the average speed of a greyhound bus from lansing to detroit is 102.5 km/h. on the return trip from detroit to lansing the average speed is 51.2 km/h on the same road due to heavy traffic. what is the average speed of the bus for the round trip?

Answers

Answer 1

The average speed of the bus for the round trip is approximately 68.37 km/h.

To calculate the average speed for the round trip, we can use the formula:

Average Speed = Total Distance / Total Time

Let's assume the distance between Lansing and Detroit is D km. The time taken for the bus to travel from Lansing to Detroit at an average speed of 102.5 km/h is D/102.5 hours. On the return trip, with an average speed of 51.2 km/h, the time taken will be D/51.2 hours.

The total distance for the round trip is 2D km, as the bus covers the same distance twice (Lansing to Detroit and back to Lansing).

The total time for the round trip is (D/102.5) + (D/51.2) hours.

Now, let's substitute these values into the formula:

Average Speed = 2D / ((D/102.5) + (D/51.2))

To simplify, we can find a common denominator for the fractions:

Average Speed = 2D / ((D*51.2 + D*102.5) / (102.5*51.2))

Simplifying further:

Average Speed = 2D / (D * (51.2 + 102.5) / (102.5 * 51.2))

Average Speed = 2 * (102.5 * 51.2) / (51.2 + 102.5)

Average Speed = 10492 / 153.7

Average Speed ≈ 68.37 km/h

The average speed of the bus for the round trip is approximately 68.37 km/h. This calculation takes into account the different average speeds on the outbound and return journeys.

To know more about speed visit:

https://brainly.com/question/4931057

#SPJ11


Related Questions

A thin layer of magnesium fluoride (n=1.38) is used to coat a flint glass lens ( n=1.61). (a) What thickness should the magnesium fluoride film have if the reflection of 565 nm light is to be suppressed? Assume that the light is incident at right angles to the film. (b) If it is desired to suppress the reflection of light with a higher frequency, should the coating of magnesium fluoride be made thinner or thicker? Explain.

Answers

(a) The thickness of the magnesium fluoride film should be approximately 120 nm to suppress the reflection of 565 nm light.

(b) To suppress the reflection of light with a higher frequency, the coating of magnesium fluoride should be made thinner.

(a) The condition for suppressing reflection is given by the equation:

2nt = mλ

where n is the refractive index of the film, t is the thickness of the film, m is an integer representing the order of the interference, and λ is the wavelength of light.

For reflection suppression of 565 nm light, we can substitute the given values:

2(1.38)t = λ

2(1.38)t = 565 nm

t = (565 nm) / (2(1.38))

t ≈ 120 nm

Therefore, the thickness of the magnesium fluoride film should be approximately 120 nm to suppress the reflection of 565 nm light.

(b) To suppress the reflection of light with a higher frequency, the coating of magnesium fluoride should be made thinner. This is because higher frequencies correspond to shorter wavelengths. As the wavelength decreases, the required thickness of the film for interference suppression decreases. So, a thinner coating of magnesium fluoride would be needed to achieve reflection suppression for higher-frequency light.

(a) To suppress the reflection of 565 nm light, the magnesium fluoride film should have a thickness of approximately 120 nm.

(b) To suppress the reflection of light with a higher frequency, the coating of magnesium fluoride should be made thinner. This is because higher frequencies correspond to shorter wavelengths, requiring a smaller film thickness for interference suppression.

To know more about reflection visit:

https://brainly.com/question/26494295

#SPJ11

You are looking for a mirror that will enable you to see a 3.6-times magnified virtual image of an object that is placed 4.9 cm the mirror's vertex. What kind of mirror will you need? What should the mirror's radius of curvature be, in centimeters? R=

Answers

To achieve a 3.6-times magnified virtual image, you will need a concave mirror with a radius of curvature (R) of approximately -1.067 cm.

To achieve a 3.6-times magnified virtual image, you will need a concave mirror. Concave mirrors have the ability to create magnified virtual images.

To determine the radius of curvature of the mirror (R), we can use the mirror formula

1/f = 1/v - 1/u

where f is the focal length of the mirror, v is the image distance (negative for virtual images), and u is the object distance.

Given that the magnification (m) is equal to -v/u, and the desired magnification is 3.6, we can write

m = -v/u

3.6 = -v/u

Since the image is virtual, the image distance (v) will be negative. Also, the object distance (u) is given as 4.9 cm.

Plugging in the values into the magnification equation, we get

3.6 = -v/4.9

Solving for v, we find

v = -4.9/3.6

v ≈ -1.3611 cm

Now, substituting the values of v and u into the mirror formula, we have

1/f = 1/(-1.3611) - 1/4.9

Simplifying the equation, we get

1/f ≈ -0.7335 - 0.2041

1/f ≈ -0.9376

Taking the reciprocal of both sides, we find

f ≈ -1.067 cm

The negative sign indicates that the mirror has a concave shape.

To know more about concave mirror here

https://brainly.com/question/31379461

#SPJ4

A ventilation fan has blades 0.25 m in radius rotating at 20 rpm. What is the tangential speed
of each blade tip?
a. 0.02 m/s
b. 0.52 m/s
c. 5.0 m/s
d. 20 m/s

Answers

A ventilation fan has blades 0.25 m in radius rotating at 20 rpm, the  tangential speed is b. 0.52 m/s

The tangential speed of each blade tip can be calculated by multiplying the radius of the blades by the angular velocity (in radians per second).

Radius of the blades (r) = 0.25 m

Angular velocity (ω) = 20 rpm

First, we need to convert the angular velocity from rpm to radians per second.

There are 2π radians in one revolution, and there are 60 seconds in one minute:

Angular velocity (in radians per second) = (20 rpm) * (2π radians/1 revolution) * (1 minute/60 seconds)

                                    = (20 * 2π) / 60 radians/second

                                    = (40π/60) radians/second

                                    = (2π/3) radians/second

Now we can calculate the tangential speed:

Tangential speed = radius * angular velocity

               = 0.25 m * (2π/3) radians/second

               = (0.25 * 2π) / 3 m/second

               ≈ 0.52 m/second

Therefore, the tangential speed of each blade tip is approximately 0.52 m/s.

To know more about speed visit:

https://brainly.com/question/28861519

#SPJ11

A plane wave propagates in a lossy medium having E=2580, u=uo, and o=5 S/m at frequency f=1000 Hz. a) Is the lossy medium a low-loss dielectric, a good conductor, or neither? Explain. Using appropriate approximations if possible, find numerical values for the attenuation and phase constants a and ß in the lossy medium. (Leave your answers in units of neper/m and radian/m, respectively.) What is the attenuation e-a in dB/m? Provide a numerical value for the complex intrinsic impedance n, using appropriate approximations if possible

Answers

The lossy medium described is a good conductor. The values for the attenuation constant (α) and phase constant (β) can be calculated using the provided formulas, considering the appropriate approximations.

Explanation and calculation: To determine whether the lossy medium is a low-loss dielectric, a good conductor, or neither, we can compare the conductivity (σ) of the medium to the frequency (f) of the wave. In this case, the conductivity is 5 S/m and the frequency is 1000 Hz.

If the conductivity is much larger than the product of the frequency and the permittivity of free space (σ >> ωε₀), the medium is considered a good conductor. If the conductivity is much smaller than the product of the frequency and the permittivity of free space (σ << ωε₀), the medium is considered a low-loss dielectric.

In this case, since the conductivity (5 S/m) is significantly larger than the product of the frequency (1000 Hz) and the permittivity of free space, we can conclude that the lossy medium is a good conductor.

To calculate the attenuation constant (α) and phase constant (β), we can use the formulas:

α = √(ωμ₀σ/2)

β = √(ω²μ₀ε₀ - α²)

where ω = 2πf is the angular frequency, μ₀ is the permeability of free space, and ε₀ is the permittivity of free space.

Substituting the given values, ω = 2π(1000 Hz), μ₀ = 4π × 10^(-7) T·m/A, and ε₀ = 8.854 × 10^(-12) F/m, we can calculate α and β.

Using appropriate approximations, we can assume that ωμ₀σ is large and α ≈ √(ωμ₀σ/2) ≈ 1000 rad/m.

Substituting the values into the formula for β, we find:

β = √((2π(1000 Hz))²(4π × 10^(-7) T·m/A)(8.854 × 10^(-12) F/m) - (1000 rad/m)²)

Therefore, we can calculate the numerical values for α and β using the given formulas and approximations.

To know more about Conductor, visit

https://brainly.com/question/492289

#SPJ11


Proofs in Propositional Logic. Show that each of the
following arguments is valid by constructing a proof.
2.
C⊃D
~(A∨B)∨C
~B∨D

Answers

In order to prove the validity of the argument, we can construct a proof using propositional logic.

How to explain the proof

Here's the proof:

~(A ∨ B) ∨ C (Premise)

C ⊃ D (Premise)

~B ∨ D (Premise)

~C ⊃ (A ∨ B) (Implication of the premise from line 1)

~~C ∨ (A ∨ B) (Implication elimination on line 4)

C ∨ (A ∨ B) (Double negation elimination on line 5)

(A ∨ B) ∨ C (Reordering the disjunction on line 6)

~B ∨ D (Premise)

~~B ∨ D (Double negation elimination on line 8)

B ⊃ D (Implication elimination on line 9)

(A ∨ B) ∨ C (Reordering the disjunction on line 6)

D (Disjunctive syllogism using lines 2, 10, and 11)

Therefore, we have proved that the argument is valid.

Learn more about logic on

https://brainly.com/question/4692301

#SPJ1

A wave passes through an opening in a barrier.

The amount of diffraction experienced by the

wave depends on the size of the opening and the

wave’s

(1) amplitude (3) velocity

(2) wavelength (4) phase

Answers

When a wave passes through an opening in a barrier, the wave's properties, such as its wavelength and phase, can be affected. The wave's wavelength and phase can affect the way the wave behaves as it passes through the opening.

A wave's wavelength is the distance between two consecutive crests or troughs in the wave. The wavelength of a wave passing through an opening in a barrier can be affected by the size of the opening. If the opening is smaller than the wavelength of the wave, then the wave will diffract around the edges of the opening and spread out. If the opening is larger than the wavelength of the wave, then the wave will pass through the opening without much diffraction.The phase of a wave is the position of a crest or trough in the wave relative to a fixed point. The phase of a wave passing through an opening in a barrier can also be affected by the size of the opening. If the opening is smaller than the wavelength of the wave, then the wave will diffract around the edges of the opening and the phase of the wave will be affected. If the opening is larger than the wavelength of the wave, then the phase of the wave will not be affected.In conclusion, when a wave passes through an opening in a barrier, the wave's wavelength and phase can be affected by the size of the opening. If the opening is smaller than the wavelength of the wave, then the wave will diffract around the edges of the opening and spread out. If the opening is larger than the wavelength of the wave, then the wave will pass through the opening without much diffraction, and the phase of the wave will not be affected.

For such more question on wavelength

https://brainly.com/question/24452579

#SPJ8

A wave passes through an opening in a barrier. The amount of diffraction experienced by the wave depends on the size of the opening and the wave’s wavelength.The amount of diffraction experienced by a wave when it passes through an opening in a barrier depends on the size of the opening and the wavelength of the wave.

The diffraction of a wave is the bending of the wave when it passes through an opening or around an obstacle. The smaller the opening, the greater the diffraction. The greater the wavelength of the wave, the greater the diffraction. The amount of diffraction experienced by a wave can be calculated using the diffraction equation. The diffraction equation states that the amount of diffraction is directly proportional to the size of the opening and the wavelength of the wave.

If the opening is small and the wavelength is large, the amount of diffraction will be significant. Conversely, if the opening is large and the wavelength is small, the amount of diffraction will be minimal.

To know more about wavelength visit :

https://brainly.com/question/31143857

#SPJ11

Scientists at the Hopkins Memorial Forest in western Massachusetts have been collecting meteorological and environmental data in the forest data for more than 100 years. In the past few years, sulfate content in water samples from Birch Brook has averaged 7. 48 mg/L with a standard deviation of 1. 60 mg/L

Answers

Hopkins Memorial Forest in western Massachusetts has been collecting meteorological and environmental data for more than 100 years. Scientists at the forest have observed that in the past few years, the sulfate content in water samples collected from Birch Brook has averaged 7.48 mg/L with a standard deviation of 1.60 mg/L.

Meteorological and environmental data are crucial for understanding the state of the natural environment. Hopkins Memorial Forest in western Massachusetts has been collecting this data for over a century. The data collected in the forest can provide valuable insights into how environmental factors such as climate change, pollution, and other factors affect the local ecosystem.They have found that the sulfate content in these samples has averaged 7.48 mg/L with a standard deviation of 1.60 mg/L.

This information is useful for understanding how sulfate levels in the water are changing over time, and whether this could have any implications for the local ecosystem.The scientists at Hopkins Memorial Forest in western Massachusetts have a unique dataset that can provide valuable insights into how environmental factors affect ecosystems over time. By continuing to collect meteorological and environmental data, they will be able to gain a better understanding of how the environment is changing and how these changes could affect the local ecosystem in the future.

To know more about Scientists visit :

https://brainly.com/question/12965344

#SPJ11

A 67 kg box is initially at rest when a student uses a rope to pull on it with 380 N of force for 3.0 m. There is negligible friction between the box and floor. What is the best estimate of the speed of the box after the displacement interval of 3.0m? Assume rightwards is the positive direction. Choose 1 answer: A. 6.4 m/s B. 5.8 m/s C. 7.8 m/s D. 4.9 m/s

Answers

The best estimate of the speed of the box after the displacement interval of 3.0 m is 4.9 m/s (Option D).

To determine the speed of the box, we need to apply the work-energy principle, which states that the work done on an object is equal to the change in its kinetic energy.

Work (W) done on the box can be calculated as the product of the force applied (F) and the displacement (d):

W = F * d

In this case, the force applied is 380 N and the displacement is 3.0 m:

W = 380 N * 3.0 m

W = 1140 J

The work done on the box is equal to the change in its kinetic energy (ΔKE). Since the box starts from rest, the initial kinetic energy (KE_initial) is zero:

ΔKE = KE_final - KE_initial

ΔKE = KE_final - 0

ΔKE = KE_final

Therefore, ΔKE = 1140 J.

Using the equation for kinetic energy:

KE = (1/2) * m * v^2

Where m is the mass of the box (67 kg) and v is the speed of the box.

We can rearrange the equation to solve for v:

v = √(2 * ΔKE / m)

v = √(2 * 1140 J / 67 kg)

v ≈ 4.9 m/s

The best estimate of the speed of the box after the displacement interval of 3.0 m is approximately 4.9 m/s (Option D).

To know more about work visit:

brainly.com/question/18094932

#SPJ11

A heat engine supposedly receives 500 kJ/s of heat from an 1100-K source and rejects 300 kJ/s to a low temperature sink at 300-K. a. Is this possible or impossible? Explain. b. What would be the net rate of change of entropy for this system? c. What is the thermal efficiency of this heat engine? d. Ideally, what is the maximum efficiency that the heat engine can achieve if it receives heat from 1100-K source and rejects heat to a temperature sink at 300-K.

Answers

It is possible for a heat engine to receive 500 kJ/s of heat from an 1100-K source and reject 300 kJ/s to a low-temperature sink at 300 K. This scenario is in accordance with the second law of thermodynamics, which states that heat naturally flows from a higher temperature to a lower temperature.

The net rate of change of entropy for this system can be calculated using the equation ΔS = Q_in / T_in - Q_out / T_out, where ΔS is the change in entropy, Q_in is the heat received, Q_out is the heat rejected, T_in is the temperature of the heat source, and T_out is the temperature of the heat sink. The thermal efficiency of a heat engine is given by the formula η = (W_out / Q_in) * 100%, where η is the efficiency, W_out is the work output, and Q_in is the heat input. The maximum efficiency that a heat engine can achieve is given by the Carnot efficiency, which is determined solely by the temperatures of the heat source and heat sink.

To learn more about thermodynamics:

https://brainly.com/question/1368306

#SPJ11

Other Questions
Exercise 24-6 (Algo) Payback period, equal cash flows, and accounting rate of return LO P1, P2 B2B Company is considering the purchase of equipment that would allow the company to add a new product to An article in Transactions of the Institution of Chemical Engineers (1956, Vol. 34, pp. 280-293) reported data from an experiment investigating the effect of several process variables on the vapor phase oxidation of naphthalene. A sample of the percentage mole conversion of naphthalene to maleic anhydride follows: 4.2, 4.7,4.7, 5.0, 3.8, 3.6, 3.0, 5.1, 3.1, 3.8, 48, 4.0, 5.2, 4.3, 2.8, 2.0, 2.8, 3.3, 4.8, 5.0. a. (5 points) Calculate the sample mean, sample variance, and sample standard deviation. The results of an empirical study reveal the following: n=27, sample mean = 3,000, sample standard deviation = 900. The 90% confidence interval of the true population mean is closet to: = = 2,400 and 3,400 1,200 and 4,800 2,700 and 3,300 0 2,000 and 4,000. "Crystal of atom" isa)cubicalb)rhombusc)octahedrald) combination of all Find the equation of the plane containing the points (-1,3,4), (-1,9, 4), and (1,-1, 1). Find one additional point on this plane. Select the answer(s) which is(are) most correct? I. If a company increases its current liabilities by $1,000 and simultaneously increases its inventories by $1,000, its current ratio must rise. II. If a company increases its current liabilities by $1,000 and simultaneously increases its inventories by $1,000, its quick ratio must fall. III. A company's quick ratio may never exceed its current ratio. Select one:a. I & III only b. II & III only c. Ill only d. I only e. Il only "We need new regulations in the banking sector to ensure that the global financial crisis never happens again.Discuss this commonly heard statement.In your answer, make sure you a. describe the common types of risk facing any banking sector and how these risks played out in the USA in the lead up to the global financial crisis, and b. explain how effective you believe the new Basel III regulations will be in managing these risks in the future." Let C be the linear (6, 3] code with generator matrix G = [110100 000011] Find a check matrix for C. which word best describes the tone of the third paragraph? (5 points) aggravated cautionary zealous detached Proofs in Propositional Logic. Show that each of thefollowing arguments is valid by constructing a proof.2.CD~(AB)C~BD A firm is expected to pay a dividend next year of $2.50 per share, the growth rate for dividends is expected to be 3% forever, and investors have a required return of 14%. What is market price of the shares today?Select one:a. $17.86b. $23.41c. $18.39d. $22.73 assume we have created a rational class to represent rational numbers. how many parameters should the following instance methods take in? clone() copy() add() inverse() briefly explain. Consider a game involving two software developers: A and B. Firm A has developed a new app that it is certain will sell well. Firm B can clone the app with its own engineers, but it can clone at a lower cost if it can hire away some of As software engineers. Recognizing this, firm A can choose to include in its employment contract a preemptive clause that bars its engineers from working for another software firm for a certain period of time if they resign from A. However, inserting such a clause makes firm A a less attractive place to work. As a result, A must pay its engineers an above-market salary if it adds a preemptive clause to its employment contract. If B decides to pursue cloning the app, A must decide how to react. Firm A can choose to fight B by aggressively advertising its app (which is costly but gives A a larger market share), or it can choose to forego the expense of advertising and share the market 50/50 with firm B. The payoffs (A,B) are as follows. If A preempts and B does not clone, the payoffs are (400, 0). If A preempts, B clones, and A fights, the payoffs are (170, -50). If A preempts, B clones, and A shares, payoffs are (150, 50). If A does not preempt and B does not clone, payoffs are (500, 0). If A does not preempt, B clones, and A fights, payoffs are (230, 90). Finally, if A does not preempt, B clones, and A shares, payoffs are (250, 150). (a) Describe all possible strategies for each firm. (b) Present the game in strategic form.(c) Identify all Nash Equilibria. (d) Which of the Nash Equilibria identified in (c) are subgame perfect? (e) What is your prediction regarding the how A and B will play this game? Which of the following story problems can be solved by calculating 3/4-1/2? (Select all that apply.) Select one: O a. A bird feeder was filled with 3/4 of a full bag of bird seed. The birds ate 1/2 of what was in the bird feeder. What fraction of a full bag of bird seed did the birds eat? O b. A bird feeder was filled with 3/4 of a full bag of bird seed. The birds ate 1/2 of what was in the bird feeder. What fraction of a full bag of bird seed is left in the bird feeder? Oc. Charlie has 3/4 of a full bag of bird seed. He has a bird feeder that holds half a full bag. What fraction of a full bag of bird seed will be left in the bag after he fills the bird feeder? O d. None of the story problems can be solved by calculating 3/4-1/2. To increase the value of the product, investment in the product may be necessary to have the effect of the manager. This increases the general cost, but does not increase the benefits or performance of the company. plants absorb from the atmosphere and release to the atmosphere.a. trueb. false Juanita knows how to ride a bike, but she doesnt remember learning how to ride a bike. This is an example of a(n) ____ memory.A. Implicit B. Explicit C. Episodic D. Autobiographical Scientists at the Hopkins Memorial Forest in western Massachusetts have been collecting meteorological and environmental data in the forest data for more than 100 years. In the past few years, sulfate content in water samples from Birch Brook has averaged 7. 48 mg/L with a standard deviation of 1. 60 mg/L Match the real-world descriptions with the features they represent within the context of Melissas garden. Not all tiles will be used.x-intercepts -domain -range -y-intercept- 1. What are the Export-Import (Ex-Im) Bank's responsibilities? 2. What is the Ex-Im Bank's Mission Statement? 3. Where is the Export-Import Bank located? Regional Office locations? 4. What are the total number of transactions and dollar value for the last five years ending in 201_? 5. What are the four major trends identified during 2004? 6. What does the term 'working capital mean?" (Find under Products and Policies section) 7. What are the benefits? 8. Eligibility of exporters; eligible exports? 9. Repayment terms? 10. What is Export Credit Insurance?