Suppose that y=f(x) is a differentiable function of x. Then,
d/dx (ytany) = _______
NOTE: If your answer contains the derivative of y with respect to x, type dy/dx or y′(x). Typing y′ alone will not be accepted as correct.

Answers

Answer 1

The derivative of the product of two functions is the sum of their products with the derivative of the other function.

So, according to the product rule of differentiation,

d/dx (ytany)

= y(d/dx (tany)) + (dy/dx) (tany)

Since y=f(x),

we have

dy/dx = f'(x)and,

tany = y/xsec^2t

= 1/cos^2t => sec^2t = 1 + tan^2t

We know that tan⁡t=y/x Differentiating both sides with respect to x, we get

dy/dx (tan⁡t) = (1/x) dy/dx (y) - (y/x^2)

We get,

dy/dx (tan⁡t)

= (1/x) dy/dx (y) - (y/x^2)dy/dx (tany)

= sec^2t(dy/dx (tan⁡t)) => dy/dx (tany)

= sec^2t((1/x) dy/dx (y) - (y/x^2))

Now,

d/dx (ytany)

= y'd/dx (tany) + dy/dx (tany) => d/dx (ytany)

= y'tany + y(sec^2t)

Hence, d/dx (ytany) = y'tany + y(sec^2t).

To know more about derivative visit:

https://brainly.com/question/25324584

#SPJ11


Related Questions

Suppose V(t)=6000(1.04t) gives the value of an investment account after t years. The integral to find the average value of the account between year 2 to year 4 would look like the following: ∫dt TIP: Leave the 6000 constant inside the integral with the 1.04t. What goes in front of the integral is a fraction, based on the formula for the average value of a function.

Answers

The average value of the investment account between year 2 and year 4 is 18,720.

Suppose V(t) = 6000(1.04t) gives the value of an investment account after t years.

The integral to find the average value of the account between year 2 to year 4 would look like the following: ∫dt.

The average value of a function can be computed by dividing the integral of the function over the interval by the length of the interval.

For a function f(x) defined on an interval [a, b], the average value of the function is given by the formula below:

                 Average value of function f(x) on interval [a, b] = (1 / (b - a)) * ∫[a, b] f(x) dx

The average value of the investment account on the interval [2, 4] can be found by applying the formula above to the function

                                    V(t) = 6000(1.04t).

Therefore, the average value of the investment account between year 2 and year 4 is:(1/(4-2)) * ∫[2, 4] 6000(1.04t) dt

                  = (1/2) * 6000 * (1.04) * ∫[2, 4] t dt

                   = (1/2) * 6000 * (1.04) * [t^2 / 2] [from 2 to 4]= (1/2) * 6000 * (1.04) * [(4^2 - 2^2) / 2]

                    = (1/2) * 6000 * (1.04) * 6= 18,720

The average value of the investment account between year 2 and year 4 is 18,720.

Learn more about function

brainly.com/question/30721594

#SPJ11

Suppose experimental data are represented by a set of points in the plane. An interpolating polynomial for the data is a polynomial whose graph passes through every point. In scientific work, such a p

Answers

Polynomial is a mathematical approximation of the data, allowing researchers to estimate values between the given data points. Interpolating polynomials are commonly used when the exact function or relationship between variables is unknown but can be approximated by a polynomial curve.

When dealing with experimental data represented by a set of points in the plane, an interpolating polynomial is a valuable tool for analyzing and estimating values within the data range. The goal is to find a polynomial equation that passes through each point, providing a mathematical representation of the observed data.

Interpolating polynomials are particularly useful when the exact functional relationship between variables is unknown or complex, but it is still necessary to estimate values between the given data points. By fitting a polynomial curve to the data, scientists and researchers can make predictions, calculate derivatives or integrals, and perform other mathematical operations with ease.

Various methods can be employed to construct interpolating polynomials, such as Newton's divided differences, Lagrange polynomials, or using the Vandermonde matrix. The choice of method depends on the specific requirements of the data set and the desired accuracy of the approximation.

It is important to note that while interpolating polynomials provide a convenient and often accurate representation of experimental data, they may not capture all the underlying intricacies or provide meaningful extrapolation beyond the given data range. Additionally, the degree of the polynomial used should be carefully considered to avoid overfitting or excessive complexity.

To Read More About Polynomials Click Below:

brainly.com/question/25566088

#SPJ11

(a) Explain why a gamma random variable with parameters (n, λ) has an approximately normal distribution when n is large.
(b) Then use the result in part (a) to solve Problem 9.20, page 395.
(d) What does the central limit theorem say with continuity correction? (e) Find the exact probability. steps, find the probability that the walk is within 500 steps from the origin calculations, explain why X ︽.Norm(a/λ, a/λ2). 9.18 Consider a random walk as described in Example 9.13. After one million 9.19 Let X ~ Gamma(a,A), where a is a large integer. Without doing any 9.20 Show that lim Hint: Consider an independent sum of n Exponential() random variables and apply the central limit theorem. 9.21 A random variable Y is said to have a lognormal distribution if log Y has a normal distribution. Equivalently, we can write Y -eX, where X has a normal distribution. (a) If X1, X2,... is an independent sequence of uniform (0,1) variables, show that the product Y =「L-i X, has an approximate lognormal distribution. Show that the mean and variance of log Y are, respectively, -n and n (b) If Y = ex, with X ~ Norm(μ, σ2), it can be shown that

Answers

the gamma distribution becomes approximately normal due to the Central Limit Theorem when n is large.X ︽.Norm(a/λ, a/λ²) since it is an approximately normal distribution with mean a/λ and variance a/λ².

(a) Gamma random variables are sums of random variables, and as n gets large, the Central Limit Theorem applies. When n is large, the gamma random variable with parameters (n, λ) approaches a normal distribution, as the sum of independent and identically distributed Exponential(λ) random variables is distributed roughly as a normal distribution with mean n/λ and variance n/λ². In other words, the gamma distribution becomes approximately normal due to the Central Limit Theorem when n is large.

(b) The problem asks to show that:lim (1 + x/n)-n = e⁻x.The expression (1 + x/n)⁻ⁿ can be written as [(1 + x/n)¹/n]ⁿ. Now letting n → ∞ in this equation and replacing x with aλ yields the desired result from part (a):lim (1 + x/n)ⁿ

= lim [(1 + aλ/n)¹/n]ⁿ

= e⁻aλ(d)

The central limit theorem with continuity correction can be expressed as:P(Z ≤ z) ≈ Φ(z + 0.5/n)if X ~ B(n,p), where Φ is the standard normal distribution and Z is the standard normal variable.

This continuity correction adjusts for the error made by approximating a discrete distribution with a continuous one.(e) The exact probability that the walk is within 500 steps from the origin can be calculated by using the normal distribution. Specifically, we have that:

P(|X - a/λ| < 500)

= P(-500 < X - a/λ < 500)

= P(-500 + a/λ < X < 500 + a/λ)

= Φ((500 + a/λ - μ)/(σ/√n)) - Φ((-500 + a/λ - μ)/(σ/√n)),

where X ~ N(μ, σ²), and in this case, μ = a/λ and σ² = a/λ².

Therefore, X ︽.Norm(a/λ, a/λ²) since it is an approximately normal distribution with mean a/λ and variance a/λ².

To know more about gamma distribution Visit:

https://brainly.com/question/28077799

#SPJ11

Find dy/dx and d^2y/dx^2, and find the slope and concavity (if possible) at the given value of the parameter.
Parametric Equations x=√t, y=3t−4
Point t=4
dy/dx=_____
d^2y/dx^2= _____
slope ________

Answers

dy/dx = 3/2√t

d^2y/dx^2 = -3/4t^(3/2)

At t = 4: dy/dx = 3/4, d^2y/dx^2 = -3/32

Slope at t = 4: 3/4

Concavity at t = 4: Concave down

To find dy/dx and d^2y/dx^2, we can differentiate the parametric equations x = √t and y = 3t - 4 with respect to t and then use the chain rule to find dy/dx and d^2y/dx^2.

Differentiating x = √t with respect to t, we get:

dx/dt = 1/(2√t)

To find dx/dt in terms of dx/dy, we can multiply both sides of the equation by dt/dy:

dx/dy = (1/(2√t)) * (1/(dy/dt))

Since dy/dx = 1/(dx/dy), we can rearrange the equation to solve for dy/dx:

dy/dx = (dy/dt) / (dx/dt)

= (3) / (1/(2√t))

= 3/2√t

Therefore, the slope dy/dx at any value of t is 3/2√t.

Next, let's find the second derivative d^2y/dx^2. To do this, we differentiate dy/dx with respect to t:

d(dy/dx)/dt = d(3/2√t)/dt

= -(3/4)t^(-3/2)

Using the chain rule again, we can find d^2y/dx^2 in terms of d^2y/dt^2:

d^2y/dx^2 = (d^2y/dt^2) / (dx/dt)^3

Plugging in the values, we have:

d^2y/dx^2 = (-(3/4)t^(-3/2)) / ((1/(2√t))^3)

= -(3/4)t^(-3/2) / (1/(8t^(3/2)))

= -3/4t^(3/2) * 8t^(3/2)

= -3/32

Therefore, the second derivative d^2y/dx^2 at any value of t is -3/32.

Finally, we can evaluate the slope and concavity at the given value t = 4:

Slope at t = 4: dy/dx = 3/2√t = 3/2√4 = 3/4

Concavity at t = 4: Since d^2y/dx^2 = -3/32, which is negative, the curve is concave down at t = 4.

So, the slope at t = 4 is 3/4, and the concavity at t = 4 is concave down.

To learn more about concavity

brainly.com/question/13320130

#SPJ11


14. Find b: (a+b)m/c -K= p/r
15. Find x: r=m(1/x+c + 3/y)
16. Find t: a/c+x= M(1/R+1/T)
17. Find y: a/k+c= M(x/y+d)

Answers

The value of b in the equation (a+b)m/c - K = p/r can be found by evaluating (p/r * c - am + Kc) divided by m.

Starting with the equation:

(a+b)m/c - K = p/r

First, multiply both sides of the equation by c to eliminate the denominator:

(a+b)m - Kc = p/r * c

Next, distribute the m to the terms inside the parentheses:

am + bm - Kc = p/r * c

Rearrange the equation to isolate the term containing b:

bm = p/r * c - am + Kc

Finally, divide both sides of the equation by m to solve for b:

b = (p/r * c - am + Kc) / m

To know more about equation, visit

brainly.com/question/29657983

#SPJ11

Give a parameterization for the line L which contains the point P0=(1,2,3) and is perpendicular to the plane Π:4x−5y+7z=60.

Answers

A parameterization for the line L can be obtained by finding a direction vector perpendicular to the plane Π and using it to generate points on the line that pass through P0=(1,2,3).

To find a direction vector perpendicular to the plane Π, we can consider the coefficients of x, y, and z in the plane equation: 4x - 5y + 7z = 60. Let's denote this direction vector as d = (a, b, c). Since the line L is perpendicular to the plane, the dot product of the direction vector and the normal vector of the plane should be zero. The normal vector of the plane is given by N = (4, -5, 7). Therefore, we have a*4 + b*(-5) + c*7 = 0. This equation provides a relationship between the components of the direction vector.

Now, we can choose arbitrary values for two components of the direction vector, say a and b, and solve for the third component, c. Let's set a = 5 and b = 4. Substituting these values into the equation, we get 5*4 + 4*(-5) + c*7 = 0. Solving this equation gives c = -12. Hence, the direction vector d is (5, 4, -12).

Using the direction vector, we can parameterize the line L using the point P0=(1,2,3) and a parameter t as follows:

L(t) = P0 + t * d

      = (1,2,3) + t * (5, 4, -12)

      = (1 + 5t, 2 + 4t, 3 - 12t).

This parameterization gives us the equation of the line L that passes through the point P0 and is perpendicular to the plane Π: L(t) = (1 + 5t, 2 + 4t, 3 - 12t). By varying the parameter t, we can obtain different points on the line L.

Learn more about parameterization here:
https://brainly.com/question/28740237

#SPJ11

Which of the following is an appropriate method to forecast a time series that has trend and seasonality?
o Holt Winters method
o Simple linear regression (that has only 1 independent variable to represent time)
o Moving average
o Exponential smoothing (with one parameter alpha)

Answers

Among the given options, the appropriate method to forecast a time series that has both trend and seasonality is the Holt-Winters method. This method takes into account the trend, seasonality, and level components of the time series to generate accurate forecasts.

The Holt-Winters method, also known as triple exponential smoothing, is a forecasting technique suitable for time series data that exhibit trend and seasonality. It considers three components: level, trend, and seasonality, to capture the underlying patterns in the data.
The method uses exponential smoothing to estimate the level and trend components while incorporating seasonality through seasonal indices. By considering the historical values of the time series, it provides forecasts that account for both the overall trend and the seasonal variations.
On the other hand, simple linear regression with only one independent variable representing time is not suitable for capturing seasonality patterns. Linear regression assumes a linear relationship between the independent variable and the dependent variable and does not account for seasonality fluctuations.
Moving average, while useful for smoothing out random variations in a time series, does not explicitly handle trend and seasonality. It is a simpler method that relies on averaging past values to predict future values, but it does not account for the specific patterns observed in the data.
Exponential smoothing with a single parameter alpha is also not designed to handle seasonality explicitly. It focuses on updating the level component of the time series based on a weighted average of the current and past observations, but it does not consider seasonality effects.
Therefore, the most appropriate method among the given options to forecast a time series with trend and seasonality is the Holt-Winters method.

Learn more about Holt-Winters method.  Here
https://brainly.com/question/31655903



#SPJ11

If z=[7 8 9 3 4], then length(z)= * O 4 7 3 9

Answers

The correct answer is 5.

If we consider the vector z = [7 8 9 3 4], the length of z can be determined by counting the number of elements in the vector. In this case, z has five elements: 7, 8, 9, 3, and 4. Therefore, the length of z is 5.

In general, the length of a vector refers to the number of elements it contains. It is a fundamental property of vectors and is often denoted by the symbol "n" or "N." The length can be calculated by counting the number of entries in the vector.

In this specific example, z has five entries, so the length of z is 5. It is important to note that the length of a vector is different from its magnitude or norm, which typically refers to a measure of the vector's size or length in a geometric sense.

Learn more about vector here: brainly.com/question/27854247

#SPJ11

In the following exercises, evaluate the double integral ∫Rf(x,y)dA over the polar rectangular region D.
f(x,y)=3 √x²+y ²
where D={(r,θ)∣0≤r≤2,3π≤θ≤π}
Include a drawing of the region of integration.

Answers

Answer:

[tex]-16\pi[/tex]

Step-by-step explanation:

[tex]\displaystyle \iint_Rf(x,y)\,dA\\\\=\iint_Df(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta\\\\=\iint_D3\sqrt{r^2\cos^2\theta+r^2\sin^2\theta}\,r\,dr\,d\theta\\\\=\iint_D3r^2\,dr\,d\theta\\\\=\int^\pi_{3\pi}\int^2_03r^2\,dr\,d\theta\\\\=\int^\pi_{3\pi}8\,d\theta\\\\=8\pi-8(3\pi)\\\\=8\pi-24\pi\\\\=-16\pi[/tex]

12) Unpolarized light is sent through three polarizers. The axis of the first is vertical, the axis of the second one makes an angle 3θ (θ < 90°) clockwise from the vertical, and the angle of the third one makes an angle 2θ clockwise from the vertical.
a) Determine the intensity of the light passing each of the polarizers.
b) Determine the value of θ for which no light passes the three polarizers.

Answers

Given : Unpolarized light is sent through three polarizers. The axis of the first is vertical, the axis of the second one makes an angle 3θ (θ < 90°) clockwise from the vertical, and the angle of the third one makes an angle 2θ clockwise from the vertical.

a) To determine the intensity of the light passing through each of the polarizers, we need to consider that the intensity of unpolarized light passing through a polarizer is reduced by a factor of cos²(θ), where θ is the angle between the polarization axis of the polarizer and the axis of polarization of the incident light.

Let's denote the intensity of the incident light as I₀. The intensity of light passing through the first polarizer with a vertical axis is I₁ = I₀ * cos²(0) = I₀.

The light passing through the first polarizer now becomes the incident light for the second polarizer. The angle between the polarization axis of the second polarizer and the vertical axis is 3θ clockwise. Therefore, the intensity of light passing through the second polarizer is I₂ = I₁ * cos²(3θ).

Similarly, the light passing through the second polarizer becomes the incident light for the third polarizer. The angle between the polarization axis of the third polarizer and the vertical axis is 2θ clockwise. Thus, the intensity of light passing through the third polarizer is I₃ = I₂ * cos²(2θ).

b) To find the value of θ for which no light passes through the three polarizers (i.e., the final intensity is zero), we set I₃ = 0 and solve for θ.

I₃ = I₂ * cos²(2θ) = 0

Since the intensity cannot be negative, the only way for I₃ to be zero is if I₂ = 0 or cos²(2θ) = 0.

If I₂ = 0, then I₁ = I₀ * cos²(3θ) = 0, which means I₀ = 0. However, this contradicts the assumption that I₀ is the intensity of the incident light, so I₀ cannot be zero.

Therefore, the condition for no light passing through the three polarizers is cos²(2θ) = 0. To find θ, we solve this equation:

cos²(2θ) = 0

cos(2θ) = 0

2θ = 90° (or π/2 radians)

θ = 45° (or π/4 radians)

So, the value of angle θ for which no light passes through the three polarizers is 45 degrees (or π/4 radians).

To know more about angle , visit

https://brainly.com/question/30147425

#SPJ11

What type of angles are 26 and 216?

2.

1

10

9

11

12

3

4

6

5

14

13

7

8

15/16

А

B

alternate exterior angles

same-side interior angles

alternate interior angles

corresponding angles

C

Answers

The type of angles that 26 and 216 are is "corresponding angles."

Corresponding angles are pairs of angles that are in the same relative position at the intersection of two lines when a third line (called a transversal) crosses them. In this case, angles 26 and 216 are corresponding angles because they are both located on the same side of the transversal and they are in the same relative position when the two lines intersect.

Alternate exterior angles are angles that are on opposite sides of the transversal and outside the two lines.

Same-side interior angles are angles that are on the same side of the transversal and inside the two lines.

Alternate interior angles are angles that are on opposite sides of the transversal and inside the two lines.

Since angles 26 and 216 are in the same relative position and located on the same side of the transversal, they are corresponding angles.

learn more about angles here:
https://brainly.com/question/13954458

#SPJ11

Solve the initial value problem (IVP):
y′=10y−y^2,y(0)=1,
as explained above. That is, please answer all the questions and do all the things described in the instructions at the beginning of the section. Note: logistic growth is a refinement of the exponential growth model, which takes into account the criticism that the exponential growth is unrealistic over long periods of time and that in many cases growth slows down and asymptotically approaches an equilibrium.
For each of the problems in this section do the following:
For each of the methods we've learned so far:
(a) integration.
(b) ert,
(c) separation of variables,
(d) Laplace transform, state whether the method works for the given problem.

Answers

The given initial value problem is y′=10y−y²,y(0)=1. The Laplace transform method does not work for the given problem, but the other three methods work fine.

Given the Initial value problem is: y′=10y−y², y(0)=1We have to solve the above problem using different methods which are Integration, ERT, Separation of Variables, and Laplace Transform. For integration, let's try to solve the above differential equation by using the Integration method; y′=10y−y² dy/dx = 10y-y²dy/(10y-y²) = dx Integrating both sides:∫dy/(10y-y²) = ∫dx/ C1 - y/C1 = x + C2y = C1 / (1 + C1 e^(-10x))By using ERT, The given differential equation y' = 10y - y² is in the form y' + p(x)y = q(x)y² Where p(x) = 0 and q(x) = -1. For ERT, the form is y = uv. So, u'v + v'u + p(x)uv = q(x) u²v² Let's choose u to be a solution of the homogeneous equation, which is given by y = Ce^(0) = C.And, v = y/C = Ce^-x So, u'v + v'u + p(x)uv = q(x)u²v²Differentiating v with respect to x: v' = -Ce^-xSo, we haveu'(-Ce^-x) + v'u + 0(Ce^-x)(Cu² e^-2x) = q(x)u²(Ce^-x)^2u'(-Ce^-x) - Ce u''e^-x - Ce^-xv'u + q(x)C²u²e^-2x = 0u'' - u = 0 => u = Ae^x + Be^-x Therefore, y = uv = C(Ae^x + Be^-x)e^-x = C (Ae^x + B)By using Separation of Variables, Let's try to solve the differential equation using Separation of Variables; y′=10y−y^2dy/(10y-y^2) = dx∫dy/(10y-y²) = ∫dx+C1 - y/C1 = x + C2y = C1 / (1 + C1 e^(-10x))For Laplace Transform, Using Laplace Transform method, we can solve the given problem as:L{y'} = L{10y - y²} => sY(s) - y(0) = 10Y(s) - L{y²} => sY(s) - 1 = 10Y(s) - L{y²}L{y²} = Y(s) - sY(s) + 1F'(s)/F(s) = L{y²}F'(s)/F(s) = L{C1^2/(1 + C1e^(-10t))²} => F'(s)/F(s) = C2/s - 10/(s+10) => F(s) = C1(1 + C2 e^-10t) (s+10)/s So, Laplace transform method is not working for the given problem.

Learn more about homogeneous equation here:

https://brainly.com/question/30624850

#SPJ11

Find the absolute maxima and minima of the function on the given domain. f(x,y)=x2+xy+y2 on the square −8≤x,y≤8 Absolute maximum: 192 at (8,8) and (−8,−8); absolute minimum: 64 at (8,−8) and (−8,8) Absolute maximum: 64 at (8,−8) and (−8,8); absolute minimum: 0 at (0,0) Absolute maximum: 192 at (8,8) and (−8,−8); absolute minimum: 0 at (0,0) Absolute maximum: 64 at (8,−8) and (−8,8); absolute minimum: 48 at (−4,8),(4,−8),(8,−4), and (−8,4).

Answers

Therefore, the correct statement is: Absolute maximum: 192 at (8, 8) and (-8, -8); absolute minimum: 48 at (-8, 8) and (8, -8).

The absolute maximum and minimum of the function[tex]f(x, y) = x^2 + xy + y^2[/tex] on the square −8 ≤ x, y ≤ 8 can be found by evaluating the function at critical points in the interior of the square and on the boundary.

First, let's find the critical points by taking the partial derivatives of f(x, y) with respect to x and y and setting them equal to zero:

∂f/∂x = 2x + y = 0

∂f/∂y = x + 2y = 0

Solving these equations, we get the critical point (x, y) = (0, 0).

Next, let's evaluate the function at the corners of the square:

f(-8, -8) = 64

f(-8, 8) = 64

f(8, -8) = 64

f(8, 8) = 192

Now, let's evaluate the function on the boundaries of the square:

On the boundary x = -8:

[tex]f(-8, y) = 64 + (-8)y + y^2[/tex]

Taking the derivative with respect to y and setting it equal to zero:

-8 + 2y = 0

y = 4

f(-8, 4) = 48

Similarly, we can find the values of f(x, y) on the boundaries x = 8, y = -8, and y = 8:

[tex]f(8, y) = 64 + 8y + y^2\\f(x, -8) = 64 + x(-8) + 64\\f(x, 8) = 64 + 8x + x^2\\[/tex]

Evaluating these functions, we find:

f(8, -8) = 48

f(-8, 8) = 48

Now, comparing all the values, we can conclude that the absolute maximum is 192 at (8, 8) and (-8, -8), and the absolute minimum is 48 at (-8, 8) and (8, -8).

To know more about Absolute maximum,

https://brainly.com/question/28767824

#SPJ11

Find the integral.

∫ 89cos^2 (79x) dx = ______

Answers

The evaluation of the integral is:

[tex]\int 89cos^2(79x) dx = (89/2) * x + (89/2) * (1/158) * sin(158x) + C,[/tex]

where C is the constant of integration.

To find the integral of [tex]\int 89cos^2{79x} dx[/tex], we can use the identity:

[tex]cos^2(u) = (1/2)(1 + cos(2u)).[/tex]

Applying this identity, the integral becomes:

[tex]\int 89cos^2(79x) dx = \int 89(1/2)(1 + cos(2(79x))) dx.[/tex]

Simplifying further:

[tex](89/2) \int (1 + cos(158x)) dx.[/tex]

Integrating each term separately:

[tex](89/2) \int1 dx + (89/2) \intcos(158x) dx.[/tex]

The integral of 1 with respect to x is simply x, so the first term becomes:

(89/2) * x.

For the second term, we need to integrate cos(158x) with respect to x. The integral of cos(u) with respect to u is sin(u), so we have:

[tex](89/2) * \intcos(158x) dx = (89/2) * (1/158) * sin(158x).[/tex]

Putting it all together, the integral becomes:

(89/2) * x + (89/2) * (1/158) * sin(158x) + C,

where C is the constant of integration.

Therefore, the evaluation of the integral is:

[tex]\int 89cos^2(79x) dx = (89/2) * x + (89/2) * (1/158) * sin(158x) + C,[/tex]

where C is the constant of integration.

Learn more about integral at:

https://brainly.com/question/30094386

#SPJ4

(a) Show that f(x) = ln x satisfies the hypothesis of the Mean Value Theorem on [1,4], and find all values of c in (1,4) that satisfy the conclusion of the theorem.
(b) Show that f(x) = √/25 - x² satisfies the hypothesis of the Mean Value Theorem on [-5, 3], and find all values of c in (-5,3) that satisfy the conclusion of the theorem.

Answers

Given function is f(x) = ln x and the interval on which we have to show that it satisfies the hypothesis of the Mean Value Theorem is [1,4]. Theorem states that if a function f(x) is continuous on a closed interval [a, b] and T

Then there exists at least one point c in (a, b) such that\[f'(c) = \frac{{f(b) - f(a)}}{{b - a}}\]First, we need to check whether f(x) is continuous on the closed interval [1, 4] or not.

f(x) = ln x is continuous on the interval [1, 4] because it is defined and finite on this interval .Now, we need to check whether f(x) is differentiable on the open interval (1, 4) or not. f(x) = ln x is differentiable on the interval (1, 4) because its derivative exists and finite on this interval.

To know more about  hypothesis visit:

brainly.com/question/23056080

#SPJ11

What is the value of x?

Answers

Answer:

  x = 68

Step-by-step explanation:

You want the value of x in ∆GEH with an angle bisector ED that divides it so that EG = 99.2 ft, EH = 112 ft, GD = 62 ft, and HD = (x+2) ft.

Proportion

The angle bisector divides the sides of the triangle proportionally. This means ...

  EH/EG = HD/GD

  112/99.2 = (x+2)/62

  112/99.2 · 62 = x +2 . . . . . multiply by 62

  119/99.2·62 -2 = x = 68 . . . . subtract 2

The value of x is 68.

<95141404393>

If the quantity demanded daily of a product is related to its unit price in dollars by
P^2 = 106-x^2
How fast is the quantity demanded changing when x = 5 and the unit price is decreasing at a rate of $3 per day?
The demand is increasing by fraction______ units per day. Write your solution as an integer or fraction of the form a/b.

Answers

When dP/dt = -3 and x = 5, the demand increase rate is 27/25 or 1.08 units per day.

We are given the relation between P and x as,

P² = 106 - x²

Differentiating w.r.t time t on both sides,

2PdP/dt = -2xdx/dt

We have to find the value of (dP/dt) when x = 5 and

dP/dt = -3

i.e.

dP/dt = (-3) and

x = 5P² = 106 - x²

⇒ P² = 106 - 25

⇒ P² = 81

⇒ P = 9 (as P is positive)

Now,

2P(dP/dt) = -2xdx/dt

⇒ (dP/dt) = -(x/P) dx/dt

At x = 5 and (dP/dt) = -3 and P = 9,

we can get the value of dx/dt

Therefore,

(dP/dt) = -(x/P) dx/dt-3

= -(5/9) dx/dt

⇒ dx/dt = (3/5) × (9/5)

⇒ dx/dt = 27/25 or 1.08 units per day.

Using differentiation, we have found that when dP/dt = -3 and x = 5, the demand increase rate is 27/25 or 1.08 units per day.

To know more about the demand increase, visit:

brainly.com/question/13213873

#SPJ11

Find the following for the given equation.
r(t)=8cos(t)i+8sin(t)j
(a) r′(t)= X.
(b) rn′′(t)= (
c) Find r′(t)⋅r′′(t).

Answers

(a) The derivative of the vector function r(t) = 8cos(t)i + 8sin(t)j is r'(t) = -8sin(t)i + 8cos(t)j. (b) The second derivative of the vector function r(t) = 8cos(t)i + 8sin(t)j is r''(t) = -8cos(t)i - 8sin(t)j. (c) The dot product of r'(t) and r''(t) is r'(t)⋅r''(t) = 64sin^2(t) + 64cos^2(t) = 64.

(a) To find the derivative of the vector function r(t) = 8cos(t)i + 8sin(t)j, we differentiate each component with respect to t:

r'(t) = d/dt (8cos(t)i) + d/dt (8sin(t)j)

= -8sin(t)i + 8cos(t)j

Therefore, r'(t) = -8sin(t)i + 8cos(t)j.

(b) To find the second derivative of r(t), we differentiate each component of r'(t) with respect to t:

r''(t) = d/dt (-8sin(t)i) + d/dt (8cos(t)j)

= -8cos(t)i - 8sin(t)j

So, r''(t) = -8cos(t)i - 8sin(t)j.

(c) To find r'(t)⋅r''(t), we take the dot product of r'(t) and r''(t):

r'(t)⋅r''(t) = (-8sin(t)i + 8cos(t)j)⋅(-8cos(t)i - 8sin(t)j)

= 64sin^2(t) + 64cos^2(t)

= 64

Hence, r'(t)⋅r''(t) = 64. The dot product of the first derivative r'(t) and the second derivative r''(t) is a constant value of 64.

Learn more about dot product here:

https://brainly.com/question/29097076

#SPJ11

The International Air Transport Association surveys business travelers to develop quality ratings for transatlantic gateway airports. The maximum possible rating is 10. Suppose a simple random sample of 50 business travelers is selected and each traveler is asked to provide a rating for the Miami International Airport. The ratings obtained from the sample of 50 business travelers follow.

7 7 3 8 4 4 4 5 5 5 5 4 9
10 9 9 8 10 4 5 4 10 10 10 11 4
9 7 5 4 4 5 5 4 3 10 10 4 4
8 7 7 4 9 5 9 4 4 4 4

Develop a 95% confidence interval estimate of the population mean rating for Miami. Round your answers to two decimal places.

Answers

The 95% confidence interval estimate of the population mean rating for Miami International Airport is approximately 5.50 to 6.74 (rounded to two decimal places).

To develop a 95% confidence interval estimate of the population mean rating for Miami International Airport, we can use the sample data provided. Here are the steps to calculate the confidence interval:

Step 1: Calculate the sample mean and sample standard deviation (s) from the given ratings.

Step 2: Determine the critical value (t*) for a 95% confidence level. Since the sample size is small (n = 50), we need to use the t-distribution. The degrees of freedom (df) will be n - 1 = 50 - 1 = 49.

Step 3: Calculate the standard error (SE) using the formula: SE = s / √n, where n is the sample size.

Step 4: Calculate the margin of error (ME) using the formula: ME = t* * SE.

Let's proceed with the calculations:

Step 1: Calculate the sample mean and sample standard deviation (s).

Sample ratings: 7 7 3 8 4 4 4 5 5 5 5 4 9 10 9 9 8 10 4 5 4 10 10 10 11 4 9 7 5 4 4 5 5 4 3 10 10 4 4 8 7 7 4 9 5 9 4 4 4 4

Sample size (n) = 50

Sample mean = (Sum of ratings) / n = (306) / 50 = 6.12

Sample standard deviation (s) = 2.18

Step 2: Determine the critical value (t*) for a 95% confidence level.

Using a t-distribution with 49 degrees of freedom and a 95% confidence level, the critical value (t*) is approximately 2.01.

Step 3: Calculate the standard error (SE).

SE = s / √n = 2.18 / √50 ≈ 0.308

Step 4: Calculate the margin of error (ME).

ME = t* * SE = 2.01 * 0.308 ≈ 0.619

Step 5: Construct the confidence interval.

Confidence Interval = 6.12 ± 0.619

Lower bound = 6.12 - 0.619 ≈ 5.501

Upper bound = 6.12 + 0.619 ≈ 6.739

The 95% confidence interval estimate of the population mean rating for Miami International Airport is approximately 5.50 to 6.74 (rounded to two decimal places).

Learn more about population here

https://brainly.com/question/30396931

#SPJ11

Shore Company reports the following information regarding its production cost.
Units produced 44,000 units
Direct labor $ 39 per unit
Direct materials $ 40 per unit
Variable overhead $ 10 per unit
Fixed overhead $110,920 in total
Compute product cost per unit under absorption costing.
Multiple Choice
o $85.00
o $91.52
o $79.00
o $39.00
o $40.00

A sporting goods manufacturer budgets production of 53,000 pairs of ski boots in the first quarter and 44,000 pairs in the second quarter of the upcoming year. Each pair of boots requires 2 kilograms (kg) of a key raw material. The company aims to end each quarter with ending raw materials inventory equal to 25% of the following quarter's material needs. Beginning inventory for this material is 25,500 kg and the cost per kg is $7. What is the budgeted materials purchases cost for the first quarter?
Multiple Choice
o $742,000
o $710,500
o $556.500
o $773,500
o $927,500

Ratchet Manufacturing's August sales budget calls for sales of 4,000 units. Each month's unit sales are expected to grow by 5%. The product selling price is $25 per unit. The expected total sales dollars for September's sales budget are:
Multiple Choice
o $100,000.
o $95,000
o $105,000
o $110.000
o $4,200.
Fortune Company's direct materials budget shows the following cost of materials to be purchased for the coming three months:
January February March
Haterial purcha $ 13,180 $ 15,290 $ 12,110

Payments for purchases are expected to be made 50% in the month of purchase and 50% in the month following purchase. The December Accounts Payable balance is $7,900. The expected January 31 Accounts Payable balance is:

Multiple Choice

o $7,900

o $7,645

o ST3180
o $6.590.

o $10,540

Answers

The product cost per unit under absorption costing is $91.52.
The budgeted materials purchases cost for the first quarter is $710,500.
The expected total sales dollars for September's sales budget are $105,000.
The expected January 31 Accounts Payable balance is $7,645.

To calculate the product cost per unit under absorption costing, sum up the direct labor, direct materials, variable overhead, and fixed overhead per unit. In this case, it is $39 + $40 + $10 + ($110,920 / 44,000 units) = $91.52.
To calculate the budgeted materials purchases cost for the first quarter, multiply the total material needs for the quarter by the cost per kg of raw material. In this case, it is (53,000 pairs * 2 kg/pair) * $7 = $742,000.
To calculate the expected total sales dollars for September's sales budget, multiply the August sales by the growth rate and the selling price per unit. In this case, it is 4,000 units * 1.05 * $25 = $105,000.
To calculate the expected January 31 Accounts Payable balance, sum up the December Accounts Payable balance, purchases in January, and 50% of purchases in February. In this case, it is $7,900 + $13,180 + ($15,290 / 2) = $7,645.
Therefore, the product cost per unit under absorption costing is $91.52, the budgeted materials purchases cost for the first quarter is $710,500, the expected total sales dollars for September sales budget are $105,000, and the expected January 31 Accounts Payable balance is $7,645.

Learn more about quarter here
https://brainly.com/question/1253865



#SPJ11

Evaluate the derivative at the given value of x.
If f(x)=−4x²+7x−5, find f′(5)
A. −38
B. −33
C. −5
D. −13,

Answers

To evaluate the derivative of the function f(x) = -4x² + 7x - 5 at x = 5, we need to find f'(x) and substitute x = 5 into the resulting expression. the derivative of f(x) at x = 5 is -33. Hence, the correct answer is B.

Given the function f(x) = -4x² + 7x - 5, we can find its derivative f'(x) by applying the power rule for differentiation. The power rule states that if f(x) = ax^n, then f'(x) = nax^(n-1).

Applying the power rule to each term of f(x), we have f'(x) = -8x + 7.

To evaluate f'(5), we substitute x = 5 into the expression for f'(x):

f'(5) = -8(5) + 7 = -40 + 7 = -33.

Therefore, the derivative of f(x) at x = 5 is -33. Hence, the correct answer is B.

learn more about function here:

https://brainly.com/question/30721594

#SPJ11

help 4. Analysis and Making Production Decisions a) On Monday, you have a single request: Order A for 15,000 units. It must be fulfilled by a single factory. To which factory do you send the order? Explain your decision. Support your argument with numbers. b) On Tuesday, you have two orders. You may send each order to a separate factory OR both to the same factory. If they are both sent to be fulfilled by a single factory, you must use the total of the two orders to find that factory’s cost per unit for production on this day. Remember that the goal is to end the day with the lowest cost per unit to produce the company’s products. Order B is 7,000 units, and Order C is 30,000 units. c) Compare the two options. Decide how you will send the orders out, and document your decision by completing the daily production report below.

Answers

A) we would send Order A to Factory 3.

B) we would send both Order B and Order C to Factory 3.

B 7,000 Factory 3

C 30,000 Factory 3

Total number of units produced for the company today: 37,000

Average cost per unit for all production today: $9.00

To make decisions about which factory to send the orders to on Monday and Tuesday, we need to compare the costs per unit for each factory and consider the total number of units to be produced. Let's go through each day's scenario and make the production decisions.

a) Monday: Order A for 15,000 units

To decide which factory to send the order to, we compare the costs per unit for each factory. We select the factory with the lowest cost per unit to minimize the average cost per unit for the company.

Let's assume the costs per unit for each factory are as follows:

Factory 1: $10 per unit

Factory 2: $12 per unit

Factory 3: $9 per unit

To calculate the total cost for each factory, we multiply the cost per unit by the number of units:

Factory 1: $10 * 15,000 = $150,000

Factory 2: $12 * 15,000 = $180,000

Factory 3: $9 * 15,000 = $135,000

Based on the calculations, Factory 3 has the lowest total cost for producing 15,000 units, with a total cost of $135,000. Therefore, we would send Order A to Factory 3.

b) Tuesday: Order B for 7,000 units and Order C for 30,000 units

We have two options: sending each order to a separate factory or sending both orders to the same factory. We need to compare the average cost per unit for each option and select the one that results in the lowest average cost per unit.

Let's assume the costs per unit for each factory remain the same as in the previous example. We will calculate the average cost per unit for each option:

Option 1: Sending orders to separate factories

For Order B (7,000 units):

Average cost per unit = ($10 * 7,000) / 7,000 = $10

For Order C (30,000 units):

Average cost per unit = ($9 * 30,000) / 30,000 = $9

Total number of units produced for the company today = 7,000 + 30,000 = 37,000

Average cost per unit for all production today = ($10 * 7,000 + $9 * 30,000) / 37,000 = $9.43 (rounded to two decimal places)

Option 2: Sending both orders to the same factory (Factory 3)

For Orders B and C (37,000 units):

Average cost per unit = ($9 * 37,000) / 37,000 = $9

Comparing the two options, we see that both options have the same average cost per unit of $9. However, sending both orders to Factory 3 simplifies the production process by consolidating the orders in one factory. Therefore, we would send both Order B and Order C to Factory 3.

Production Report for Tuesday:

Order # of Units Factory

B   7,000      Factory 3

C  30,000    Factory 3

Total number of units produced for the company today: 37,000

Average cost per unit for all production today: $9.00

for more such question on production visit

https://brainly.com/question/31135471

#SPJ8

Find an arc length parametrization r1(s) of the curve r(t)=⟨5t,38t3/2⋅38t3/2⟩, with the parameter s measuring from (0,0,0).
(Use symbolic notation and fractions where needed.)
r1(s) =

Answers

The arc length parametrization r1(s) cannot be determined without evaluating the integral or using numerical methods.

To find the arc length parametrization, we need to integrate the magnitude of the derivative of the curve with respect to the parameter t.

Given the curve r(t) = ⟨[tex]5t, 38t^(3/2)⋅38t^(3/2[/tex])⟩, we first find the derivative:

r'(t) = ⟨5[tex], (38⋅3/2)t^(1/2)⋅38t^(3/2)[/tex]⟩ = ⟨5,[tex]57t^(5/2[/tex])⟩

Next, we calculate the magnitude of the derivative:

| r'(t) | = √[tex](5^2 + (57t^(5/2))^2) = √(25 + 3249t^5)[/tex]

To find the arc length parametrization, we integrate this magnitude expression with respect to t:

s = ∫| r'(t) | dt = ∫√[tex](25 + 3249t^5) dt[/tex]

Since we want the parameter s to measure from (0,0,0), we need to evaluate the integral from t = 0 to t = t(s):

s = ∫[0 to t(s)] √[tex](25 + 3249t^5)[/tex]dtTo solve this integral, we need to use numerical methods or specialized techniques for integrating such functions. It is not possible to find a symbolic expression for r1(s) without further information or additional constraints.

Therefore, the arc length parametrization r1(s) cannot be determined without evaluating the integral or using numerical methods.

Learn more about integral here:

https://brainly.com/question/30094386

#SPJ11

A mass weighing 2lb stretches a spring 9 in. If the mass is pushed upward, contracting the spring a distance of 4 in and then set in motion with a downward velocity of 9ft/s, and if there is no damping and no other external force on the system, find the position u of the mass at any time t. Determine the frequency (ω0​), period (T), amplitude (R), and phase (δ) of the motion. NOTE: Enter exact answers. Use t as the independent variable. u(t)= ω0​= rad/s T= s R= ft δ= rad.

Answers

So the correct answer is: a. remains constant.

The buoyant force exerted on an object submerged in a fluid depends on the volume of the object and the density of the fluid. In this case, the basketball is submerged 1m deep in the swimming pool.

As you lower the basketball deeper into the pool, the volume of the basketball and the density of the fluid surrounding it remain the same. Therefore, the buoyant force exerted on the basketball will also remain constant.

So the correct answer is: a. remains constant.

To know more about mass click-
https://brainly.com/question/952755
#SPJ11

5. A particular isosceles trapezoid is constructed so that the length of the short base is equal to the height, and the long base is 20 inches longer than the short base. If the area of the trapezoid

Answers

The area of the given isosceles trapezoid with the length of the short base is equal to the height, and the long base is 20 inches longer than the short base is x(x+10) square units.

Given an isosceles trapezoid in which the length of the short base is equal to the height, and the long base is 20 inches longer than the short base. We are supposed to determine the area of the trapezoid.

Concept used:Area of trapezoid= ((sum of the lengths of bases)/2) × Height

We are given the length of the short base as x and that of the long base as (x+20). The height of the trapezoid is also given as x

.Area of trapezoid= ((sum of the lengths of bases)/2) × Height

= ((x+x+20)/2) × x= (2x+20)/2 * x

= x(x+10) square units

Thus, the area of the trapezoid is x(x+10) square units

:The area of the given isosceles trapezoid with the length of the short base is equal to the height, and the long base is 20 inches longer than the short base is x(x+10) square units.

To know more about isosceles trapezoid visit:

brainly.com/question/29626678

#SPJ11

Find the total differential of z=f(x,y), where f(x,y)=ln((y/x​)5) Use * for multiplication of variables, for example, enter x∗y∗dx instead of xydx. dz=___

Answers

the total differential of z = f(x, y) is dz = (-5/x)dx + (5/y)dy.

To find the total differential of z = f(x, y), we need to find the partial derivatives ∂f/∂x and ∂f/∂y and then apply the total differential formula:

dz = (∂f/∂x)dx + (∂f/∂y)dy

Given f(x, y) = ln((y/x)^5), we can find the partial derivatives as follows:

∂f/∂x = (∂/∂x)ln((y/x)^5)

      = (∂/∂x)[5ln(y/x)]

      = 5(∂/∂x)(lny - lnx)

      = 5(∂/∂x)(lny) - 5(∂/∂x)(lnx)

      = -5/x

∂f/∂y = (∂/∂y)ln((y/x)^5)

      = (∂/∂y)[5ln(y/x)]

      = 5(∂/∂y)(lny - lnx)

      = 5(∂/∂y)(lny)

      = 5/y

Now, we can substitute these partial derivatives into the total differential formula:dz = (∂f/∂x)dx + (∂f/∂y)dy

  = (-5/x)dx + (5/y)dy

To know more about derivatives visit:
brainly.com/question/25324584

#SPJ11

A yam is put in a 200∘C oven and heats up according to the differential equation dH/dt​=−k(H−200), for k a positive constant. (a) If the yam is at 20∘ when it is put in the oven, solve the differential equation. H(t)= (b) Find k using the fact that after 30 minutes the temperature of the yam is 120∘C. NOTE: Round your answers to three decimal places. If t is in minutes, then k= If t is in hours, then k=__

Answers

(a) The solution to the differential equation dH/dt = -k(H - 200), given that the yam is at 20∘C when it is put in the oven, is H(t) = 200 + (20 - 200)e^(-kt).

To solve the differential equation, we can separate the variables and integrate both sides. Starting with the given equation:

dH/dt = -k(H - 200)

Divide both sides by (H - 200) and dt:

(1 / (H - 200)) dH = -k dt

Integrate both sides:

∫(1 / (H - 200)) dH = ∫-k dt

ln|H - 200| = -kt + C1

Using the initial condition that the yam is at 20∘C when put in the oven (H(0) = 20), we can substitute these values into the equation to solve for C1:

ln|20 - 200| = -k(0) + C1

ln|-180| = C1

C1 = ln(180)

Substituting C1 back into the equation, we have:

ln|H - 200| = -kt + ln(180)

Exponentiating both sides:

|H - 200| = 180e^(-kt)

Taking the positive side of the absolute value, we get:

H - 200 = 180e^(-kt)

Simplifying:

H(t) = 200 + (20 - 200)e^(-kt)

H(t) = 200 + 180e^(-kt)

Therefore, the solution to the differential equation is H(t) = 200 + (20 - 200)e^(-kt).

(b) To find k, we can use the fact that after 30 minutes the temperature of the yam is 120∘C.

Substituting t = 30 and H(t) = 120 into the solution equation, we can solve for k:

120 = 200 + (20 - 200)e^(-k(30))

-80 = -180e^(-30k)

e^(-30k) = 80 / 180

e^(-30k) = 4 / 9

Taking the natural logarithm of both sides:

-30k = ln(4/9)

k = ln(4/9) / -30

Calculating the value, rounding to three decimal places:

k ≈ -0.080

Therefore, if t is in minutes, k is approximately -0.080. If t is in hours, the value of k would be the same, since it is a constant.

Learn more about differential equation:

brainly.com/question/32645495

#SPJ11

\[ T(s)=\frac{16}{s^{4}+6 s^{3}+8 s^{2}+16} \] i) Sketch the root locus of this transfer function? (please find the root locus by hand writing)

Answers

In the sketch, the root locus moves away from the real axis towards the left-half plane. The number of branches of the root locus is equal to the number of poles.

To sketch the root locus of the given transfer function \(T(s) = \frac{16}{s^4 + 6s^3 + 8s^2 + 16}\), we follow these steps:

1. Determine the number of poles and zeros: The transfer function has four poles at the roots of the denominator polynomial \(s^4 + 6s^3 + 8s^2 + 16\). It has no zeros since the numerator is a constant.

2. Determine the asymptotes: The number of asymptotes is equal to the difference between the number of poles and zeros. In this case, since we have four poles and no zeros, there are four asymptotes.

3. Determine the angles of departure/arrival: The angles of departure/arrival are given by \(\theta = \frac{(2k+1)\pi}{N}\), where \(k = 0, 1, 2, \ldots, N-1\) and \(N\) is the number of poles. In this case, \(N = 4\), so we have four angles.

4. Determine the real-axis segments: The real-axis segments lie to the left of an odd number of poles and zeros. Since there are no zeros, we only need to consider the number of poles to the right of a given segment. In this case, there are no poles to the right of the real-axis.

5. Sketch the root locus: Using the information from steps 2-4, we can sketch the root locus. The root locus is symmetrical about the real axis due to the real coefficients of the polynomial. The angles of departure/arrival indicate the direction in which the root locus moves from the real axis.

Here is a hand-drawn sketch of the root locus:

```

   ---> 3 asymptotes

  /

 /  \

/    \

|     |

+-----+-----+-----+-----+

-2    -1    0    1    2

```

It's important to note that this is a rough sketch, and the exact shape of the root locus can only be determined by performing calculations or using software tools. However, this sketch provides a qualitative understanding of the root locus and its behavior for the given transfer function.

Learn more about denominator at: brainly.com/question/32621096

#SPJ11

1. Suppose we want to solve the cubic \[ x^{3}+A x^{2}+B x+C=0 . \] To use our algorithm, we make the substitution \( x=u-A / 3 \) to get a cubic polynomial in \( u \) that has no square term. (This i

Answers

If we make the substitution $x=u-A/3$ in the cubic equation $x^3+Ax^2+Bx+C=0$, we get a cubic polynomial in $u$ that has no square term. This is because the substitution effectively removes the $x^2$ term from the original equation.

The substitution $x=u-A/3$ can be seen as a linear transformation of the variable $x$. This transformation has the following effect on the cubic equation:

x^3+Ax^2+Bx+C = (u-A/3)^3 + A(u-A/3)^2 + B(u-A/3) + C

```

Expanding the right-hand side of this equation, we get:

u^3 - 3Au^2/3 + A^2u/9 + Au^2 - 2A^2u/9 + Bu - A^2/9 + C

This simplifies to $u^3 + (A-1)u^2 + (B-2A)u + C$. As you can see, the $x^2$ term has been removed.

This transformation can be useful for solving cubic equations because it makes the problem simpler. The cubic equation in $u$ is easier to solve because it has no square term.

To know more about variable click here

brainly.com/question/2466865

#SPJ11

PLEASE HELP ME WITH SOLUTIONS PLEASE. THANK YOUUU
5. An airplane is cruising at an elevation of 35,000 feet from see level. Determine the amount of gage pressure in bars needed to pressurize the airplane to simulate sea level conditions. Ans. Note: T

Answers

The gage pressure in bars needed to pressurize the airplane to simulate sea level conditions is approximately `0.26366 bar`.

The pressure in an airplane is determined by the altitude above the sea level and the atmospheric pressure.

The following relation is used to determine the pressure, `P` at a given altitude, `h` above the sea level where `P_0` is the atmospheric pressure at sea level,`R` is the specific gas constant, and `T` is the temperature in Kelvin.`P=P_0e^(-h/RT)`Here, `P_0=1.01325*10^5 Pa`, the atmospheric pressure at sea level,`h=35,000 ft=10,668m`.

We can convert the altitude from feet to meters by using the following conversion factor:1 foot = 0.3048 meter.So, 35000 feet = 10668 m. `R=287 J/(kgK)` (for dry air). `T=273+20=293K` (assuming a standard temperature of 20°C at sea level)

Now, we can substitute all these values in the formula and calculate the pressure. `P=P_0e^(-h/RT)P=1.01325*10^5 e^(-10,668/287*293)`P = 26,366 Pa or 0.26366 bar

Therefore, the gage pressure in bars needed to pressurize the airplane to simulate sea level conditions is approximately `0.26366 bar`.

More about Pressure, visit:

https://brainly.com/question/29341536

#SPJ11

Other Questions
13. (There are more than 1.000 formers in Miniland who grow lettuce. In contrast there are over 20000 customers for salad. There is a polypolehere) Select one: a.True b.False14. (Progressive costs change in proportion to employment.) Select one: a.True b.False (i) Consider a unity feedback control system with the open loop transfer function given by \[ G(s)=\frac{K(s-1)}{s^{2}-2 s+5} \] where \( K \) is a positive gain. Obtain the zeros and poles of the ope Literary Analysis OutlineA Thesis statement Soses ben symbolem and& EvidenceN Body ParagraphWhich explanation belongs inbody paragraph #1?A Sakicharacteribes the hatred of the womento contrast the friendship that'screated baterB. This turn or events is in Isself tonic bothintended to murder the other not becometriendsC. They symbolize the revenge of Nature anwomen who have treated Nature epersonal property a periodic performance review is an example of a(n) control. When discussing the impacts of the Internet, we observed that marketplaces like Samsung or Apple are edging out the middlemen. We referred to this opportunity of digitalization as:DisintermediationReintermediationlong tailself-service Explain the Economic Model for Crime and 3 measures that can be used to curb crime based on this model. 9. When the sun is setting and a thin cirrostratus cloud is present, you might see a A Foucault pendulum is a large pendulum used to demonstrate the earth's rotation. Consider the Foucault pendulum at the Callifornia Academy or Sciences in San Francisco whose length L = 9.14 m, mass m = 107 kg and amplitude . (a) (5 pts) What is the period of its oscillation? (b) (5 pts) What is the frequency of its oscillation? C) (5 pts) What is the angular frequency of its oscillation? (d) (5 pts) What is the maximum speed of this pendulum's mass? (e) (5 pts) If the mass of the pendulum were suspended from a spring what would its spring constant have to be for it to oscillate with the same period? Why do you think that coal mine development faces commonly use rigid exhaust ducts while metalliferous mine development faces commonly employ layflat force duct ? Please help 100 points will give brainiest to the correct answer. For a 1/50s waveform 6 stages, the capacitor at each stage have a value of 80nF and the load capacitor is 1000pF. Calculate the values of the resistors R 1 and R 2 using the single stage configuration circuit. Suppose that the area, A, and the radius, r, of a circle are changing with respect to time and satisfy the equation A=r^2 If dr/dt =7 cm/s, then find dA/dt when r= 9 cmcm^2/s (Write Pi for the symbol . Use the exact solution.) Bird bones have air pockets in them to reduce their weight. This also gives them an average density significantly less than that of the bones of other animals. Suppose an ornithologist weighs a bird bone in air and in water and finds its mass is 45 g and its apparent mass when submerged is 3.6 g (the bone is watertight).Part (a) What mass, in grams, of water is displaced?Part (b) What is the volume, in cubic centimeters, of the bone?Part (c) What is the average density of the bone, in grams per cubic centimeter? Find the derivative y = e^-3x/(2x-7)^2 (Use quotient rule) 13. Based on the rules for coupling electron \( l \) and \( s \) values to give the total \( L \) and \( S \), explain why filled subshells don't contribute to the magnetic properties of an atom. Role ambiguity is a hindrance stressor. Select one: True False Auslogic registry Cleaner ?One paragraph Summary of the utilityDid you discuss the primary importance and use of the software?Your evaluation of the utilityThis includes a short narrative to answer each of the questions:Was it easy to install?Did you find the utility easy to use?Any problems?Was the utility worth your use? Owen Lovejoy's provisioning hypothesis proposes that:a.bipedalism arose as a result of a shift to hunting as a primary source of food.b.bipedalism arose in areas where the forest was disappearing.c.bipedalism meant less body surface to expose to the sun, resulting in a smaller body size.d.monogamy and food provisioning created the necessity for bipedalism. Given the given cost function C(x) =1500+740x+0.6x^2 and the demand function p(x)=2220. Find the production level that will maximize profit. 4 If you want to use the bit-addressable RAM, the address rangeyou must access is: a) 00h 0Fh b) 10h 1Fh cX) 20h 2Fh d) 30h 3Fh