Answer:
Determine the conditional probability distribution of X given that Y = 1 and Z = 2. Round your answers to two decimal places (e.g. 98.76).
answer:
Given that Y = 1 : 2/5
Given that Z = 2 : 3/5
Step-by-step explanation:
The conditional probability distribution of X F x | yz^( x )
Given that Y = 1
F x | yz . ( x | yz ) = 2/5
Given that z = 2
= 3/5
attached below is the detailed solution
Please ignore the writing in blue as I tried to work it out but couldn’t
Answer:
[tex]k=35[/tex]°
Step-by-step explanation:
The degree measure of a straight line is (180) degrees. Therefore, when a line intersects another line, the sum of angle measures on any one side of the line is (180). One can apply this here to find the supplement (the angle on the same side of the line) of the angle with a measure of (130) degrees, and (85) degrees.
[tex]130 + (unknown_1)=180\\unknown_1=50\\\\85+(unknown_2)=180\\unknown_2=95[/tex]
The sum of angle measures in a triangle is (180) degrees, one can apply this here by stating the following;
[tex](unknown_1)+(unknown_2)+(k)=180[/tex]
Substitute,
[tex]50+95+k=180[/tex]
Simplify,
[tex]50+95+k=180\\\\145+k=180\\\\k=35[/tex]
[tex]\sf \bf {\boxed {\mathbb {TO\:FIND :}}}[/tex]
The measure of angle [tex]k[/tex].
[tex]\sf \bf {\boxed {\mathbb {SOLUTION:}}}[/tex]
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf {k\:=\:35°}}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:\:EXPLANATION:}}}[/tex]
We know that,
[tex]\sf\pink{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}[/tex]
➪ [tex]x[/tex] + 85° = 180°
➪ [tex]x[/tex] = 180° - 85°
➪ [tex]x[/tex] = 95°
Also,
Exterior angle of a triangle is equal to sum of two opposite interior angles.
And so we have,
➪ 130° = [tex]k[/tex] + [tex]x[/tex]
➪ [tex]k[/tex] + 95° = 130°
➪ [tex]k[/tex] = 130°- 95°
➪ [tex]k[/tex] = 35°
Therefore, the value of [tex]k[/tex] is 35°.
[tex]\sf \bf {\boxed {\mathbb {TO\:VERIFY :}}}[/tex]
[tex]\sf\blue{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}[/tex]
➪ 50° + 35° + 95° = 180°
( where 50° = 180° - 130°)
➪ 180° = 180°
➪ L. H. S. = R. H. S.
Hence verified.
(Note: Kindly refer to the attached file.)
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}[/tex]
Wrap your foot by plastic cover. B. Directions: Read the sentences carefully. Write TRUE if the statement is True and FALSE if not. 16. Rain and dull clouds, windy blue skies, cold snow, and sticky heat are very different conditions, yet they are all weather. 17. A weather instrument is any type of measurement device that gives information about the weather. 18. Weather is the mix of events that happen each day in our atmosphere. 19. Weather is different in different parts of the world and changes over minutes, hours, days and weeks. 20. The four letters EW, SW, NE, SN represent the four directions: East West, South West, North East, and South North.
Answer:
16. false
17. True
18. True
19. True
20. false
Step-by-step explanation:
16. all terms are expressions of weather - except for cold snow. "snowfall" would be the weather condition. "snow" itself is the accumulated mass of snowflakes on the ground.
17. that is simply true. there is nothing really to explain.
18. the same as 17. that is the definition of weather.
19. yes, that is part of the explanation of the difference between weather and climate.
20. South North is NOT a direction. it kind of contradicts itself. and what is between South and North ? East and West. so, even from that perspective it is not clear.
overall, what kind of math question is that ? that is more for geography, Earth science, or meteorology or something like this.
What is the probability that in a sample of 400 registered voters to at least 290 voted in their most recent local
Answer:
The probability that in a sample of 400 registered voters at least 290 voted in their most recent local elections is:
= 72.5%
Step-by-step explanation:
Sample of registered voters = 400
Sample of voters that actually voted = 290
Probability = 290/400 * 100
= 72.5%
b) This result above gives the statistic that for every 100 registered voters, 72.5 voters voted. Probability measures the chance of an event occurring given other events. Therefore, one can conclude that the voting was at least 72.5%. Inversely, 27.5% of the registered voters did not participate or cast their ballots in the local elections.
Find surface area of this regular pyramid
Answer:
189 ft²
Step-by-step explanation:
Here is the formula...
1/2 * 6 * 36 + 81
Hope this helps
a. Consider the situation where you have three game chips, each labeled with one of the the numbers 3, 5, and 10 in a hat a. If you draw out 2 chips without replacement between each chip draw, list the entire sample space of po ssible results that can occur in the draw Use the three events are defined as follows, to answer parts b through n below:
Event A: the sum of the 2 drawn numbers is even.
Event B: the sum of the 2 drawn numbers is odd.
Event C: the sum of the 2 drawn numbers is a prime number
Now, using your answer to part a find the following probability values
b. P (A)=
c. P (B)=
d. P (C)=
e. P (A and C)-=
f. P(A or B)=
g. P (B andC)=
h. P(A or C)- =
i. P (C given B)=
j. P(C given A)=
k. P (not B)=
l. P (not C)=
Are events A and B mutually exclusive?Why or why not?
Are events B and C mutually exclusive? Why or why not?
Answer:
a) {3,5}{3,10}{5,10}
b) [tex]P(A)=\frac{1}{3}[/tex]
c) [tex]P(B)=\frac{2}{3}[/tex]
d) [tex]P(C)=\frac{1}{3}[/tex]
e) [tex]P(A and C)=0[/tex]
f) [tex]P(A or B)=1[/tex]
g) [tex]P(B and C)=\frac{1}{3}[/tex]
h) [tex]P(A or C)=\frac{2}{3}[/tex]
i) [tex]P(C given B)=\frac{1}{2}[/tex]
j) [tex]P(C given A)=0[/tex]
k) [tex]P(not B)=\frac{1}{3}[/tex]
l) [tex]P(not C)=\frac{2}{3}[/tex]
Yes, events A and B are mutually exclusive. Because the results can either be even or odd, not both. No, events B and C are not mutually exclusive because the result can be both, odd and prime.
Step-by-step explanation:
a)
In order to solve part a of the problem, we need to find the possible outcomes, in this case, the possible outcomes are:
{3,5}{3,10} and {5,10}
We could think of the oppsite order, for example {5,3}{10,3}{10,5} but these are basically the same as the previous outcomes, so we will just take three outcomes in our sample space. We can think of it as drawing the two chips at the same time.
b)
Now the probability of the sum of the chips to be even. There is only one outcome where the sum of the chips is even, {3,5} since 3+5=8 the other outcomes will give us an odd number, so:
[tex]P=\frac{#desired}{#possible}[/tex]
[tex]P(A)=\frac{1}{3}[/tex]
c) For the probability of the sum of the chips to be odd, there are two outcomes where the sum of the chips is odd, {3,10} since 3+10=13 and {5,10} since 5+10=15 the other outcomes will give us an even number, so:
[tex]P(B)=\frac{2}{3}[/tex]
d) The probability of the sum of the chips is prime. There is only one outcome where the sum of the chips is prime, {3,10} since 3+10=13 the other outcomes will give us non prime results, so:
[tex]P(C)=\frac{1}{3}[/tex]
e) The probability of the sum of the chips to be even and prime. There are no results where we can get an even and prime number, since the only even and prime number there is is number 2 and no outcome will give us that number, so:
P(A and C)=0
f) The probability of the sum of the chips is even or odd. We can either get even or odd results, so no matter what outcome we get, we will get an odd or even result so:
[tex]P(A or B)=1[/tex]
g) The probability of the sum of the chips is odd and prime. There is only one outcome where the sum of the chips is odd and prime, {3,10} since 3+10=13 the other outcomes will give us non prime results, so:
[tex]P(B and C)=\frac{1}{3}[/tex]
h) The probability of the sum of the chips is even or prime. There are two outcomes where the sum of the chips is even or prime, {3,10} since 3+10=13 and {3,5} since 3+5=8 so:
[tex]P(A or C)=\frac{2}{3}[/tex]
i) The probability of the sum of the chips is prime given that the sum of the chips is odd. There are two possible results where the sum of the chips is odd {3,10} and {5,10} and only one of those results is even, {3,10}, so
[tex]P(C given B)=\frac{1}{2}[/tex]
j) The probability of the sum of the chips is prime given that the sum of the chips is even. There is only one possible even result: {3,5} but that result isn't prime, so
[tex]P(C given A)=0[/tex]
k) The probability of the sum of the chips is not odd. There is only one outcome where the sum of the chips is not odd (even), {3,5} so:
[tex]P(not B)=\frac{1}{3}[/tex]
l) The probability of the sum of the chips is not prime. There are two outcomes where the sum of the chips is not prime, {3,5} and {5,10} so:
[tex]P(not C)=\frac{2}{3}[/tex]
Are events A and B mutually exclusive?
Yes, events A and B are mutually exclusive.
Why or why not?
Because the results can either be even or odd, not both.
Are events B and C mutually exclusive?
No, events B and C are not mutually exclusive.
Why or Why not?
Because the result can be both, odd and prime.
Which description of the graph of the linear inequality y > 3x – 8 is correct?
Options :
A.The graph will be a dashed line with a y-intercept of negative eight and a slope of three. The graph will be shaded below the line
B.The graph will be a solid line with a y-intercept of three and a slope of negative eight. The graph will be shaded above the line.
C. The graph will be a solid line with a y-intercept of three and a slope of negative eight. The graph will be shaded below the line.
D.The graph will be a dashed line with a y-intercept of negative eight and a slope of three. The graph will be shaded above the line
Answer:
D.The graph will be a dashed line with a y-intercept of negative eight and a slope of three. The graph will be shaded above the line
Step-by-step explanation:
The equation y > 3x – 8
Interpreting as a linear relation :
y > ax + b
Where, a = slope ; b = intercept
a = 3 ; that is a slope value of 3
b = -8 ; that is an intercept value of - 8
Since the inequality is >, a dashed line is used (dashed like is used for > and <) ; since we a have a greater than sign, the graph will be shaded above the dashed line.
Answer: The answer is D on edu 2021
Step-by-step explanation:
D.The graph will be a dashed line with a y-intercept of negative eight and a slope of three. The graph will be shaded above the line
Type the correct answer in each box.
Jessica has $24 and plans to spend it all at the grocery store. She wants to purchase bags of carrots and bagels. Bags of
carrots cost $2 each, and bagels cost $3 per bag. Let x represent the number of bags of carrots and y represent the
number of bags of bagels. Complete the equation in standard form that models this scenario.
(
)x+ (
y=(
D
Submit
Type here to search
73°F Mostly cloudy
3.44
no
F2
F4
F5
F6
FO
F3
0+
F8
+
F10
F11
F12
1-
Fn
Lock
Insert
Pet Sc
a
t
04
O
Step-by-step explanation:
Jessica has $24 and plans to spend it all at the grocery store.Bags of carrots cost $2 each, and bagels cost $3 per bag.Let x represent the number of bags of carrots and y represent the number of bags of bagels.the cost for the 'x' bags of carrots = $2xand the cost for the 'y' bags of bagels = $3ySo, the equation would be,so the equation in standard form that models the given scenario is
2x + 3y = 24
2x + 3y = 24The number of diners at a restaurant each day is recorded and a daily average is calculated every month (assume 30 days in a month). The number of diners each day has a mean of 107 and a standard deviation of 60, but does not necessarily follow a normal distribution.The probability that a daily average over a given month is greater than x is 2.5%. Calculate x. You may find standard normal table useful. Give your answer to 3 decimal places.x =
Answer:
x = 128.472
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The number of diners each day has a mean of 107 and a standard deviation of 60.
This means that [tex]\mu = 107, \sigma = 60[/tex]
Distribution of the daily average:
Over a month of 30 days, so [tex]n = 30, s = \frac{60}{\sqrt{30}} = 10.955[/tex]
The probability that a daily average over a given month is greater than x is 2.5%. Calculate x.
This is X when Z has a p-value of 1 - 0.025 = 0.975, so X when Z = 1.96. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]1.96 = \frac{X - 107}{10.955}[/tex]
[tex]X - 107 = 1.96*10.955[/tex]
[tex]X = 128.472[/tex]
So x = 128.472
I don’t understand these problems
Both E and F are sets.
E = {w | w ≤ 2}
means that E is the set of all numbers w satisfying the condition that w ≤ 2. In other words, E contains all real numbers less than and including 2.
Similarly,
F = {w | w > 9}
is the set of all real numbers strictly greater than 9.
The intersection of E and F, denoted E ∩ F, is the set that contains the overlap of the two sets, or all the numbers that are common to both sets. In this case, E ∩ F is the empty set; this is because all numbers small than 2 cannot be larger than 9, so E ∩ F = ∅.
The union of E and F, written as E ∪ F, is the set containing all elements from both sets. In interval notation, E = (-∞, 2] and F = (9, ∞), so E ∪ F = (-∞, 2] ∪ (9, ∞).
Given that Q(x)=2x^2 +5x-3 find and simplify Q(a+h)-Q(a-h)
Answer:
[tex]Q(a+h)-Q(a-h)=8ah+10h[/tex]
Step-by-step explanation:
We are given the function:
[tex]Q(x)=2x^2+5x-3[/tex]
And we want to find and simplify:
[tex]Q(a+h)-Q(a-h)[/tex]
Substitute:
[tex]=[2(a+h)^2+5(a+h)-3]-[2(a-h)^2+5(a-h)-3][/tex]
Expand:
[tex]\displaystyle =[2(a^2+2ah+h^2)+5a+5h-3]-[2(a^2-2ah+h^2)+5a-5h-3][/tex]
Distribute:
[tex]=[2a^2+4ah+2h^2+5a+5h-3]-[2a^2-4ah+h^2+5a-5h-3][/tex]
Distribute:
[tex]=(2a^2+4ah+2h^2+5a+5h-3)+(-2a^2+4ah-2h^2-5a+5h+3)[/tex]
Rewrite:
[tex]=(2a^2-2a^2)+(4ah+4ah)+(2h^2-2h^2)+(5a-5a)+(5h+5h)+(-3+3)[/tex]
Combine like terms:
[tex]=8ah+10h[/tex]
Hence:
[tex]Q(a+h)-Q(a-h)=8ah+10h[/tex]
Cell Phone Service
Cellular phone service is available for $31 per month for 666 minutes. What is the
monthly cost per minute? Round your answer to the nearest tenth of a cent.
The cost for the phone service is
cents per minute.
9514 1404 393
Answer:
4.7¢/min
Step-by-step explanation:
To find the cost in cents per minute, divide the cost in cents by the number of minutes.
$31.00/(666 min) = (3100¢)/(666 min) ≈ 4.7¢/min
the blueprint dimensions of the playground are 23/147 yd x 3/14 yd after reducing them by the factor of 2/147 what are the original dimensions if the playground in yards
Answer:
The original dimensions of the park are:
(23/2) yards by 7 yards.
Step-by-step explanation:
Suppose that you have a given dimension X
if you want to reduce that dimension by a scale factor k, such that:
0 < k < 1
The reduced dimension is just:
X' = k*X
Now let's solve the problem:
We know that the dimensions on the blueprint are:
(23/147)yd by (3/14)yd
And the original dimensions are:
A yd by B yd
We know that, to get the blueprint dimensions, we reduced the original dimensions by a factor of 2/147
Then we just have that:
(2/147)*A = 23/147
(2/147)*B = 3/14
Now we just can solve these two equations for A and B
A = (23/147)*(147/2) = 23/2
B = (3/14)*(2/147) = (3/7)*(1/147) = 49/7 = 7
Then the original dimensions of the park are:
(23/2) yards by 7 yards.
HELP ASAP I WILL GIVE BRAINLIST
Find the length of an arc of a circle with a 8-cm radius associated with a central angle of 240 degrees. Give your answer in exact and approximate form to the nearest hundredth. Show and explain your work
Answer:
33.51 cm
Step-by-step explanation:
240/360 = 2/3 (Arc length is 2/3 of the total circumference)
C = 2[tex]\pi[/tex]r ( Calculate the total circumference)
C = 2(8)[tex]\pi[/tex]
C = 50.265
2/3(50.265) (Take 2/3 of the circumference. times 2 divide by 3)
33.51
Use a calculator and leave the answer to C and then multiply and divide. You get a more precise answer.
The exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
The arc length in approximate form is 33.49 radians.
What is the formula for arc length?[tex]s = r\times \theta[/tex]
where r is the radius of the circle and [tex]\theta[/tex] is the central angle in radians.
How to convert angle from degrees to radians?Radians = Degrees ×[tex]\frac{\pi}{180^{\circ}}[/tex]
For given question,
We have been given a circle with a 8-cm radius associated with a central angle of 240 degrees.
[tex]r=8~cm,~\theta=240^{\circ}[/tex]
First we convert angle in radians.
[tex]\theta=240^{\circ}\\\\\theta=240^{\circ} \times \frac{\pi}{180^{\circ}}\\\\ \theta=\frac{4\pi}{3}[/tex]
Using the formula of the arc length,
[tex]s=8\times \frac{4\pi}{3} \\\\s=\frac{32\pi}{3}[/tex]
The exact answer of the arc length is [tex]s=\frac{32\pi}{3}[/tex]
Substitute the value of [tex]\pi = 3.14[/tex]
So, the arc length would be,
[tex]\Rightarrow s=\frac{32\times \pi}{3}\\\\\Rightarrow s=\frac{32\times 3.14}{3}\\\\\Rightarrow s=33.49[/tex]radians
Therefore, the exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
the arc length in approximate form is 33.49 radians.
Learn more about the arc length here:
https://brainly.com/question/16403495
#SPJ2
Suppose a tank contains 400 gallons of salt water. If pure water flows into the tank at the rate of 7 gallons per minute and the mixture flows out at the rate of 3 gallons per minute, how many pounds of salt will remain in the tank after 16 minutes if 28 pounds of salt are in the mixture initially? (Give your answer correct to at least three decimal places.)
Answer:
Step-by-step explanation:
This is a differential equation problem most easily solved with an exponential decay equation of the form
[tex]y=Ce^{kt}[/tex]. We know that the initial amount of salt in the tank is 28 pounds, so
C = 28. Now we just need to find k.
The concentration of salt changes as the pure water flows in and the salt water flows out. So the change in concentration, where y is the concentration of salt in the tank, is [tex]\frac{dy}{dt}[/tex]. Thus, the change in the concentration of salt is found in
[tex]\frac{dy}{dt}=[/tex] inflow of salt - outflow of salt
Pure water, what is flowing into the tank, has no salt in it at all; and since we don't know how much salt is leaving (our unknown, basically), the outflow at 3 gal/min is 3 times the amount of salt leaving out of the 400 gallons of salt water at time t:
[tex]3(\frac{y}{400})[/tex]
Therefore,
[tex]\frac{dy}{dt}=0-3(\frac{y}{400})[/tex] or just
[tex]\frac{dy}{dt}=-\frac{3y}{400}[/tex] and in terms of time,
[tex]-\frac{3t}{400}[/tex]
Thus, our equation is
[tex]y=28e^{-\frac{3t}{400}[/tex] and filling in 16 for the number of minutes in t:
y = 24.834 pounds of salt
Mark jogs 10 miles in 2 hours.
Come up with a ratio that shows the distance in miles to the time taken
in hours. Simplify your ratio if needed.
Choose the best graph that represents the linear equation:
y + 3 = 0
Graph A
On a coordinate plane, a line goes through (0, 3) and (1, 3).
Graph B
On a coordinate plane, a line goes through (negative 3, 0) and (negative 3, 1).
Graph C
On a coordinate plane, a line goes through (0, negative 3) and (1, negative 3).
Graph D
On a coordinate plane, a line goes through (0, 0) and (1, negative 3).
a.
Graph A
c.
Graph C
b.
Graph B
d.
Graph D
PLEASE HELP!!! Please select the best answer from the choices provided
A
B
C
D
Graph B is the best graph that represents the linear equation
Answer:
m=2b=1y=2x+1
just enter it
Assume that the breaking system of a train consists of two components connected in series with both of them following Weibull distributions. For the first component the shape parameter is 2.1 and the characteristic life is 100,000 breaking events. For the second component the shape parameter is 1.8 and characteristic life of 80,000. Find the reliability of the system after 2,000 breaking events:
Answer:
0.9984
Step-by-step explanation:
we have shape parameter for the first component as 2.1
characteristics life = 100000
for this component
we have
exp(-2000/100000)².¹
= e^-0.0002705
= 0.9997
for the second component
shape parameter = 1.8
characteristic life = 80000
= exp(-2000/80000)¹.⁸
= e^-0.001307
= 0.9987
the reliability oif the system after 2000 events
= 0.9987 * 0.9997
= 0.9984
Eight less than four times a number is less than 56. What are the possible values of that number?
X> 12
x < 12
ООО
x < 16
O x> 16
Answer:
x < 16
Step-by-step explanation:
Let the number be x
Four time the number = 4x
Eight less than four times the number = 4x - 8
Eight less than four times the number is less than 56,
that is , 4x - 8 < 56
4x - 8 + 8 < 56 + 8 [ adding both sides by 8 ]
4x + 0 < 64
4x < 64 [ divide both sides by 4 ]
x < 16
Can someone please answer this
Answer:
Tisco: 12 for £5.16
Azda: 12 for £5.04
Azda has the better value.
Step-by-step explanation:
Tisco: 3 for £1.29
Multiply both numbers by 4.
12 for £5.16
Azda:
4 for £1.68
Multiply both numbers by 3.
12 for £5.04
Azda has the better value.
Solve for x. The triangles are similar.
A grinding stone completes 175 revolutions before coming to a stop. How many radians did the stone complete
Answer:
175 * 2 * [tex]\pi[/tex]
350[tex]\pi[/tex] radians
Step-by-step explanation:
The number of radians completed by the stone will be 350 radians.
What is an angle in radians?The angle subtended from a circle's centre that intercepts an arc with a length equal to the circle's radius is known as a radian.
Given that a grinding stone completes 175 revolutions before coming to a stop.
The number of the revolutions in radians will be calculated as:-
Multiply the number by 2π to convert it into the radians.
Number of revolutions = 175 x 2 x π
Number of revolutions = 350 radians
Therefore, the number of radians completed by the stone will be 350 radians.
To know more about an angle in radians follow
https://brainly.com/question/19758686
#SPJ2
Identify the domain of the function shown in the graph.
A. -2 ≤ x ≤ 2
B. {-2,2}
C. x is all real numbers.
D. x > -2
Answer:
C. x is all real numbers
Step-by-step explanation:
Think of domain as how far the graph expands on the x-axis as asymptotes as the limits. So in this case, the graph extends infinitely on the x-axis; so it should be all real numbers.
A math instructor claims that college women have more credit card debt than college men. She conducts a random sample of 38 college men and 32 college women, determines their average credit card debt, and obtains the following statistics:
women n1 =32 x1= 781 s1 = 1489 men n2 = 38 x2 = 435 s2 = 1026
Test the claim that college women have more credit card debt than college men at the a = .05 level of significance. Assume unequal variances.
Answer:
There is no significant evidence to support the claim that college women have more credit card debt than college men
Step-by-step explanation:
Given :
women n1 =32 x1= 781 s1 = 1489 men n2 = 38 x2 = 435 s2 = 1026
H0 : μ1 = μ2
H0 : μ1 > μ2
Assume unequal variance :
The test statistic :
(x1 - x2) / √(s1²/n1) + (s2²/n2)
T= (781 - 435) / √(1489²/32) + (1026²/38)
T = 346 / 311.42740
Test statistic = 1.111
Degree of freedom, df
(s1²/n1+s2²/n2)²÷1/(n1-1)*(s1²/n1)²+1/(n2-1)*(s2²/n2)²
The Pvalue :
(s1²/n1+s2²/n2)² = ((1489²/32) + (1026²/38))² = 9406484230.6884765625
1/(n1-1)*(s1²/n1)²+1/(n2-1)*(s2²/n2)²:
1/31(1489^2/32)^2 + 1/37(1026^2/38)^2 = 1.755926E8
df = 9406484230.6884765625 / 1.755926E8 = 53.569
df = 54
The Pvalue, from t score ;
Pvalue(1.111, 54) = 0.136
Pvalue > α ; Hence, we fail to reject the null ; There is no significant evidence to support the claim that college women have more credit card debt than college men
can someone help me solve this?
Answer:
[tex]\sqrt{x} -\frac{16}{\sqrt{x} }[/tex]
Step-by-step explanation:
Which linear inequality is represented by the graph?
Answer:
y=2x-4
Step-by-step explanation:
If you are asking for point slope form, that would be it
The awnser for this question
xp-q+1×xq-r+1×xr-p+1
Answer:
Look into the picture
Step-by-step explanation:
Let me know if there's something wrong to my answer
The sum of four consecutive integers is equal to three times the smallest number. What is the sum of the four integers?
Answer:
-18
Step-by-step explanation:
Answer:
-18
Step-by-step explanation:
Let the four consecutive integers be x, (x + 1), (x + 2) & (x + 3)
Smallest integer = x
According to the given condition:
[tex]x + (x + 1) + (x + 2) + (x + 3) = 3x \\ \\ 4x + 6 = 3x \\ \\ 4x - 3x = - 6 \\ \\ x = - 6 \\ \\ Sum\: of\: the\:integers \\=4x + 6 = 4( - 6) + 6 \\ \\ = - 24 + 6 \\ \\ = - 18[/tex]
rotation 90 degrees counterclockwise about the origin
I'm going to try my best to explain 90° rotation:
So, you know that if you rotate something 180°, it's completely flipped (think about spinning around half-way).
Or if you spin something 360°, you spin around the whole way and end up in the same spot that you did when you started.
Notice how 90 is actually 1/4 of 360.
So imagine spinning instead of 180, spinning half of that. so you barely rotate. That's exactly what you're doing to this shape here. and if you do it about the origin counterclockwise, the origin is (0,0) so I drew it in Quadrant III, as you can see in my attachment.
You can see that every point has been moved by 90°, I put all of the variables there so you could visualize it better!
I hope this helped, let me know if you have any questions! :)
Suppose the sales tax rate in Idaho is 6%. If a computer sells for $589, how much is
the sales tax?