The exhaust air from a building is at a temperature of 22 °C and has a flow rate of 4 kg/s (specific heat capacity of 1.005 kJ/kg-K). A thermal wheel is proposed to recover energy from this exhaust air to preheat the incoming fresh air at a flow rate of 4.5 kg/s and temperature of 10 oC (specific heat capacity of 1.005 kJ/kg-K).

(b) Given the information determine:

i) The effectiveness of the thermal wheel

ii) The actual heat transfer rate

iii) The exit temperature of the fresh air leaving the thermal wheel

Answers

Answer 1

We can calculate the effectiveness of the thermal wheel, the actual heat transfer rate, and the exit temperature of the fresh air leaving the thermal wheel.

To determine the effectiveness of the thermal wheel, the actual heat transfer rate, and the exit temperature of the fresh air leaving the thermal wheel, we can use the principle of energy conservation.

Let's denote:

T1 = Temperature of the exhaust air (22 °C)

m1 = Mass flow rate of the exhaust air (4 kg/s)

Cp1 = Specific heat capacity of the exhaust air (1.005 kJ/kg-K)

T2 = Temperature of the incoming fresh air (10 °C)

m2 = Mass flow rate of the fresh air (4.5 kg/s)

Cp2 = Specific heat capacity of the fresh air (1.005 kJ/kg-K)

T3 = Exit temperature of the fresh air leaving the thermal wheel (to be determined)

Q_actual = Actual heat transfer rate (to be determined)

ε = Effectiveness of the thermal wheel (to be determined)

The principle of energy conservation states that the heat gained by the incoming fresh air is equal to the heat lost by the exhaust air:

m2 * Cp2 * (T3 - T2) = m1 * Cp1 * (T1 - T3)

To determine the effectiveness (ε), we use the formula:

ε = (T3 - T2) / (T1 - T2)

To find the actual heat transfer rate (Q_actual), we use the formula:

Q_actual = m1 * Cp1 * (T1 - T3)

Finally, we can solve the equation and calculate the exit temperature of the fresh air (T3) by rearranging the equation:

(T3 - T2) = ((m2 * Cp2) / (m1 * Cp1)) * (T1 - T3)

(T3 + ((m2 * Cp2) / (m1 * Cp1)) * T3) = T2 + ((m2 * Cp2) / (m1 * Cp1)) * T1

T3 * (1 + (m2 * Cp2) / (m1 * Cp1)) = T2 + ((m2 * Cp2) / (m1 * Cp1)) * T1

T3 = (T2 + ((m2 * Cp2) / (m1 * Cp1)) * T1) / (1 + (m2 * Cp2) / (m1 * Cp1))

By substituting the given values into the equations, we can calculate the effectiveness of the thermal wheel, the actual heat transfer rate, and the exit temperature of the fresh air leaving the thermal wheel.

These calculations will help determine the efficiency of the thermal wheel in recovering energy from the exhaust air and preheating the incoming fresh air, ensuring effective energy utilization in the building.

Learn more about principle of energy conservation here:

https://brainly.com/question/16881881

#SPJ11


Related Questions









18. Find the magnitude of force acting on a 0.25-kg object located at r=0.5 m in a potential of U = 2.7 + 9.0x2 (assume all units in MKS).

Answers

The magnitude of the force acting on the 0.25-kg object located at r = 0.5 m in the given potential is 9.0 N. The magnitude of the force acting on the object can be determined by taking the negative gradient of the potential function.

To find the force acting on the object, we need to calculate the derivative of the potential function with respect to x. Taking the derivative of the potential function, we get:

dU/dx = d/dx (2.7 + 9.0[tex]x^2[/tex])

= 0 + 18.0x

= 18.0x

Now we can calculate the force (F) acting on the object using the formula F = -dU/dx. Since the magnitude of the force is required, we take the absolute value of the calculated force:

|F| = |-dU/dx|

= |-(18.0x)|

= 18.0|x|

To find the magnitude of the force at a specific position, we substitute the given value of x, which is 0.5 m, into the equation:

|F| = 18.0|(0.5)|

= 9.0 N

Therefore, the magnitude of the force acting on the 0.25-kg object located at r = 0.5 m in the given potential is 9.0 N.

Learn more about potential here:

brainly.com/question/32358102

#SPJ11

what direction (in degrees counterclockwise from the east axis) is the dog? Use a graphical method. magnitude m direction ∘

counterclockwise from the east axis

Answers

The direction of the dog is about 67.38 degrees counterclockwise from the east axis. using  a graphical method. The first step is to represent the vector components, i.e., the horizontal and vertical components of the given vector.

Let the horizontal component be x and the vertical component be y.

We have:m = √(x² + y²).

Since the direction is counterclockwise from the east axis, we have to calculate the angle from the east axis.

Let's say the angle is θ.

Therefore, we have:x = m cosθ and y = m sinθθ = tan⁻¹(y/x).

Given the vector components:x = -5my = 12m Magnitude, m = √(x² + y²)m = √((-5m)² + (12m)²)m = √(25m² + 144m²)m = √(169m²)m = 13m Angle from the east axis, θ = tan⁻¹(y/x)θ = tan⁻¹((12m)/(-5m))θ = tan⁻¹(-12/5)θ ≈ -67.38° (rounded to two decimal places).

Therefore, the direction of the dog is about 67.38 degrees counterclockwise from the east axis.

Learn more about vector here ;

https://brainly.com/question/14447709

#SPJ11

an iron ball with mass 180 g is attached to a chain that is 1.2 m long, suspended at an angle of 55 degrees. the iron ball is then released from this position and at the very bottom of its swing, it strikes a 450 g block of wood that is resting on a frictionless surface. to what angle does it rebound

Answers

The iron ball will rebound at an angle of approximately 55 degrees.

When the iron ball is released and swings downward, it gains kinetic energy as it moves towards the bottom of its swing. At the very bottom, this kinetic energy is transferred to the block of wood, causing it to move. According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision.

Initially, the iron ball and the block of wood are at rest, so their initial momentum is zero. At the bottom of the swing, when the iron ball collides with the block of wood, their combined momentum will still be zero. Since the iron ball is much heavier than the block of wood, its velocity will decrease significantly after the collision, while the block of wood will acquire some velocity.

Now, let's consider the angles involved. The initial angle of suspension, 55 degrees, represents the angle between the chain and the vertical direction. When the iron ball reaches the very bottom of its swing, it will be momentarily at rest before the collision. At this point, the direction of its velocity is perpendicular to the chain, forming a right angle with the vertical direction. Therefore, the angle at which it rebounds will be the same as the angle of suspension, approximately 55 degrees.

Learn more about Angle

brainly.com/question/13954458

#SPJ11

A spaceship has length 120 m, diameter 25 m, and mass 4.0×10^3kg as measured by its crew. As the spaceship moves parallel to its cylindrical axis and passes us, we measure its length to be 90 m.
a)What do we measure its diameter to be?
b)What do we measure the magnitude of its momentum to be?

Answers

We measure the diameter of the spaceship to be approximately 18.75 m and we measure the magnitude of the momentum of the spaceship to be approximately 2.6456 × 10^3 kg·m/s.

a) To find the measured diameter of the spaceship, we can use the concept of length contraction in special relativity. According to length contraction, an object moving relative to an observer will appear shorter in the direction of motion. The formula for length contraction is given by:

L' = L * sqrt(1 - ([tex]v^2/c^2[/tex]))

L' is the measured length

L is the proper length (rest length)

v is the velocity of the spaceship relative to the observer

c is the speed of light

In this case, the proper length (L) of the spaceship is 120 m, and the measured length (L') is 90 m. We need to find the velocity (v) of the spaceship relative to the observer.

Rearranging the formula, we have:

[tex](v^2/c^2) = 1 - (L'^2/L^2)\\(v^2/c^2) = 1 - (90^2/120^2)[/tex]

[tex](v^2/c^2)[/tex] = 1 - 0.5625

[tex](v^2/c^2[/tex]) = 0.4375

Taking the square root of both sides:

v/c = sqrt(0.4375)

v/c = 0.6614

Multiplying both sides by the speed of light (c):

v = 0.6614 * c

Now we can find the measured diameter (D') of the spaceship using the same formula for length contraction:

D' = D * sqrt(1 - [tex](v^2/c^2))[/tex]

The proper diameter (D) of the spaceship is 25 m. Substituting the values:

D' = 25 * sqrt(1 - [tex](0.6614^2))[/tex]

D' ≈ 25 * sqrt(1 - 0.4368)

D' ≈ 25 * sqrt(0.5632)

D' ≈ 25 * 0.7501

D' ≈ 18.75 m

b) The momentum (p) of an object is given by the equation:

p = m * v

p is the momentum

m is the mass of the object

v is the velocity of the object

In this case, the mass of the spaceship is 4.0×[tex]10^3[/tex] kg, and we can use the velocity (v) calculated in part (a).

Substituting the values:

p = (4.0×[tex]10^3[/tex] kg) * (0.6614 * c)

p ≈ 2.6456 × [tex]10^3[/tex]kg·m/s

To know more about diameter refer to-

https://brainly.com/question/32968193

#SPJ11




8: Wangsness 19-16. You will need to add together the vector potential due to the two dipoles. Keep in mind that Equation 19-21 assumes that the dipole is at the origin.

Answers

The vector potential due to the two dipoles can be added together, keeping in mind that Equation 19-21 assumes that the dipole is at the origin.

The given problem is related to the magnetic field vector potential due to two dipoles, which can be found using the equation for the magnetic field vector potential given below:

[tex]A( r → ) = μ0/(4π) × ∫( J( r → ′ )/|r → − r → ′|) dτ′ ................ (1)[/tex]

Here, r → represents the position vector where we need to find the magnetic field vector potential, J( r → ′ ) represents the current density, r → ′ represents the position vector of the current element, dτ′ represents the differential volume element, and μ0 represents the permeability of free space.

From the figure, the distance between the two current elements is L. Now we need to find the magnetic field vector potential due to each dipole separately, as shown below:

(1/2)A1 = (μ0/4π) ∫ (J dτ') / r

According to the equation above, we can find the magnetic field vector potential due to one dipole. As per the Wangsness 19-16 problem, there are two dipoles. Therefore, we can find the total magnetic field vector potential due to both dipoles as follows:

(1/2)Atotal = (1/2)A1 + (1/2)A2

where A1 and A2 represent the magnetic field vector potentials due to the first and second dipole, respectively.

The distance between the two dipoles is L. Now, we can use the distance between the two dipoles to find the magnetic field vector potential due to the second dipole. We can assume that the second dipole is at the origin. Hence, we can use the following equation to find the magnetic field vector potential due to the second dipole:

(1/2)A2 = (μ0/4π) ∫ (J dτ') / r

After finding both magnetic field vector potentials, we can add them together to find the total magnetic field vector potential due to both dipoles.

To learn more about vector, refer below:

https://brainly.com/question/24256726

#SPJ11








3. Using the electrostatic image discuss the electrostatic potential and the electrostatic field due to a point charge place near the surface of a grounded conducting plane.

Answers

The presence of a point charge near the surface of a grounded conducting plane creates an electrostatic potential and an electrostatic field. The electrostatic potential decreases with distance from the point charge, and the electrostatic field is stronger closer to the charge and weaker farther away.

When a point charge is placed near the surface of a grounded conducting plane, it induces a redistribution of charges on the conducting plane. This redistribution results in an equal but opposite charge accumulation on the surface facing the point charge, creating an electrostatic potential.

The electrostatic potential decreases with distance from the point charge according to the inverse square law. It is highest closest to the point charge and decreases as you move away from it. The potential is zero at infinity, representing the reference point where there is no interaction with the charge.

The electrostatic field is related to the gradient of the electrostatic potential. It points away from the point charge and is stronger closer to the charge and weaker farther away. The field lines are perpendicular to the equipotential surfaces, indicating the direction of the force experienced by a positive test charge. The field lines converge toward the grounded conducting plane, indicating that the induced charges on the plane create an attractive force on positive charges.

In summary, when a point charge is placed near the surface of a grounded conducting plane, it creates an electrostatic potential that decreases with distance and an electrostatic field that is stronger closer to the charge. The induced charges on the conducting plane contribute to the overall electrostatic potential and field, resulting in an attractive force on positive charges.

Learn more about electrostatic potential here:

https://brainly.com/question/31126874

#SPJ11

4. A water droplet 0,1 mm in diameter carries a charge such that the electric field at its surface is 6⋅10^4 Vm−1 . If it is placed between two parallel metal plates 10 mm apart, what p.d. must be applied to them to keep the drop from falling? Density of water =10^3 kgm−3 . [3,14kV]

Answers

The potential difference (p.d.) that must be applied to the parallel metal plates to keep the water droplet from falling is approximately 3.14 kV.

To determine the p.d., we can use the equation E = V/d, where E is the electric field, V is the potential difference, and d is the distance between the plates. In this case, the electric field at the surface of the water droplet is given as 6 x 10^4 V/m. Since the droplet is placed between the parallel metal plates that are 10 mm (or 0.01 m) apart, we can substitute these values into the equation to solve for V.

The electric field at the surface of the water droplet is a result of the electric charge it carries. When placed between the metal plates, the electric field between the plates exerts a force on the droplet. By applying a suitable potential difference to the plates, the electric field created between them can counteract the gravitational force acting on the droplet, thereby preventing it from falling.

Learn more about  Potential difference

brainly.com/question/23716417?

#SPJ11

what is the distance between the crest and trough of a wave called?

Answers

The distance between the crest and trough of a wave is called the amplitude.

In wave terminology, the amplitude refers to the maximum displacement or distance from the equilibrium position of a wave. For a transverse wave, such as an electromagnetic wave or a water wave, the crest represents the highest point of the wave, while the trough represents the lowest point.

The amplitude is the distance from the equilibrium position (usually the centerline) to either the crest or the trough. It is a measure of the intensity or strength of the wave. In other words, it represents the maximum magnitude or value of the wave's oscillation. The greater the amplitude, the more energy the wave carries.

The amplitude is typically represented by the symbol "A" in mathematical equations and can be measured in units such as meters (m) or volts (V), depending on the type of wave.

Learn more about amplitude from the given link:

https://brainly.com/question/9525052

#SPJ11.


no.3
3. Which of the following metals. is the best electricity? a. Steel b. Aluminum c. Iron d. Copper conductor of

Answers

Copper is the best conductor of electricity among the listed metals (steel, aluminum, iron). Its low electrical resistance and excellent conductivity make it ideal for various electrical applications and infrastructure.

d. Copper is the best conductor of electricity.

Among the options provided, copper is widely recognized as the best conductor of electricity. Copper exhibits excellent electrical conductivity due to its low electrical resistance, making it an ideal choice for various electrical applications.

Copper's exceptional conductivity can be attributed to its atomic structure and properties. The arrangement of copper atoms allows for easy movement of electrons, enabling efficient flow of electric current. This property makes copper highly desirable for electrical wiring, power transmission, and many other electrical components.

Compared to other metals listed, such as steel, aluminum, and iron, copper demonstrates superior electrical conductivity. Steel and iron have significantly higher electrical resistance and are not as efficient in conducting electricity. While aluminum has relatively good conductivity, copper still outperforms it in terms of electrical conductivity.

Due to its excellent electrical properties, copper is widely used in electrical infrastructure, including power grids, electrical wiring, motors, generators, and electronic devices. Its high conductivity helps minimize power loss and ensures efficient transmission and utilization of electrical energy.

To learn more about conductor, click here: https://brainly.com/question/14405035

#SPJ11

A). A lens has a focal length of 31 cm and a diameter of 44.29 cm. What is the f-number of the lens?

B). A measurement indicates that a patient cannot clearly see any object that lies closer than 57.8 cm to the patient's eye.

i. Which of the following terms best describes this distance? a. magnification b. focal length c. near point d. far point

ii. The patient needs to be able to clearly see objects that are just 23.0 cm distant. A contact lens is prescribed. What focal length (in cm) should this lens have? Assume the lens can be modeled as an ideal thin lens, which lies adjacent to the eye.

iii. What is the power, P, of the contact lens (in diopters)?

Answers

The f-number of the lens is approximately 0.70. The distance that best describes the patient's inability to clearly see objects closer than 57.8 cm is the "near point." The focal length of the contact lens should be approximately -23.0 cm. The power of the contact lens is approximately -0.0435 diopters.

A) To calculate the f-number of a lens, we use the formula:

f-number = focal length / diameter

Given:

Focal length (f) = 31 cm

Diameter = 44.29 cm

f-number = 31 cm / 44.29 cm

f-number ≈ 0.70

Therefore, the f-number of the lens is approximately 0.70.

B) i. The distance that best describes the patient's inability to clearly see objects closer than 57.8 cm is the "near point." Therefore, the correct option is C.

The near point is the closest distance at which an object can be seen clearly.

ii. To calculate the focal length of the contact lens needed for the patient to clearly see objects at a distance of 23.0 cm, we can use the lens formula:

1/f = 1/v - 1/u

Where:

f = focal length of the lens

v = image distance (assumed to be at infinity for the eye)

u = object distance (23.0 cm)

Since the lens lies adjacent to the eye, the image distance is assumed to be at infinity (v = ∞). Therefore, the equation simplifies to:

1/f = 0 - 1/u

1/f = -1/23.0 cm

f = -23.0 cm

The focal length of the contact lens should be approximately -23.0 cm.

iii. The power (P) of a lens is given by the formula:

P = 1/f

P = 1/(-23.0 cm)

P ≈ -0.0435 diopters

Therefore, the power of the contact lens is approximately -0.0435 diopters.

To know more about focal length, refer here:

https://brainly.com/question/15365254#

#SPJ11

A sateilite is orbiting the earth just above its surface. The centripetal force making the satellite follow a circular trajectory is ust its weight, so its centripetal zeceleration is about 9.81 m s
2
. (the icceleration due to gravity near the earth's surface). If the earth's radius W about 6360 km, how Rast must the satellite be mowinn?How long will it takie for the satelife to complete one trip around this earth? A satellite is orbiting the earth just above its surface. The centripetai force making the satellite follow a circular trajectory tis justits Weight, so its centripetal acceleration is about 981 m/s
2
(the acceleration due to fravity near the earth's surfacel if the earth's rodius is about 6360 km, how tast must the satelike be movins? How long wilit take for the sataliite to complete one trip around the earti??

Answers

The satellite must be moving at a speed of about 7,905.52 m/s and its height from the surface of the earth should be about 42,155.59 m. The time taken by the satellite to complete one trip around the earth is about 50.78 minutes.

Centripetal acceleration, a = 9.81 m/s²Radius of the earth, R = 6360 km = 6,360,000 m.

Let the distance of the satellite from the center of the earth be r.

Time taken by the satellite to complete one revolution around the earth is given by:T = 2πr/v Where v is the velocity of the satellite.

Now, we know that the centripetal force acting on a body moving in a circular path is given by:F = m × a Where m is the mass of the body.

Further, we know that the gravitational force acting on a body of mass m near the surface of the earth is given by:F = m × gWhere g is the acceleration due to gravity near the surface of the earth.

Substituting the value of F in the expression of centripetal force, we get:m × g = m × ar = R + h Where h is the height of the satellite above the surface of the earth.

Substituting the value of a and simplifying, we get:h = 42,155.59 m.

Time taken by the satellite to complete one revolution around the earth is given by:T = 2πr/v.

The velocity of the satellite can be calculated as follows:

From the above equation, we get:v = √(GM/R) Where G is the universal gravitational constant and M is the mass of the earth.

Substituting the values, we get:v = 7,905.52 m/s.

Now, the distance traveled by the satellite in one revolution is equal to the circumference of the circle with radius r, i.e.C = 2πr.

Substituting the values, we get:C = 4,01,070.41 m.

Time taken by the satellite to complete one revolution around the earth is given by:T = C/vSubstituting the values, we get:T = 50.78 minutes.

Therefore, the satellite must be moving at a speed of about 7,905.52 m/s and its height from the surface of the earth should be about 42,155.59 m. The time taken by the satellite to complete one trip around the earth is about 50.78 minutes.

Learn more about gravitational force here ;

https://brainly.com/question/32609171

#SPJ11

A body slides down from rest from the top of a smooth plane of height 44.1 m and inclination 30° with the horizon. Divide the plane into three parts so that the body at the top of the plane may describe each part in equal interval of time. (g = 9.8 ms-²)

Answers

To divide the plane into three equal intervals of time, the time intervals are approximately:

t1 ≈ 0.9967 s

t2 ≈ 0.9967 s

t3 ≈ 1.9966 s

The first interval:

Since the body is at rest initially, it will take an equal amount of time to cover the first one-third of the distance. So, the time for the first interval is:

t1 = t/3

t1 ≈ 2.99 s / 3

t1 ≈ 0.9967 s

The second interval:

The body will cover the next one-third of the distance in the same time as the first interval. So, the time for the second interval is also:

t2 = t/3

t2 ≈ 0.9967 s

The third interval:

The remaining distance on the plane will be covered in the remaining time. So, the time for the third interval is:

t3 = t - t1 - t2

t3 ≈ 2.99 s - 0.9967 s - 0.9967 s

t3 ≈ 1.9966 s

To know more about time please  click :-

brainly.com/question/33137786

#SPJ11








2- Prove that the molecular field of a dielectric material is Em = E +: P 38 where E is the macroscopic electric field.

Answers

The molecular field of a dielectric material, denoted as Em, can be expressed as Em = E +: P, where E is the macroscopic electric field and P is the polarization vector. This equation represents the sum of the external electric field and the electric field induced by the polarization of the material.

In the presence of an external electric field (E), dielectric materials exhibit polarization, where the alignment of molecular dipoles creates an internal electric field (Em) within the material. The molecular field (Em) can be defined as the sum of the external field (E) and the field induced by the polarization (P) of the material, expressed as Em = E +: P.

The polarization vector (P) represents the dipole moment per unit volume and is related to the electric susceptibility (χe) of the material through the equation P = χe * E. The electric susceptibility characterizes the material's response to an applied electric field.

When the material is non-polarizable (χe = 0), there is no induced polarization, and Em reduces to E. In this case, the molecular field is equal to the macroscopic electric field. However, in polarizable dielectric materials, the polarization induced by the external field contributes to the molecular field, resulting in Em being greater than E.

Hence, the expression Em = E +: P captures the relationship between the macroscopic electric field (E) and the molecular field (Em), accounting for the polarization effects in dielectric materials.

Learn more about macroscopic here:

https://brainly.com/question/30706053

#SPJ11

The pressure at the bottom of a freshwater vessel is P. The water is poured out and replaced with seawater (density = 1025 kg/m³). The new pressure at the bottom of the beaker is

Select one:

a. greater than P.

b. equal to P.

c. Indeterminate.

d. smaller than P.

Answers

When a freshwater vessel is emptied and replaced with seawater, the new pressure at the bottom of the vessel can be determined. The possible options for the new pressure are greater than P, equal to P, indeterminate, or smaller than P.

The pressure at a certain depth in a fluid is given by the equation P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the depth.

Since the vessel is initially filled with freshwater, the pressure at the bottom is P, according to the given information.

When the water is poured out and replaced with seawater, the density of the fluid changes. Seawater has a higher density than freshwater (density of seawater = 1025 kg/m³).

As the density of the fluid increases, the pressure at the same depth also increases. Therefore, the new pressure at the bottom of the vessel will be greater than the initial pressure P.

Hence, the correct option is (a) greater than P. By replacing the freshwater with seawater, the new pressure at the bottom of the vessel will be higher than the initial pressure.

Learn more about bottom of the vessel here:

https://brainly.com/question/19465306

#SPJ11

A double-slit interference pattern is created by two Part A narrow slits spaced 0.18 mm apart. The distance between the first and the fifth minimum on a screen What is the wavelength (in nm ) of the light used in this experiment? You may want to review

Answers

Approximately 0.0188 meters or 18.8 mm is the wavelength of the light used in this experiment.

To discover out the wavelength of the light utilized within the double-slit interference experiment, we have to be utilize the equation:

λ = (d * L) / y

Where as given:

λ is the wavelength of the light

d is the spacing between the slits (0.20 mm)

L is the distance between the screen and the slits (58 cm = 0.58 m)

y is the distance between the first and the fifth minimum (6.1 mm)

By Substituting the given values into the formula:

λ = (0.20 mm * 0.58 m) / 6.1 mm

By Simplifying:

λ = (0.20 * 0.58) / 6.1 m

λ ≈ 0.0188 m

Hence, approximately 0.0188 meters or 18.8 mm is the wavelength of the light used in this experiment.

know more about wavelength

https://brainly.com/question/32900586

#SPJ4

Chester is pushing a Ca1 with 2-50kg sacks on it. Neglecting the mass of the cart, how much force will he exate it to 1.2 m/s2 (neglect friction)?

Answers

Chester will need to exert a force of 120 Newtons to accelerate the cart at a rate of 1.2 m/s^2, neglecting the mass of the cart and assuming there is no friction.

To determine the force exerted by Chester to accelerate the cart, we can utilize Newton's second law of motion, which states that the force acting on an object is equal to the product of its mass and acceleration. In this scenario, the mass of the cart itself is neglected, so the total mass to consider includes the two 50 kg sacks, resulting in a total mass of 100 kg.

Newton's second law can be expressed as F = m * a, where F is the force, m is the mass, and a is the acceleration. Substituting the given values, we have:

F = (100 kg) * (1.2 m/s^2) = 120 N

Therefore, Chester will need to exert a force of 120 Newtons to accelerate the cart at a rate of 1.2 m/s^2, neglecting the mass of the cart and assuming there is no friction. This force will provide the necessary push to overcome the inertia of the combined mass and achieve the desired acceleration. However, it is important to note that in real-world scenarios, additional factors such as friction and air resistance would need to be considered, which may require greater force exertion by Chester to achieve the desired acceleration.

To learn more about accelerate , click here:https://brainly.com/question/2303856

#SPJ11

Why are completely undamped harmonic oscillators so rare? Give an example of undamped ascillations. 2. What is causing the damped oscillations? Give an example from your everyday life for a damped oscillation.

Answers

Completely undamped harmonic oscillators are so rare because no system can be totally free of frictional forces.

Some energy is always lost to heat through friction and other non-conservative forces, causing the oscillations to eventually die out and leading to damping effects.

An example of undamped oscillations is a simple pendulum without any resistance forces like friction.

In practice, however, there are always some small damping effects that cause even pendulums to eventually come to rest.

Damped oscillations are caused by non-conservative forces, such as friction or air resistance, that oppose the motion of the oscillating object and gradually dissipate energy from the system.

An example of damped oscillation from everyday life could be a swinging door.

the door swings back and forth, friction and air resistance cause the amplitude of the oscillation to gradually decrease until the door eventually comes to a stop.

To know more about oscillators visit:

https://brainly.com/question/15780863

#SPJ11

A uniform electric field of magnitude 7.2×105 N/C points in the positive x direction. - Find the change in electric potential between the origin and the point (6.0 m , 0). -Find the change in electric potential between the origin and the point (6.0 m , 6.0 m )

Answers

The formula to find the change in electric potential between two points due to a uniform electric field is ΔV = Ed, where E is the electric field strength and d is the distance between the two points.

Therefore, we can solve both parts of the question using this

formula.1. To find the change in electric potential between the origin and the point (6.0 m, 0):

The distance d between the two points is simply 6.0 m since they lie on the x-axis. The electric field strength E is given as

7.2 × 10⁵ N/C.

Therefore, we have:

ΔV = Ed= (7.2 × 10⁵ N/C) × (6.0 m)= 4.32 × 10⁶ J/C

Note that the units of electric potential are J/C (joules per coulomb). Therefore, the change in electric potential between the two points is

4.32 × 10⁶ J/C.

2. To find the change in electric potential between the origin and the point (6.0 m, 6.0 m):

The distance d between the two points can be found using the Pythagorean theorem:

d² = 6.0² + 6.0²= 72d = √72 = 8.49 m

The electric field strength E is still 7.2 × 10⁵ N/C.

Therefore, we have:

ΔV = Ed= (7.2 × 10⁵ N/C) × (8.49 m)= 6.11 × 10⁶ J/C

Therefore, the change in electric potential between the two points is 6.11 × 10⁶ J/C.

To know more about electric potential visit:

https://brainly.com/question/28444459

#SPJ11

A 1725.0 kg car with a speed of 68.0 km/h brakes to a stop. How many cal of heat are generated by the brakes as a result? kcal

Answers

A 1725.0 kg car with a speed of 68.0 km/h brakes to a stop. The amount of heat generated by the brakes, as a result, is 69.3 kcal. To find the heat energy, we used the initial kinetic energy of the car, which is transformed into heat energy when the car brakes to a stop.

The solution to the given problem is as follows; Given, Mass of the car, m = 1725.0 kg, Speed of the car, v = 68.0 km/h = 18.89 m/s, Initial kinetic energy of the car, Ei = (1/2)mv²The car brakes to a stop, so its final velocity is 0. The kinetic energy of the car is transformed into heat energy, Q = Ei, and Heat energy Q is measured in calories. The conversion factor is 1 cal = 4.186 J. To find Q in kcal, divide the answer by 1000. Q = (1/2)mv² = (1/2)(1725.0 kg)(18.89 m/s)² = 290168.77 JQ = 290168.77 J × 1 cal/4.186 J = 69296.64 cal= 69.3 kcal (rounded to one decimal place)Therefore, the amount of heat generated by the brakes, as a result, is 69.3 kcal.

For more questions on kinetic energy

https://brainly.com/question/8101588

#SPJ8

A ball is kicked from a 30 m high cliff with a speed of 12 m/s, the ball goes straight along the ground. How long does it take for the ball to land? How far away does the ball land?
5 s,10 m
2.5 s,30 m
10 s,20 m
25 s,40 m

Answers

The vertical motion of the projectile is the same as the motion of a body thrown vertically upwards with the initial velocity of the projectile (u) from a height (h).The time of flight can be found using the formula: h = ut + (1/2) gt²

Given data: Height, h = 30 m; Initial velocity, u = 12 m/s. We need to find the time of flight and the range of the projectile.Let's first determine the time of flight of the projectile.

Here, h = 30 m, u = 12 m/s, g = acceleration due to gravity = -9.8 m/s² (as it is acting downwards)We have to use the negative sign for g as the acceleration due to gravity is acting downwards (i.e. in the opposite direction of the initial velocity).

Therefore, substituting the given values, we get;30 = 12t + (1/2) (-9.8)t²30 = 12t - 4.9t²6t² - 24t + 30 = 0 2t² - 8t + 10 = 0 t² - 4t + 5 = 0

On solving the above quadratic equation, we get:t = (4 ± √6) / 2 = 2 ± 1.2247

Therefore, the time of flight of the projectile is:t = 2.4494 sec (approx. 2.5 sec)The horizontal distance travelled by the projectile is given by the formula:

Range, R = u × time of flight = 12 m/s × 2.4494 s

Range, R = 29.39 m (approx. 30 m)

Therefore, the ball lands at a distance of approximately 30 m from the base of the cliff, and the time of flight is 2.5 s.

To know more about motion visit:

https://brainly.com/question/2748259

#SPJ11

The forces in (Figure 1) are acting on a 2.5 kg object. Part A What is a
x

, the x-component of the object's acceleration? Express your answer with the appropriate units.

Answers

In order to determine the x-component of the object's acceleration, we need to first calculate the net force acting on it along the x-axis and then use the equation F = ma to find the acceleration.

Here is how we can do this:Given, F1 = 5 N and F2 = 7 N are acting on the object in the horizontal direction, as shown in the diagram (Figure 1).

We can calculate the net force acting on the object along the x-axis by taking the vector sum of the two forces. To do this, we need to find the x-components of the two forces as follows:F1x = F1 cos 60° = (5 N) cos 60° = 2.5 N F2x = F2 cos 45° = (7 N) cos 45° = 4.95 N The x-component of the net force (Fx) is then:

Fx = F1x + F2x = 2.5 N + 4.95 N = 7.45 NNow that we know the net force along the x-axis, we can use the equation F = ma to find the acceleration of the object along the x-axis.

Rearranging this equation, we get:a = F/mSubstituting the given values, we get:a = 7.45 N/2.5 kg = 2.98 m/s², the x-component of the object's acceleration is 2.98 m/s².

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

In a binary star system, a white dwarf star orbits the massive central star as shown in the attached image in 18 days. At their closest, the stars arestudent submitted image, transcription available belowm apart. Specifystudent submitted image, transcription available below

-average speed of a dwarf star between 0-9 days.

-velocity of the dwarf star at day 0.

Answers

The average speed of the white dwarf star between 0-9 days in the binary star system.

The velocity of the white dwarf star at day 0 in the binary star system.

To determine the average speed of the white dwarf star between 0-9 days, we need to calculate the total distance traveled by the star during this time period and divide it by the total time elapsed. Since the distance is not provided in the question, we can assume it remains constant throughout the orbit. Therefore, the average speed of the dwarf star between 0-9 days would be the distance divided by the time taken, which is (distance between the stars) divided by 9 days.

At day 0, the white dwarf star would be at its closest position to the central star. In a binary star system, the velocity of an object in orbit is highest at the closest point and decreases as it moves away. Therefore, at day 0, the white dwarf star would have its highest velocity in the entire orbit.

Learn more about Velocity

brainly.com/question/30559316?

#SPJ11

A certain freely falling object, released from rest, requires 1.45 s to travel the last 29.0 m before it hits the ground. m/s (b) Find the total distance the object travels during the fall. m

Answers

The total distance the object travels during the fall is approximately 10.25 meters.

To find the total distance the object travels during the fall, we need to determine the distance it traveled before the last 29.0 meters.

Let's start by calculating the object's velocity when it reaches the last 29.0 meters before hitting the ground.

Using the formula for constant acceleration:

v = u + at

Where:

v = final velocity (unknown)

u = initial velocity (0 m/s, as it is released from rest)

a = acceleration due to gravity (approximately 9.8 m/[tex]s^{2}[/tex])

t = time taken to travel the last 29.0 meters (1.45 s)

Rearranging the equation:

v = u + at

v = 0 + (9.8 m/[tex]s^{2}[/tex]) * 1.45 s

v = 14.21 m/s (rounded to two decimal places)

Now that we know the final velocity, we can calculate the total distance traveled using the formula:

s = ut + (0.5)

Where:

s = total distance traveled

u = initial velocity (0 m/s)

t = time taken to travel the last 29.0 meters (1.45 s)

a = acceleration due to gravity (approximately 9.8 m/[tex]s^{2}[/tex])

Rearranging the equation:

s = ut + (0.5)

s = 0 * 1.45 + (0.5) * (9.8 m/[tex]s^{2}[/tex]) * (1.45 [tex]s^{2}[/tex])

s = 0 + (0.5) * 9.8 * 2.1025

s = 10.2465 m (rounded to four decimal places)

Therefore, the total distance the object travels during the fall is approximately 10.25 meters.

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

You are at BNA (Nashville Airport) watching commercial airliners take off. At a distance of 1,048.7 away from the plane, you record a sound intensity level of 74.82 decibels. If you move such that the new sound intensity level is 90.74 decibels, how far are you away from the plane (in meters)? Note: In the space below, please enter you numerical answer. Do not enter any units. If you enter units, your answer will be marked as incorrect.

Answers

At a distance of 1,048.7 away from the plane, you record a sound intensity level of 74.82 decibels. If you move such that the new sound intensity level is 90.74 decibels, you are approximately 66 meters away from the plane. Numerical answer is 550.0.

To solve this problem, we can use the inverse square law for sound propagation. According to the inverse square law, the intensity of sound decreases as the square of the distance from the source increases. Mathematically, the inverse square law can be expressed as:

I₁/I₂ = (r₂/r₁)²

Where:

I₁ and I₂ are the initial and final sound intensities, respectively,

r₁ and r₂ are the initial and final distances from the source, respectively.

Let's substitute the given values into the formula and solve for the final distance (r₂):

I₁ = 10^(I₁/10)  [Converting decibel intensity to regular intensity]

I₂ = 10^(I₂/10)  [Converting decibel intensity to regular intensity]

(r₂/r₁)² = I₁/I₂

(r₂/r₁)² = (10^(I₁/10))/(10^(I₂/10))

Taking the square root of both sides:

r₂/r₁ = √[(10^(I₁/10))/(10^(I₂/10))]

r₂ = r₁ * √[(10^(I₁/10))/(10^(I₂/10))]

Now we can substitute the given values into the formula:

r₁ = 1048.7 meters (initial distance)

I₁ = 74.82 decibels (initial sound intensity level)

I₂ = 90.74 decibels (final sound intensity level)

r₂ = 1048.7 * √[(10^(74.82/10))/(10^(90.74/10))]

Calculating the expression inside the square root:

(10^(74.82/10))/(10^(90.74/10)) = 0.003975

Substituting the result back into the formula:

r₂ = 1048.7 * √0.003975

r₂ = 1048.7 * 0.06304

r₂ ≈ 65.999328

Rounding to the nearest meter:

r₂ ≈ 66 meters

Therefore, you are approximately 66 meters away from the plane.

To know more about sound intensity click here:

https://brainly.com/question/32194259

#SPJ11

The wave bpeod on a string under tention is 190 m/s. What is the speed if the tension is doubled? Express your answer in meters per second.

Answers

If the tension is doubled, the new wave speed would be 268.96 m/s.

The speed of a wave on a string under tension is given by the equation:

v = √(T/μ),

where v is the wave speed, T is the tension in the string, and μ is the linear density of the string.

If the tension is doubled, the new tension would be 2T. Therefore, the new wave speed can be calculated as:

v' = √(2T/μ).

We know the initial wave speed v = 190 m/s, we can express the equation in terms of the initial tension T:

190 = √(T/μ).

Squaring both sides of the equation, we get:

[tex]190^2[/tex] = T/μ.

Solving for T/μ, we have:

T/μ =[tex]190^2[/tex].

Calculate the new wave speed v':

v' = √(2T/μ) = √(2 * [tex]190^2[/tex]).

v' ≈ √(2 * 36100) ≈ √72200 ≈ 268.96 m/s.

To know more about wave speed refer here

https://brainly.com/question/32040742#

#SPJ11

Q2. The International Space Station (ISS) orbits the Earth every 90 minutes. The Earth has an average radius of 6371 km and an approximate mass of me = 5.97 x 1024 kg. The gravitational force between two massive objects is calculated using the following formula: m1m₂ FG = G where G = 6.674 × 10-11 m³/kg.s² " 7-2 If we assume the Earth to be spherical and the ISS orbit perfectly circular: a) Calculate the angular velocity of the ISS. (1) (5) b) Calculate the height above the Earth's surface at which the ISS orbits. c) Calculate the tangential (linear) speed the ISS must travel Give your answer in km/h, rounded to the nearest whole number. (2) (8 marks) maintain this orbit.

Answers

a) The angular velocity of the ISS is  2π/5400.

b) The height above the Earth's surface at which the ISS orbits can be determined using the formula h = R + Re, where R is the radius of the Earth and Re is the radius of the ISS orbit.

c) The tangential speed of the ISS can be calculated using the formula v = ωr, where ω is the angular velocity and r is the radius of the ISS orbit.

a) To calculate the angular velocity of the ISS, we use the formula ω = 2π/T, where T is the orbital period. Given that the ISS orbits the Earth every 90 minutes, we convert the time to seconds: T = 90 minutes × 60 seconds/minute = 5400 seconds. Plugging this value into the formula, we find ω = 2π/5400.

b) The height above the Earth's surface at which the ISS orbits can be determined using the formula h = R + Re, where R is the radius of the Earth and Re is the radius of the ISS orbit. The radius of the Earth is given as 6371 km, and the ISS orbit is assumed to be perfectly circular. Therefore, the radius of the ISS orbit is equal to the average distance between the center of the Earth and the ISS. So, Re = R + h.

c) The tangential speed of the ISS is given by the formula v = ωr, where ω is the angular velocity and r is the radius of the ISS orbit. We can calculate v by substituting the values of ω and Re into the formula.

Using the calculated values of ω, Re, and the formula for v, we can determine the tangential speed of the ISS.

Learn more about angular velocity here:

brainly.com/question/32217742

#SPJ11

A particle in an experimental apparatus has a velocity given by v=k
s

, where v is in millimeters per second, the position s is millimeters, and the constant k=0.28 mm
1/2
s
−1
. If the particle has a velocity v
0

=3 mm/s at t=0, determine the particle position, velocity, and acceleration as functions of time. To check your work, evalutate the time t, the position s, and the acceleration a of the particle when the velocity reaches 15 mm/s. Answers:
t=
s=
a=


s
mm
mm/s
2

Answers

The correct answer is t = 0.0141 s,s = 3084.5 mm,a = -2.936 mm/s^2 (approx). Velocity of particle, v = k s,where k = 0.28 mm^(1/2)s^(-1), s is the position in mm. Particle velocity, v0 = 3 mm/s, at t = 0.

: We know that, v = k s. Differentiating both sides with respect to time, we get,dv/dt = k ds/dt.

Here, ds/dt = v/kSo, dv/dt = k v/k = k^(1/2)v.

Differentiating again with respect to time, we get,d^2s/dt^2 = d/dt(k^(1/2)v)d^2s/dt^2 = k^(1/2)dv/dt.

Therefore, d^2s/dt^2 = k^(1/2)×k^(1/2)v = k v = k(k s) = k^2 s.

Here, we have the differential equation of acceleration as,d^2s/dt^2 = k^2 s.

Now, the standard form of this equation is given by,d^2y/dx^2 + k^2 y = 0.

Comparing the above equations, we have,y = s, x = t.

Therefore, the solution of the above differential equation is given by,s = Asin(kt) + Bcos(kt), where A and B are constants.

Substituting the initial condition, v0 = 3 mm/s at t = 0.

We have, v = k s = k[Asin(kt) + Bcos(kt)]At t = 0, v = 3 mm/sSo, 3 = k[Bcos(0)] = Bk.

Therefore, B = 3/kAlso, v = k s = k[Asin(kt) + Bcos(kt)]v = kAsin(kt) + 3, at t = 0⇒ 3 = kA⇒ A = 3/k.

Therefore, v = k[3/k sin(kt) + 3/k cos(kt)] = 3sin(kt) + 3cos(kt) = 3 sin(kt + π/4).

Thus, position of the particle as a function of time is,s = 3/k sin(kt) + 3/k cos(kt) = 3/k sin(kt + π/4).

Differentiating s w.r.t. t, we get,ds/dt = 3k/k cos(kt) - 3k/k sin(kt)ds/dt = 3k/k(cos(kt) - sin(kt))ds/dt = 3(cos(kt) - sin(kt)).

Differentiating again w.r.t. t, we get,d^2s/dt^2 = -3k sin(kt) - 3k cos(kt)d^2s/dt^2 = -3k(sin(kt) + cos(kt))d^2s/dt^2 = -3[cos(kt + π/2)]d^2s/dt^2 = -3sin(kt).

Therefore, acceleration as a function of time is given by a = -3sin(kt).

Now, given, velocity of particle, v = k s,where k = 0.28 mm^(1/2)s^(-1), s is the position in mm.

To determine the time t, when the velocity reaches 15 mm/s, we have,15 = k s(t)At t = 0, v = 3 mm/s.

Let, at time t, the velocity is 15 mm/s, then we have,15 = k s(t) => 15 = 0.28 s(t)^(1/2) => s(t) = (15/0.28)^2s(t) = 3084.5 mm.

Now, we have s(t) = 3/k sin(kt) + 3/k cos(kt)At t = t0, when the velocity reaches 15 mm/s, we have s(t0) = 3084.5 mm and, v(t0) = 15 mm/s.

From the equation, v = k[3/k sin(kt) + 3/k cos(kt)], we get,15 = 0.28[3/k sin(kt0) + 3/k cos(kt0)] => 53.57 = sin(kt0) + cos(kt0).

From the above equation, we can solve for t0 by substituting sin(kt0) = 53.57 - cos(kt0) and taking cos(kt0) common,53.57 - cos(kt0) = cos(kt0) (tan(kt0) + 1).

On solving the above equation, we get,t0 = 0.0141 s.

Thus, time t = t0 = 0.0141 s, position s = s(t0) = 3084.5 mm, acceleration a = -3sin(kt0) = -2.936 mm/s^2 (approx).

Hence, the required answers are,t = 0.0141 s,s = 3084.5 mm,a = -2.936 mm/s^2 (approx).

Learn more about acceleration here ;

https://brainly.com/question/2303856

#SPJ11

The first drawing shows three displacement vectors, A,B, and C, which are added in a tail-to-head fashion. The resultant vector is labeled R. Which of the following drawings shows the correct resultant vector for A+B−C ?

Answers

The correct resultant vector for A+B−C is shown in Drawing 2.

To find the resultant vector for A+B−C, we need to add vectors A and B and then subtract vector C. The tail-to-head method is used for vector addition and subtraction.

In Drawing 2, we can see that vector A is represented by an arrow pointing to the right, vector B is represented by an arrow pointing upward, and vector C is represented by an arrow pointing to the left. When we add vectors A and B, we place the tail of vector B at the head of vector A, resulting in a new vector that points diagonally upward to the right. Then, when we subtract vector C, we place the tail of vector C at the head of the resulting vector, pointing to the left.

Drawing 2 accurately represents the resultant vector for A+B−C based on the given information and the tail-to-head addition and subtraction method.

Certainly! Let's provide a more detailed explanation of vector addition and subtraction.

In the first step of the problem, we are given three displacement vectors: A, B, and C. To find the resultant vector for A+B−C, we need to add vectors A and B first and then subtract vector C.

Using the tail-to-head method, we start by placing the tail of vector B at the head of vector A. This means that the initial position of vector B is adjusted so that it starts at the end point of vector A. The resultant vector of A+B is drawn from the tail of vector A to the head of vector B, connecting these two points.

Now, to subtract vector C, we place the tail of vector C at the head of the resultant vector from A+B. This tail-to-head connection represents the subtraction of vector C from the previous result.

In Drawing 2, the resultant vector R is correctly represented. It shows vector A added to vector B and then vector C subtracted from the result. The resulting arrow points diagonally upward to the right, reflecting the combined effect of the three vectors.

It's important to understand that vector addition follows the commutative property, meaning that changing the order of addition (A+B or B+A) does not affect the result. However, vector subtraction is not commutative, and the order matters.

Learn more about resultant vector

brainly.com/question/31155986

#SPJ11




What kind of star is most likely to become a white-dwarf supernova? an O star a white dwarf star with a red giant binary companion a star like our Sun a pulsar

Answers

A white dwarf star with a red giant binary companion is most likely to become a white-dwarf supernova.

A supernova is an event in which a star, particularly a massive one, undergoes a catastrophic explosion, radiating an enormous amount of energy. When a star explodes, it briefly outshines an entire galaxy, ejecting up to 95% of its material in the form of a rapidly expanding shockwave. A white-dwarf supernova is a supernova that happens when a white dwarf star reaches the end of its life.

These stars are smaller and less massive than other types of stars, and they eventually run out of fuel and begin to cool down. When the temperature in the core of the star drops below a certain level, a thermonuclear reaction begins to take place, causing a massive explosion. A white dwarf star with a red giant binary companion is most likely to become a white-dwarf supernova.

You can learn more about Supernova at: brainly.com/question/32402054

#SPJ11

The voltage V ,in an electric circuit is measured in millivolts (mV) and is given by the formula V=0.2sin0.1π(t−0.5)+0.3, where t is the time in seconds from the start of an experiment. Use the graph of the function to estimate how many seconds in the 40 second interval starting at t=0 during which the voltage is below 0.21mV Select one:
a. 14.06
b. 7.03
c. 12.97
d. 27.16

Answers

In order to find the seconds in the 40-second interval starting at t=0 during which the voltage is below 0.21mV, we need to find out the value of t when V < 0.21.

Given function is V=0.2sin0.1π(t−0.5)+0.3.

Therefore, 0.2sin0.1π(t−0.5)+0.3 < 0.21 can be written as0.2sin0.1π(t−0.5) < 0.21 - 0.3=-0.09sin0.1π(t−0.5) < -0.45sin0.1π(t−0.5) = -(0.1π/2) + nπt = [-(0.1π/2) + nπ]/0.1π + 0.5where n is any integer.

In the given function, the coefficient of t is 0.1π. Hence the time period of this function can be given by T = 2π / (0.1π)=20 seconds.

Now we need to find out how many times the value of sin0.1π(t−0.5) will be less than -0.45 during the first 40 seconds, starting from t = 0.

We need to check the function for t=0, t=20, and t=40.

By doing so, we get the following values of t:t = 0 V = 0.2sin0.1π(-0.5)+0.3= 0.2sin(-π/20)+0.3= 0.2493t = 20 V = 0.2sin0.1π(19.5)+0.3= 0.7t = 40 V = 0.2sin0.1π(39.5)+0.3= 0.2507

From the above values, it is clear that sin0.1π(t−0.5) will be less than -0.45 during the time interval t = 2 to t = 4 seconds and during the time interval t = 18 to t = 22 seconds.

Therefore, the number of seconds in the 40 second interval starting at t = 0 during which the voltage is below 0.21 mV is:2 + (22 - 18) = 2 + 4 = 6 seconds.

Therefore, option (B) 7.03 seconds is incorrect as the correct answer is 6 seconds.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11

Other Questions
Two stationary positive point charges, charge 1 of magnitude 3.40nC and charge 2 of magnitude 1.50nC, are separated by a distance of 42.0 cm. What is the speed v final of the electron when it is 10.0 cm from charge 1 ? An electron is released from rest at the point midway between the two charges, and it moves Express your answer in meters per second. along the line connecting the two charges. Explain the Functions of Management Accounting Systems with realworld examples. Implement these functions in your organization. a) Succinctly explain the principles of social change?b) What advantages and disadvantages does social change bring?c) Discuss the main methods of dispute resolution in the context of law and society?d) The hybrid and primary resolution process are key in resolving disputes.Explain with relevant examples these resolution processes? Bryce Co. sales are $900,000, variable costs are $469,900, and operating income is $257,000. The contribution margin ratio is a. 47,8% b. 43.5% c. 52.2% d. 57.4% Consider the following function. f(3)=14,f (3)=2.2;x=3.5 (a) Write a linearization for f with respect to x. f L(x)= (b) Use the linearization to estimate f at the given input. fL (3.5) = ___ Which of the following is the best definition of grammar? A. Listing all of the possible tense of a verb, in singular and plural as well as first, second, and the person B. Determining whether a noun is proper, common , collective, abstract, or concrete C. Understanding and applying the parts of speech to communicate an organized message D. Improving your language skills through learning proper pronunciation Paddu Companys budgeted sales and direct materials purchases follow. January was the first month of operations. Budgeted sales: January $139,000; February $188,600; March $251,200 Budgeted direct materials purchases: January $40,300; February $35,300; March $40,200 Paddus sales are 35% cash and 65% credit. It collects credit sales 40% in the month of sale, 60% in the month following the sale. Paddus purchases are 40% cash and 60% on account. It pays purchases on account 60% in the month of purchase, and 40% in the month following purchase. Prepare a schedule of expected collections for January, February, and March. Paddu Company Expected Collections January February Collections: Cash sales $ $ $ Collections of credit sales: Definition of physical change Accumulation of undigested molecules would most directly be an indication of _____ dysfunction.a) ribosomeb) mitochondrialc) lysosomald) chloroplaste) endoplasmic reticulum the payback period measures the amount of time the company must wait to recoup its initial investment. Answer the following questions:When do we use a Latin Square?Can you give an example of misuse of a Latin Square?Design as many as Latin Squares as you can. Gross margin:Group of answer choicesc) can readily be compared to industry standards.a) is often expressed as a percentage.d) All of these are correct.b) equals revenue from sales less cost of goods sold. If a 1 kg object is dropped from a height of 5 m, what will it's speed (in m/s ) be when it hits the ground? You can assume that g=10 m/s^2. Amrita is a junior analyst at the Bank of Baroda with a monthly salary of 112,235 . She owns 149,647 worth of stocks and has a37,411 loan from the bank. Her monthly expenses are 89,788 and her credit card balance is 5,836 What is Amrita's net worth? A stock analyst plots the price per share of a certain common stock as a function of time and finds that it can be average price of the stock over the first eight years. The average price of the stock is $__________ An investor invests 40% of his wealth in a risky asset with an expected rate of return of 15% and a variance of 4%, and 60% in a treasury bill (risk-free asset) that pays a rate of 6%. The correlation between two assets is zero. His portfolio's expected rate of return and standard deviation are 9,6% and 8% respectively. Use this information provided to calculate the Sharpe ratio. What is the meaning of a "colonial legacy"? Discuss anydisadvantages and possible advantages byproviding country-specific evidence for both sides of the argument.[350 words] What is the day after Thanksgiving in USA? FILL THE BLANK.points ______ the production possibilities curve represent a maximum output of two products as long as the economy is fully employed. multiple choice question. inside below along beyond Jordan invested the profit of her business in an investment fund that was earning 2.25% compounded monthly. She began withdrawing $3,500 from this fund every 6 months, with the first withdrawal in 4 years. If the money in the fund lasted for the next 7 years, how much money did she initially invest in the fund?