cm Putting this value in the above equation,  we get:y = 50(20 - 7.14)/3y ≈ 238.10 cm³

Therefore, the dimensions that will give the box with the largest volume are: x = 7.14 cm = 238.10 cm³

To know more about volume Visit:

https://brainly.com/question/13798973

#SPJ11

Suppose a five-year, $1,000 bond with annual coupons has a price of $900.53 and a yield to maturity of 6,3%. What is the bond's coupon rate? SIN The bond's coupon rate is%. (Round to three decimal places.)

Answers

The bond's coupon rate is approximately 7.4043%.

To find the bond's coupon rate, we need to use the formula for calculating yield to maturity and solve for the coupon rate.

The yield to maturity formula for a bond is:

Price = (Coupon Payment / (1 + Yield)^1) + (Coupon Payment / (1 + Yield)^2) + ... + (Coupon Payment + Face Value) / (1 + Yield)^n,

where Price is the current price of the bond, Coupon Payment is the annual coupon payment, Yield is the yield to maturity, and n is the number of years until maturity.

In this case, the bond's price is $900.53, the yield to maturity is 6.3%, the coupon payment is unknown, and the bond has a maturity of five years.

Using the formula, we can set up the equation:

$900.53 = (Coupon Payment / (1 + 0.063)^1) + (Coupon Payment / (1 + 0.063)^2) + (Coupon Payment / (1 + 0.063)^3) + (Coupon Payment / (1 + 0.063)^4) + (Coupon Payment + $1,000) / (1 + 0.063)^5.

Now we need to solve this equation to find the coupon payment.

Using a financial calculator or software, we can find that the coupon payment is approximately $74.043.

To calculate the coupon rate, we divide the coupon payment by the face value of the bond and multiply by 100:

Coupon Rate = (Coupon Payment / Face Value) * 100 = ($74.043 / $1,000) * 100 = 7.4043%.

Learn more about coupon rate here :-

https://brainly.com/question/30079417

#SPJ11

please someone help me

Answers

The length of side BC is approximately 8.72 km.

To find the length of side BC using the cosine rule, we can use the following formula:

BC² = AB² + AC² - 2 AB AC Cos(A)

where BC represents the length of side BC, AB represents the length of side AB, AC represents the length of side AC, and A represents the angle opposite to side BC.

Plugging in the given values:

BC² = (25.3 km)² + (16.7 km)² - 2 (25.3 km) (16.7 km) Cos(68.5°)

BC² = 640.09 km² + 278.89 km² - 2 × 25.3 km × 16.7 km × cos(68.5°)

BC² = 919.98 km² - 843.91 km²

BC² = 76.07 km²

Taking the square root of both sides:

BC = √76.07 km

BC ≈ 8.72 km

Therefore, the length of side BC is approximately 8.72 km.

Learn more about Cosine law click;

https://brainly.com/question/30918098

#SPJ1

On Black Friday, Jack waited in line for hours to get a new TV. He ended up getting an awesome deal on a 70-inch-wide TV. Jack's new TV is n inches wider than his old TV, which was 50 inches wide. He can't wait to watch a movie on the huge screen!

What is the equation of the word problem??

Answers

The equation of the word problem is N = 50 + n, where N represents the width of Jack's new TV, n represents the additional width of the new TV compared to the old TV, and 50 represents the width of Jack's old TV.

The equation representing the word problem can be derived as follows:

Let's assume the width of Jack's new TV is N inches. According to the information given, Jack's new TV is n inches wider than his old TV, which was 50 inches wide. This can be expressed as:

N = 50 + n

The equation above represents the relationship between the width of Jack's new TV (N), the width of his old TV (50 inches), and the additional width (n inches) of the new TV.

To further simplify, we can substitute the value of n with the specific number of inches wider Jack's new TV is compared to his old TV. Let's say Jack's new TV is 20 inches wider than his old TV. We can substitute n with 20 in the equation:

N = 50 + 20

Simplifying further, we find:

N = 70

This equation represents the specific case where Jack's new TV is 20 inches wider than his old TV, resulting in a width of 70 inches for the new TV.

In general, the equation can be modified to accommodate any value for n, representing the width difference between the new and old TV:

N = 50 + n

For more such questions on equation

https://brainly.com/question/29174899

#SPJ8

Let à {5, -3} and b⁻ - {2, k}. Find k so that à and b⁻ will be orthogonal (form a 90 degree angle)
k = ___

Answers

The value of k that makes the vectors à and b⁻ orthogonal is k = 10/3. For two vectors to be orthogonal, their dot product must be zero.

We need to find the value of k such that the dot product of the vectors à and b⁻ will be zero. The dot product of two vectors à = [a1, a2] and b⁻ = [b1, b2] is given by: à · b⁻ = a1b1 + a2b2

Given that à = [5, -3] and b⁻ = [2, k], their dot product is: à · b⁻ = (5)(2) + (-3)(k) = 10 - 3k

For à and b⁻ to be orthogonal, their dot product must be zero. Thus, we need to solve the equation: 10 - 3k = 0

Solving for k, we get: k = 10 / 3

Therefore, the value of k that makes the vectors à and b⁻ orthogonal is k = 10/3.

know more about orthogonal vectors here: brainly.com/question/28503609

#SPJ11

The three main assumptions of the residuals in a linear statistical model are
Select one:

a. Constant variance, Independence, Normality

b. Centrality of 0, Variable Dispersion and Factor-Dependent Proportionality

c.Linearity: in the regression parameters, in the dependence of the response on the controllable factors, and in the levels of the factors

d.That its random variation is: greater than the induced variation, completely due to covariates, and independent of who operates the system

Answers

The three main assumptions of the residuals in a linear statistical model are constant variance, independence, and normality i.e., the correct option is A.

In a linear statistical model, the residuals represent the differences between the observed values and the predicted values. The assumptions regarding the residuals play a crucial role in the validity of the model and the interpretation of its results.

The first assumption is constant variance, also known as homoscedasticity.

It states that the variability of the residuals should be consistent across all levels of the predictor variables.

In other words, the spread of the residuals should not systematically change as the values of the predictors change.

The second assumption is independence. It assumes that the residuals are not correlated with each other, meaning that the error term for one observation should not be influenced by the error term of another observation.

Independence ensures that each observation contributes unique information to the model.

The third assumption is normality. It states that the residuals follow a normal distribution.

Normality assumption allows for the use of inferential statistics, such as hypothesis testing and confidence intervals, which rely on the assumption of normality.

These three assumptions are important for the accuracy and reliability of the model's estimates and inferences.

Violations of these assumptions can lead to biased estimates, inefficient inference, and incorrect conclusions.

Therefore, it is crucial to assess the residuals for constant variance, independence, and normality to ensure the validity of the linear statistical model.

Learn more about variance here:

https://brainly.com/question/16032058

#SPJ11








Find f(x) + g(x), f(x) = g(x), f(x) · g(x), X f(x): x + 7 g(x) = x² (a) f(x) + g(x) (b) f(x) - g(x) (c) f(x) · g(x) . f(x) (d) g(x) (e) f(g(x)) (f) g(f(x)) = f(x) g(x) f(g(x)), and g(f(x)), if defi

Answers

If f(x) + g(x), f(x) = g(x), f(x) · g(x), X f(x): x + 7 g(x) = x² (a) f(x) + g(x) (b) f(x) - g(x) (c) f(x) · g(x) . f(x) (d) g(x) (e) f(g(x)) (f) g(f(x)) = f(x) g(x) f(g(x)), and g(f(x)), if define then- he expression is: f(x) · g(x) = x³ + 7x²

To find the expressions requested, we will substitute the given functions into the respective equations. Let's solve each part one by one:

Given:

f(x) = x + 7

g(x) = x²

(a) f(x) + g(x):

Substituting the functions:

f(x) + g(x) = (x + 7) + (x²)

Combining like terms:

f(x) + g(x) = x + 7 + x²

(b) f(x) - g(x):

Substituting the functions:

f(x) - g(x) = (x + 7) - (x²)

Expanding the expression:

f(x) - g(x) = x + 7 - x²

(c) f(x) · g(x):

Substituting the functions:

f(x) · g(x) = (x + 7) · (x²)

Expanding the expression:

f(x) · g(x) = x³ + 7x²

(d) g(x):

Substituting the function:

g(x) = x²

(e) f(g(x)):

Substituting the functions:

f(g(x)) = f(x²)

Substituting f(x) = x + 7 into f(g(x)):

f(g(x)) = x² + 7

(f) g(f(x)):

Substituting the functions:

g(f(x)) = g(x + 7)

Substituting g(x) = x² into g(f(x)):

g(f(x)) = (x + 7)²

Expanding the expression:

g(f(x)) = x² + 14x + 49

(g) f(x) · g(x), if defined:

We already solved this in part (c), and the expression is:

f(x) · g(x) = x³ + 7x²

Learn more about  expressions   here-

https://brainly.com/question/26152499

#SPJ4

Other Questions
Let f'(x) = 3x - 2x - 30 and f(x) have critical numbers -5, 0, and 6. Use the second derivative test to determine which critical numbers gives a relative minimum. i) 0 ii) 6 iii)-5 and 6 iv)0 and -5 v)none What is the future value of the following cash flows, given an appropriate discount rate of 8.85% (to the nearest penny)? Year 1 $3,872 Year 2 $2,833 Year 3 $4,716 Year 4 $7,242 Year 5 $8,966 The director's children ____a. kidnapped b. have kidnapped C. was kidnapped d. have been kidnapped Four people ____ in train crasha. have been killed b. are killed C. have killed d. was killed He ____ as the new senior designer of the company.a. has been promotedb. promoted C. has promoted d. are promoted An office that dispenses automotive license plates has divided its customers into categories to level the office workload. Customers arrive and enter one of three lines based on their residence location. Model this arrival activity as three independent arrival streams using an exponential interarrival distribution with mean 10 minutes for each stream, and an arrival at time 0 for each stream. Each customer type is assigned a single, separate clerk to process the application forms and accept payment, with a separate queue for each. The service time is UNIF(8, 10) minutes for all customer types. After completion of this step, all customers are sent to a single, second clerk who checks the forms and issues the plates (this clerk serves all three customer types, who merge into a single first-come, first-served queue for this clerk). The service time for this activity is UNIF(2.65, 3.33) minutes for all customer types. Develop a model of this system and run it for a single replication of 5,000 minutes; observe the average and maximum time in system for all customer types combined. A consultant has recommended that the office not differentiate between customers at the first stage and use a single line with three clerks who can process any customer type. Develop a model of this system, run it for a single replication of 5,000 minutes, and compare the results with those from the first system. Put text boxes in your Arena files with the numerical results requested. Goals (ex. financial, increase sales, building brand, increase awareness).Make the goals SMART: specific, measurable, aligned, realistic, and time-bound.Your main goal will be the driving force of the rest of the plan. For example:To expand the company into GermanyTo tailor our product for the 21-40 age groupTo start a new company that will meet X needWe are a catering company Jill Davis tells her broker that she does not want to sell her stocks that are below the price she paid for them. She believes that if she just holds on to them a little longer, they will recover, at which time she will sell them. What behavioral characteristic does Davis display? O Loss aversion O Conservatism O Disposition effect Which of these statements concerning pressure and weather are correct?I. Low pressure in a region tends to draw in stormsII. High pressure in a region usually indicates clear weatherIII. Changes in pressure from regino to region are responsible for windsa. I onlyb. III onlyc. I and IId. I and IIIe. I, II, and III The S&P500 Index portfolio may be viewed as the market portfolio for CAPM Average Return Standard Deviation Beta Portfolio Money Market 2% 0% 0.0 Portfolio A 10% 16% 0.6 Portfolio B 15% 25% 1.2 S&P500 Index 14% 20% 1.0 (a) Compare the Sharpe Ratio for A and B against the market Sharpe Ratio. If the CAPM holds which would you expect to have the larger Sharpe Ratio? (b) Under the assumptions of the CAPM what is the idiosyncratic standard deviation of A and B returns? (c) Given that the CAPM holds exactly, what is A and B alphas? (d) Find the correlation between A and B returns and the S&P500 Index return. (e) What is A cost of equity capital based on the CAPM? (f) Explain whether A portfolio lies on, below, or above the CML. Show in the graph (g) Explain whether A and B portfolios lie on, below, or above the SML. Show in the graph. Do you think that the A and B portfolios are underpriced, overpriced, or priced correctly? Explain. An investor has R101344 to invest in a company's stock, which is selling at R45 per share. The prevailing margin requirement is 66.2% (commissions are ignored). Assuming that prices falls to R35, calculate the loss the investor would make from selling the share. Question 8 (1 point) If a loop of wire carrying a clockwise current were put on a tabletop, which way would the generated magnetic field point? straight up to the right Ostraight down counter-clockwis The mean pulse rate (in beats per minute) of adult males is equal to 69 bpm. For a random sample of 145 adult males, the mean pulse rate is 68.1 bpm and the standard deviation is 11.1 bpm. Find the value of the test statisticThe value of the test statistic is:(Round to two decimal places as needed.) 1. Introduction of the utilities sector in Malaysia (Clear and detailed introduction which covers the development and growth of the utilities sector in Malaysia)2. a) Introduction of the two chosen companies of GAS MALAYSIA BERHADClear and detailed introduction of the companiescompanies names,establishment year,company size and business activities.Relevant and adequate financial highlights were given.2. b) Introduction of the two chosen companies of PETRONAS GAS BERHADClear and detailed introduction of the companiescompanies names,establishment year,company size and business activities.Relevant and adequate financial highlights were given.3.Computation of the relevant ratios for analysis of the companies GAS MALAYSIA BERHAD & PETRONAS GAS BERHAD capital structure for the years 2016, 2017, 2018, 2019 and 2020.3a) Relevant ratios (at least two ratios) that reflect the companies of GAS MALAYSIA BERHAD & PETRONAS GAS BERHAD capital structure were correctly computed.3b) Detailed workings (for five years) were provided.4.Evaluation of the companies capital structure over the 5-year period (2016, 2017, 2018, 2019 and 2020)4a) Able to evaluate in detail and clearly the companies of GAS MALAYSIA BERHAD & PETRONAS GAS BERHAD capital structure components.4b) Clear and detailed explanation of the companies of GAS MALAYSIA BERHAD & PETRONAS GAS BERHAD capital structure trend and able to relate the explanation with relevant capital structure/ financing theories and concepts.4c) Able to compare (clearly) and identify the similarities and/or differences of the companies of GAS MALAYSIA BERHAD & PETRONAS GAS BERHAD capital structure.5. Conclusion Find the maximum wavelength that would produce photoelectrons if the metal is Zinc? Landvision Inc. had net income in 2020 for $120,000. Here are some of the extra financial ratios from the annual report Profit margin 20%, Return on Assets 35%, Debt to Asset Ratio30% Please calculate the ROE ratio O A. 70% O B. 60% O C. 50% O D. 25% The average of membrane potentials of neurons in the element, that is V= NeVe+NiVi / Ne + Ni where Ne, N are the numbers of excitatory and inhibitory neurons and V and Vi are the (average) membrane potentials of excitatory and inhibitory neuron populations respectively. You know that the numbers Ne and N; are positive, and the membrane potentials Ve and Vi are negative. (a) Assume that V is a function of Ve. Find its derivative and interpret your answer. CaseBritish petroleum and the BTC pipeline: Turkish delight or Russian roulette?This case analyses BPs social responsibility initiatives in the context of one of the largest construction projects in recent history, the Baku-Tblisi-Ceyhan pipeline. It exposes the ethical problems and dilemmas faced by a large Western multinational operating in a host country environment characterized by corruption, poor governance, and potential human rights abuses. It allows us to examine the ethical basis of claims for corporate responsibility and highlights questions regarding the boundaries of responsibility for corporations.This case raises questions about the scope of responsibility for a Western MNC operating in environments with corruption and poor governance. What is your opinion on how far a company such as BP should go in this case? Can they really be made responsible for the actions of local officials and governments? Try to base your answer on arguments derived from one or more ethical theories. Choose the answer that best completes each sentence.1.correctScore: 2 out of 2 pointsLa Copa Mundial de Ftbolempiezaeste fin de semana.2.correctScore: 2 out of 2 pointsUstedesquierencorrer conmigo?3.correctScore: 2 out of 2 pointsManuelprefiereleer el peridico que ver la pelcula.4.correctScore: 2 out of 2 pointsY t, por qu noquieresjugar con tus amigos? You are scheduled to receive a $440 cash flow in one year, a $940 cash flow in two years, and pay a $740 payment in three years. Interest rates are 9 percent per year. What is the combined present value of these cash flows? (Do not round intermediate calculations. Round your answer to 2 decimal places.) Combined present value of cash flows For each of the following annuities, calculate the annuity payment. (Do not round intermediate calculations and round your answers to 2 decimal places, e.g., 32.16.) Answer is not complete. $ Cash Flow Future Value Interest Rate 140,898.04 X $ 21,800 5 % 1,500,000 17 520,000 8 98,700 Years 8 40 25 13 Melbourn Printers (MP) manufactures printers. Assume that MP recently paid $200,000 for a patent on a new laser printer. Requirement 1. Assuming the straight-line method of amortization, make journal entries to record (a) the purchase of the patent and (b) amortization for the first full year.