The following is an excerpt from a New York Times article; To Treat Depression. Drugs or Therapy by Richard Friedman. M.D. The article appeared on January 8th at 8 am. Dr. Helen Mayberg, a professor of psychiatry at Emory University, recently published a study in JAMA Psychiatry that identified a potential biomarker in the brain that could predict whether a depressed patient would respond better to psychotherapy or antidepressant medication. Using PET scans, she randomized a group of depressed patients to either 12 weeks of treatment with the S.S.R.I. antidepressant Lexapro or to cognitive behavior therapy, which teaches patients to correct their negative and distorted thinking. Over all, about 40 percent of the depressed subjects responded to either treatment. Is the value " 40 percent" a statistic or a parameter? statistic parameter

Answers

Answer 1

The value "40 percent" is a statistic that represents the proportion of depressed subjects in a sample who responded to either psychotherapy or antidepressant medication.

In the context of the excerpt, the value "40 percent" represents a statistic. A statistic is a numerical value calculated from a sample and is used to estimate or describe a characteristic of a population. In this case, the sample consisted of depressed patients who were randomized into two treatment groups: one receiving the antidepressant Lexapro and the other undergoing cognitive behavior therapy. The statistic of 40 percent represents the proportion of the depressed subjects in the sample who responded to either treatment.

A parameter, on the other hand, refers to a numerical value that describes a characteristic of an entire population. Parameters are typically unknown and estimated using statistics. Since the excerpt does not provide information about the entire population of depressed patients, we cannot determine the parameter based on this excerpt alone.

In summary, the value "40 percent" is a statistic as it represents the proportion of the depressed subjects in the sample who responded to treatment.

To learn more about statistic click here

brainly.com/question/31538429

#SPJ11


Related Questions

8 people are enterd in a race. If there are no ties, in how many ways can the first three places come out?

Answers

Answer:

336 ways

Step-by-step explanation:

The number of ways the first three places can come out can be calculated using the concept of permutations. In this case, we want to find the number of permutations of 8 objects taken 3 at a time, which is denoted as P(8, 3).

The formula for permutations is:

P(n, r) = n! / (n - r)!

where n is the total number of objects and r is the number of objects being selected.

Using this formula, we can calculate:

P(8, 3) = 8! / (8 - 3)!

= 8! / 5!

= (8 * 7 * 6 * 5!) / 5!

= 8 * 7 * 6

= 336

Therefore, there are 336 different ways the first three places can come out in the race.

Answer all the questions Question One a. Show the equations for calculating 1. Bulk Volume of a reservoir in ft 3 and barrels 2 . Pore Volume of a reservoir in ft 3 and barrel 3 . Hydrocarbon Pore Volume in ft 3 and in barrel.

Answers

The equations for Bulk Volume of a reservoir in ft³ is VB = A*h and in barrels is VB = (A*h) / 5.615. The equations for Pore Volume of a reservoir in ft³ is VP = φ*VB and in barrels is VP = (φ*VB)/5.615. The equations for Hydrocarbon Pore Volume in ft³ is VHC = φ*S*VB and in barrels is VHC = (φ*S*VB)/5.615.

The equations for calculating the bulk volume, pore volume, and hydrocarbon pore volume of a reservoir are as follows:

1. Bulk Volume (VB):

In cubic feet (ft³):VB = A * hIn barrels (bbl):VB = (A * h) / 5.615

Where:

VB = Bulk Volume

A = Cross-sectional area of the reservoir in square feet (ft²)

h = Thickness of the reservoir in feet (ft)

2. Pore Volume (VP):

In cubic feet (ft³):VP = φ * VBIn barrels (bbl):VP = (φ * VB) / 5.615

Where:

VP = Pore Volume

φ = Porosity of the reservoir (dimensionless)

VB = Bulk Volume

3. Hydrocarbon Pore Volume (VHC):

In cubic feet (ft³):VHC = φ * S * VBIn barrels (bbl):VHC = (φ * S * VB) / 5.615

Where:

VHC = Hydrocarbon Pore Volume

φ = Porosity of the reservoir (dimensionless)

S = Saturation of hydrocarbons in the reservoir (dimensionless)

VB = Bulk Volume

The conversion factor from cubic feet (ft³) to barrels (bbl) is 5.615.

To know more about Bulk Volume, refer to the link :

https://brainly.com/question/29571126#

#SPJ11

Given a normal population whose mean is 410 and whose standard deviation is 20, find each of the following:
A. The probability that a random sample of 3 has a mean between 422.470766 and 431.015550.
Probability =
B. The probability that a random sample of 16 has a mean between 407.750000 and 419.300000.
Probability =
C. The probability that a random sample of 30 has a mean between 406.604120 and 412.702098.
Probability =

Answers

A.  between 422.470766 and 431.015550 is approximately 0.008.

B.  between 407.750000 and 419.300000 is approximately 0.928.

C. between 406.604120 and 412.702098 is approximately 0.661.

In order to calculate these probabilities, we can use the Central Limit Theorem, which states that the sampling distribution of the sample means will approach a normal distribution, regardless of the shape of the original population, as the sample size increases. We can approximate the sampling distribution of the means using a normal distribution with the same mean as the population mean and a standard deviation equal to the population standard deviation divided by the square root of the sample size.

For part A, we calculate the z-scores corresponding to the lower and upper bounds of the sample mean range, which are (422.470766 - 410) / (20 / sqrt(3)) ≈ 3.07 and (431.015550 - 410) / (20 / sqrt(3)) ≈ 4.42, respectively. We then use a standard normal distribution table or a calculator to find the probability that a z-score falls between these values, which is approximately 0.008.

For part B, we follow a similar approach. The z-scores for the lower and upper bounds are (407.75 - 410) / (20 / sqrt(16)) ≈ -0.44 and (419.3 - 410) / (20 / sqrt(16)) ≈ 1.13, respectively. The probability of a z-score falling between these values is approximately 0.928.

For part C, the z-scores for the lower and upper bounds are (406.60412 - 410) / (20 / sqrt(30)) ≈ -1.57 and (412.702098 - 410) / (20 / sqrt(30)) ≈ 0.58, respectively. The probability of a z-score falling between these values is approximately 0.661.

These probabilities indicate the likelihood of obtaining sample means within the specified ranges under the given population parameters and sample sizes.

To learn more about probabilities click here, brainly.com/question/31828911

#SPJ11


Given that v is inversely related to w-5, If v-8 when w8, what is w when v=6?

Answers

Answer:

v = 6, w is equal to 9.

Step-by-step explanation:

We are given that v is inversely related to w - 5. This can be represented mathematically as:

v = k/(w - 5)

where k is a constant of proportionality.

We can use this relationship to find the value of k:

v = k/(w - 5)

v(w - 5) = k

Now we can use the value v = 8 when w = 8 to find k:

8(8 - 5) = k

24 = k

So our equation is:

v = 24/(w - 5)

Now we can use this equation to find w when v = 6:

6 = 24/(w - 5)

w - 5 = 24/6

w - 5 = 4

w = 9

Therefore, when v = 6, w is equal to 9.

A newspaper published an article about a study in which researchers subjected laboratory gloves to stress. Among 225 vinyl gloves, 67% leaked viruses. Among 225 latex gloves, 8% leaked viruses. Using the accompanying display of the technology results, and using a 0.01 significance level, test the claim that vinyl gloves have a greater virus leak rate than latex gloves. Let vinyl gloves be population 1.

Answers

To test the claim that vinyl gloves have a greater virus leak rate than latex gloves, we compare the virus leak rates of 225 vinyl gloves (67% leaked) and 225 latex gloves (8% leaked) using a significance level of 0.01.

To test this claim, we can perform a hypothesis test by setting up the null and alternative hypotheses:

Null Hypothesis (H0): The virus leak rate for vinyl gloves is equal to or less than the virus leak rate for latex gloves.

Alternative Hypothesis (Ha): The virus leak rate for vinyl gloves is greater than the virus leak rate for latex gloves.

Using the provided data, we can calculate the test statistic and p-value to make a decision.

We can use the normal approximation to the binomial distribution since the sample sizes are large enough. The test statistic can be calculated using the formula:

z = (p1 - p2) / sqrt(p * (1 - p) * ((1/n1) + (1/n2)))

where p1 and p2 are the sample proportions (virus leak rates) of vinyl gloves and latex gloves, n1 and n2 are the respective sample sizes, and p is the pooled proportion calculated as (x1 + x2) / (n1 + n2).

Once the test statistic is calculated, we can find the p-value associated with the observed statistic using a standard normal distribution table or statistical software.

If the p-value is less than the significance level of 0.01, we reject the null hypothesis and conclude that there is evidence to support the claim that vinyl gloves have a greater virus leak rate than latex gloves. Otherwise, we fail to reject the null hypothesis.

Learn more about hypothesis test here: brainly.com/question/14587073

#SPJ11

How many strings of 5 upper case letters of the English alphabet
start or end with A? Letters could be repeted.

Answers

There are 913,952 strings of 5 uppercase letters of the English alphabet that start or end with A.

To find the number of strings of 5 uppercase letters of the English alphabet that start or end with A, we can consider the two cases separately: starting with A and ending with A.

Case 1: Starting with A

In this case, we have one fixed letter A at the beginning, and the remaining four letters can be any uppercase letter, including A. So, there are 26 options for each of the remaining four positions, giving us a total of 26^4 possible strings.

Case 2: Ending with A

Similarly, we have one fixed letter A at the end, and the remaining four letters can be any uppercase letter, including A. Again, there are 26 options for each of the remaining four positions, giving us another 26^4 possible strings.

Since the two cases are mutually exclusive, to find the total number of strings, we need to sum the number of strings in each case:

Total number of strings = Number of strings starting with A + Number of strings ending with A

                     = 26^4 + 26^4

                     = 2 * 26^4

                     = 2 * 456,976

                     = 913,952

Therefore, there are 913,952 strings of 5 uppercase letters of the English alphabet that start or end with A.

To learn more about REPETATION  click here:

brainly.com/question/32809693

#SPJ11

A Group of 10 people sits at a circular table to discuss, every time the leader of the group who always organise the discussion sits at the same seat at the table, the other 9 seats are variable, there are 3 persons of the group do not like sitting next to each other and reject to do that.
How many arrangements the group members can sit around the table?

Answers

In this scenario, a group of 10 people is sitting at a circular table for a discussion. One person, the leader, always sits in the same seat, while the other 9 seats are variable. However, there are 3 individuals in the group who do not want to sit next to each other. The task is to determine the number of arrangements for the group members around the table.

To solve this problem, we can break it down into two steps. First, we arrange the 3 individuals who do not want to sit next to each other. This can be done using the principle of permutations without repetition. Since there are 3 individuals to arrange, we have 3! (3 factorial) ways to arrange them.

Next, we arrange the remaining 7 individuals (including the leader) and the empty seats. Since the table is circular, we consider it as a circular permutation. The number of circular permutations for 7 individuals is (7-1)! = 6!.

Finally, we multiply the number of arrangements for the 3 individuals by the number of circular permutations for the remaining 7 individuals. So, the total number of arrangements is 3! * 6!.

In general, for a circular table with n seats and m individuals who do not want to sit next to each other, the number of arrangements would be m! * (n-m)!.

To learn more about Variable - brainly.com/question/29696241

#SPJ11

If, in a one-tail hypothesis test where H 0 is only rejected in the upper tal, the Z ST

AT=−1.01, what is the statistical decision if the null hypothesis is tested at the 0.10 level of significance? a. Compute the p-value for this test. (Round to the nearest four decimal places to the right of the decimal point.) A. -value =2 ∗ (1−NORM-S.DIST (−1.01,1))=1.688 B. p-value = NORM.S.DIST (−1.01,1)=0.1662 C. p-value =2 ∗ NORM.S.DIST (−1.01,1)=0.3125 D. p-value =1-NORM.S.DIST (−1.01,1)=0.8438 b. What is the statistical decision? A. Since the p-value is less than α=0.10, reject H 0
B. Since the p-value is greater than α=0.10, reject H 0
C. Since the p-value is greater than α=0.10, do not rejoct H 0
D. Since the p-value is less than α=0.10, do not rejoct H 0 .

Answers

The answer to this question is option A. Since the p-value is less than α=0.10, reject H0. Given that the Z stat= -1.01 and the null hypothesis is tested at the 0.10 level of significance, we are to determine the statistical decision and compute the p-value for this test.

To compute the p-value for this test, we use the formula, p-value = 2 * (1 - NORM.S.DIST (-1.01, 1))

= 0.1688 (rounded to 4 decimal places).

Therefore, the p-value for this test is 0.1688.To determine the statistical decision, we check if the p-value is less than or greater than α (alpha) which is the level of significance. If the p-value is less than α, we reject H0. If it is greater than α, we fail to reject H0. Given that the p-value is less than α = 0.10, we reject H0.

Therefore, the statistical decision is A. Since the p-value is less than α=0.10, reject H0.

To know more about question visit:

https://brainly.com/question/31278601

#SPJ11

Average salary is $47,500. Normally distributed with a standard
deviation of $5,200. Take a sample of n = 45 h. What is the probability of the average starting salary in your sample being in excess of $50,000 (to 4 decimal places)? A. i. For all possible samples the same size as yours, what percent of average starting salaries would be no more than $46,000 (to 4 decimal places)? A j. For all possible samples the same size as yours, 5% of the average starting salaries will be below what amount (to 2 decimal places with no commas)? \$ A k. For all possible samples the same size as yours, 3% of the average starting salaries will be above what amount (to 2 decimal places with no commas)? \$ A

Answers

In summary, to solve these problems, we need to apply the concept of the central limit theorem and use z-scores to find the corresponding probabilities or percentiles in the normal distribution

To calculate the probability of the average starting salary in the sample being in excess of $50,000, we can use the central limit theorem. Since the sample size is large (n = 45) and the population is normally distributed, the sample means will also be normally distributed. We need to calculate the z-score for the value $50,000 using the formula z = (x - μ) / (σ / √n). Substituting the values, we have z = ($50,000 - $47,500) / ($5,200 / √45). Using the z-table or a calculator, we can find the probability corresponding to the z-score, which represents the probability of the average starting salary being in excess of $50,000.

To determine the percentage of average starting salaries that would be no more than $46,000, we can use the same approach as above. Calculate the z-score using the formula z = ($46,000 - $47,500) / ($5,200 / √45), and then find the corresponding probability. Multiplying the probability by 100 gives us the percentage.

To find the value below which 5% of average starting salaries would fall, we need to find the z-score corresponding to the cumulative probability of 0.05. Using the z-table or a calculator, we can find the z-score and then convert it back to the corresponding salary value using the formula z = (x - μ) / (σ / √n).

To find the value above which 3% of average starting salaries would fall, we follow a similar process. Find the z-score corresponding to a cumulative probability of 0.97 (1 - 0.03), and then convert it back to the salary value.

learn more about average salary here:

https://brainly.com/question/28001920

#SPJ11

In a study of red/green color blindness, 650 men and 3000 women are randomly selected and tested. Among the men, 55 have red/green color blindness. Among the women, 6 have red/green color blindness. Test the claim that men have a higher rate of red/green color blindness.
(Note: Type ��p_m ?? for the symbol p m , for example p_mnot=p_w for the proportions are not equal, p_m>p_w for the proportion of men with color blindness is larger, p_m (a) State the null hypothesis: ___________
(b) State the alternative hypothesis: ____________
(c) The test statistic is ______________
(e) Construct the 95 % confidence interval for the difference between the color blindness rates of men and women.
________<(p m ?p w )< _________

Answers

The study aims to test the claim that men have a higher rate of red/green color blindness compared to women. A sample of 650 men and 3000 women was selected, and the number of individuals with red/green color blindness was recorded. The null hypothesis states that the proportions of men and women with color blindness are equal, while the alternative hypothesis suggests that the proportion of men with color blindness is larger. The test statistic can be calculated using the proportions of color blindness in each group. Additionally, a 95% confidence interval can be constructed to estimate the difference in color blindness rates between men and women.

(a) The null hypothesis: p_m = p_w (The proportion of men with color blindness is equal to the proportion of women with color blindness.)

(b) The alternative hypothesis: p_m > p_w (The proportion of men with color blindness is larger than the proportion of women with color blindness.)

(c) The test statistic: z = (p_m - p_w) / sqrt(p_hat * (1 - p_hat) * (1/n_m + 1/n_w))

Here, p_m and p_w represent the proportions of men and women with color blindness, n_m and n_w represent the sample sizes of men and women, and p_hat is the pooled proportion of color blindness.

(e) The 95% confidence interval for the difference between the color blindness rates of men and women can be calculated as:

(p_m - p_w) ± z * sqrt((p_m * (1 - p_m) / n_m) + (p_w * (1 - p_w) / n_w))

To know more about null hypothesis here: brainly.com/question/30821298

#SPJ11

For each of the following integrals, give a power or simple exponential function that if integrated on a similar infinite domain will have the same convergence or divergence behavior as the given integral, and use that to predict whether the integral converges or diverges. Note that for this problem we are not formally applying the comparison test; we are simply looking at the behavior of the integrals to build intuition. (To indicate convergence or divergence, enter one of the words converges or diverges in the appropriate answer blanks.) x²+1 x³+5x+3 da: a similar integrand is so we predict the integral x ₁ dæ: a similar integrand is dx so we predict the integral x+4 f₁dx : a similar integrand is so we predict the integral x³+4 x+3 ₁732733 dx : a similar integrand is so we predict the integral x³+2x²+3

Answers

x²+1 / x³+5x+3 -> diverges

x / x+4 -> converges

x³+4 x+3 / x³+2x²+3 -> diverges

A similar integrand to x²+1 / x³+5x+3 is x / x². The integral of x / x² is ln(x), which diverges as x approaches infinity. Therefore, we can predict that the integral of x²+1 / x³+5x+3 will also diverge.

A similar integrand to x / x+4 is x / x². The integral of x / x² is ln(x), which converges as x approaches infinity. Therefore, we can predict that the integral of x / x+4 will also converge.

A similar integrand to x³+4 x+3 / x³+2x²+3 is x³ / x². The integral of x³ / x² is x², which diverges as x approaches infinity. Therefore, we can predict that the integral of x³+4 x+3 / x³+2x²+3 will also diverge.

The comparison test is a method for comparing the convergence or divergence of two integrals. The test states that if the integral of f(x) converges and the integral of g(x) diverges, then the integral of f(x)/g(x) diverges.

In this problem, we are not formally applying the comparison test. We are simply looking at the behavior of the integrands to build intuition about whether they will converge or diverge. The integrands in the first two problems have a higher degree than the integrands in the last two problems. This means that the integrals in the first two problems will diverge, while the integrals in the last two problems will converge.

Learn more about integral here:

brainly.com/question/31059545

#SPJ11

q13,1.6
points Question 13, Save O Points: 0 of 1 In its first 10 years a mutual fund produced an average annual refum of 20.37%. Assume that money invested in this fund continues to earn 20.37% compounded an

Answers

By applying the compound interest formula, we can determine the future value of an investment in a mutual fund that produces an average annual return of 20.37% compounded annually.

Assuming a mutual fund produced an average annual return of 20.37% over its first 10 years, and the investment continues to earn the same rate compounded annually, we can calculate the future value of the investment using the compound interest formula. The formula for compound interest is A = P(1 + r/n)^(nt), where A is the future value, P is the principal amount, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is the number of years. By plugging in the given values, we can compute the future value of the investment.

To calculate the future value of the investment, we can use the compound interest formula: A = P(1 + r/n)^(nt). In this case, the principal amount is not specified, so let's assume it to be 1 for simplicity.

Given that the average annual return is 20.37% and the investment continues to earn the same rate compounded annually, we can substitute the values into the formula. The annual interest rate, r, is 20.37% or 0.2037 as a decimal. Since the interest is compounded annually, the compounding frequency, n, is 1. The number of years, t, is not specified, so let's consider a general case.

Plugging these values into the compound interest formula, we have:

A = 1(1 + 0.2037/1)^(1t).

To simplify the expression, we can rewrite it as:

A = (1.2037)^t.

This formula represents the future value of the investment after t years, assuming a 20.37% annual return compounded annually.

The specific number of years is not mentioned in the question, so we cannot calculate the exact future value without that information. However, we can see that the future value will increase exponentially as the number of years increases, reflecting the compounding effect.

For example, if we consider the future value after 20 years, we can calculate:

A = (1.2037)^20 ≈ 8.6707.

This means that the investment would grow to approximately 8.6707 times its original value after 20 years, assuming a 20.37% annual return compounded annually.

In conclusion, by applying the compound interest formula, we can determine the future value of an investment in a mutual fund that produces an average annual return of 20.37% compounded annually. The specific future value depends on the number of years the investment is held, and without that information, we cannot provide an exact value. However, we observe that the investment will grow exponentially over time due to the compounding effect.


To learn more about compound interest click here: brainly.com/question/14295570

#SPJ11

[tex]\frac{(x-3)(x^2+3x+27)}{(x-9)(x+9)}[/tex]

Answers

First I distributed everything
Then I cancelled out terms and added terms
Then I expanded the X’s and the 27 so I could cancel out the 9x

Which of the following is an assumption of ANCOVA? There should be a reasonable correlation between the covariate and dependent variable Homogeneity of regression slopes Covariates must be measured prior to interventions (independent variable) All of the above

Answers

One assumption of ANCOVA (Analysis of Covariance) is that there should be a reasonable correlation between the covariate and the dependent variable.

The assumption of a reasonable correlation between the covariate and the dependent variable is crucial in ANCOVA because the covariate is included in the analysis to control for its influence on the outcome variable. If there is no correlation or a weak correlation between the covariate and the dependent variable, including the covariate in the analysis may not be meaningful or necessary.

The assumption of a reasonable correlation between the covariate and the dependent variable is an important assumption in ANCOVA, as it ensures the covariate has an actual relationship with the outcome variable being examined.

Learn more about Ancova here :

brainly.com/question/33175313

#SPJ11

You are validating a new depression scale in a sample of 50 homeless adults. In the general population, this scale is normally distributed with the population mean estimated at 35 and the population standard deviation estimated at 8 . What is the standard error of the mean based on general population parameters?

Answers

Standard Error of the Mean (SEM) is the standard deviation of the sample statistic estimate of the population parameter. It is calculated using the formula:SEM = s / sqrt (n) where s is the standard deviation of the sample and n is the sample size.

The sample size in this case is n = 50.

The standard deviation of the population is s = 8. Therefore, the standard error of the mean (SEM) based on the general population parameters is:[tex]SEM = 8 / sqrt (50)SEM = 1.13[/tex]The standard error of the mean (SEM) is 1.13 based on the general population parameters.

To know more about SEM visit:

https://brainly.com/question/550209

#SPJ11

Suppose you are given the following to equations:

1) 8X + 9Y = 9

2) 5X + 9Y = 7

What is the value of Y that solves these two equations simultaneously? Please round your answer to two decimal places.

Answers

The value of Y that solves the given system of equations simultaneously is approximately 0.41.

8X + 9Y = 9

5X + 9Y = 7

We can use the method of substitution or elimination. Let's use the elimination method to solve for Y:

Multiply equation (1) by 5 and equation (2) by 8 to make the coefficients of Y the same:

40X + 45Y = 45

40X + 72Y = 56

Now, subtract equation (1) from equation (2) to eliminate X:

(40X + 72Y) - (40X + 45Y) = 56 - 45

Simplifying, we have:

27Y = 11

Divide both sides by 27 to solve for Y:

Y = 11/27 ≈ 0.4074 (rounded to two decimal places)

Therefore, the value of Y that solves the given system of equations simultaneously is approximately 0.41.

learn more about equations  on

https://brainly.com/question/14686792

#SPJ11

The value of Y that solves the given system of equations simultaneously is approximately 0.41.

8X + 9Y = 9

5X + 9Y = 7

We can use the method of substitution or elimination.

Let's use the elimination method to solve for Y:

Multiply equation (1) by 5 and equation (2) by 8 to make the coefficients of Y the same:

40X + 45Y = 45

40X + 72Y = 56

Now, subtract equation (1) from equation (2) to eliminate X:

(40X + 72Y) - (40X + 45Y) = 56 - 45

Simplifying, we have:

27Y = 11

Divide both sides by 27 to solve for Y:

Y = 11/27 ≈ 0.4074 (rounded to two decimal places)

Therefore, the value of Y that solves the given system of equations simultaneously is approximately 0.41.

learn more about equations  on

https://brainly.com/question/29174899

#SPJ11

Homothetic preferences and homogeneous utility functions: (a) Prove that a continuous preference relation is homothetic if and only if it can be represented by a utility function that is homogeneous of degree one. (b) Relate this result to the lecture slides (p. 34, preferences and utility, part 2, see Moodle) which say that any preference relation represented by a utility function that is homogeneous of any degree is homothetic (i.e., not necessarily of degree one). How is it possible that both statements are true at the same time?

Answers

The slides' result includes utility functions that are homogeneous of any degree, which covers the case of utility functions that are homogeneous of degree one mentioned in statement (a).

(a) To prove that a continuous preference relation is homothetic if and only if it can be represented by a utility function that is homogeneous of degree one, we need to show the two-way implication. If a preference relation is homothetic, it implies that there exists a utility function that is homogeneous of degree one to represent it. Conversely, if a utility function is homogeneous of degree one, it implies that the preference relation is homothetic.

(b) The result mentioned in the lecture slides states that any preference relation represented by a utility function that is homogeneous of any degree is homothetic. This statement is more general because it includes the case of utility functions that are homogeneous of degree other than one. So, the lecture slides' result encompasses the specific case mentioned in statement (a) as well.

Learn more about degree here:

https://brainly.com/question/364572

#SPJ11

Question 5 of 5
Select the correct answer from each drop-down menu.
This table represents ordered pairs on the graph of quadratic function f.
x 0 1 2 3 4
f(x) -5 0 3 4 5

Answers

The y-intercept of the function is (0, -5).

The function is symmetric about the point 3.

What is y-intercept?

In Mathematics and Geometry, the y-intercept is sometimes referred to as an initial value or vertical intercept and the y-intercept of any graph such as a quadratic function, generally occur at the point where the value of "x" is equal to zero (x = 0).

By critically observing the table representing this quadratic function shown in the image attached below, we can reasonably infer and logically deduce the following y-intercept:

y-intercept of f = (0, -5).

In conclusion, the axis of symmetry is at x = 3 and as such, this quadratic function is symmetric about the point 3.

Read more on y-intercept here: brainly.com/question/28351981

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

Do infants have a preference for their mother’s smell, test with
an alpha level = .05 2 tailed; or was there a difference between
the first time the newborns were presented with gauze pads and the
s
BABCDEFGHLIMLMNOP PY2100: Statistic Inferential statistics: t-tests Researchers are exploring the perceptual preferences of new born infants. A line of thinking suggests that human infants are born wi

Answers

Infants have a preference for their mother's smell. The t-test is one of the most widely used statistical methods for hypothesis testing in inferential statistics. It is utilized to establish whether two sets of data differ significantly from one another. Infants have a preference for their mother's scent, and this hypothesis can be tested using the t-test.

The research will compare the newborns' initial reaction when presented with the gauze pads. Hypothesis test: H0: μ = 0, H1: μ ≠ 0, and Alpha level= .05, 2-tailed. If the t-score is less than the critical value, fail to reject the null hypothesis. If the t-score is greater than the critical value, reject the null hypothesis. If the p-value is less than .05, reject the null hypothesis. It is claimed that infants have a preference for their mother's smell. The perceptual preferences of newborn infants are being studied by researchers. Infants have a preference for their mother's scent, which is a hypothesis that may be tested using the t-test. The t-test is one of the most widely used statistical methods for hypothesis testing in inferential statistics. It is utilized to establish whether two sets of data differ significantly from one another. The research will compare the newborns' initial reaction when presented with the gauze pads. Hypothesis test: H0: μ = 0, H1: μ ≠ 0, and Alpha level= .05, 2-tailed. If the t-score is less than the critical value, fail to reject the null hypothesis. If the t-score is greater than the critical value, reject the null hypothesis. If the p-value is less than .05, reject the null hypothesis. The data shows that infants have a preference for their mother's smell.

In conclusion, the hypothesis that infants have a preference for their mother's scent was proven true through the t-test. Researchers were able to discover the perceptual preferences of newborn infants through this study. The t-test is a widely utilized statistical method for hypothesis testing in inferential statistics. The newborns' initial reaction when presented with gauze pads was used as a comparative measure to establish the existence of a preference for their mother's scent. Finally, with a p-value less than .05, the null hypothesis was rejected, indicating that there was a significant difference between the two groups.

To learn more about inferential statistics visit:

brainly.com/question/32833710

#SPJ11

answer the following, Round final answer to 4 decimal places. a.) Which of the following is the correct wording for the randon variable? r×= the percentage of all people in favor of a new building project rv= the number of people who are in favor of a new building project r N= the number of people polled r×= the number of people out of 10 who are in favor of a new building project b.) What is the probability that exactly 4 of them favor the new building project? c.) What is the probabilitv that less than 4 of them favor the new building project? d.) What is the probabilitv that more than 4 of them favor the new building project? e.) What is the probabilitv that exactly 6 of them favor the new building project? f.) What is the probability that at least 6 of them favor the new building project? 8.) What is the probabilitv that at most 6 of them favor the new building project?

Answers

In this problem, we are dealing with a random variable related to people's opinions on a new building project. We are given four options for the correct wording of the random variable and need to determine the correct one. Additionally, we are asked to calculate probabilities associated with the number of people who favor the new building project, ranging from exactly 4 to at most 6.

a) The correct wording for the random variable is "rv = the number of people who are in favor of a new building project." This wording accurately represents the random variable as the count of individuals who support the project.

b) To calculate the probability that exactly 4 people favor the new building project, we need to use the binomial probability formula. Assuming the probability of a person favoring the project is p, we can calculate P(X = 4) = (number of ways to choose 4 out of 10) * (p^4) * ((1-p)^(10-4)). The value of p is not given in the problem, so this calculation requires additional information.

c) To find the probability that less than 4 people favor the new building project, we can calculate P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3). Again, the value of p is needed to perform the calculations.

d) The probability that more than 4 people favor the new building project can be calculated as P(X > 4) = 1 - P(X ≤ 4) = 1 - (P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)).

e) The probability that exactly 6 people favor the new building project can be calculated as P(X = 6) using the binomial probability formula.

f) To find the probability that at least 6 people favor the new building project, we can calculate P(X ≥ 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10).

g) Finally, to determine the probability that at most 6 people favor the new building project, we can calculate P(X ≤ 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6).

To learn more about Binomial probability - brainly.com/question/12474772

#SPJ11

5x – 18 > 2(4x – 15).

Answers

The solution to the inequality 5x - 18 > 2(4x - 15) is x < 4.

To solve the inequality 5x - 18 > 2(4x - 15), we can simplify the expression and isolate the variable x.

First, distribute the 2 to the terms inside the parentheses:

5x - 18 > 8x - 30

Next, we want to isolate the x terms on one side of the inequality.

Let's move the 8x term to the left side by subtracting 8x from both sides:

5x - 8x - 18 > -30

Simplifying further, we combine like terms:

-3x - 18 > -30

Now, let's isolate the variable x.

We can start by adding 18 to both sides of the inequality:

-3x - 18 + 18 > -30 + 18

Simplifying further:

-3x > -12

To isolate x, we need to divide both sides of the inequality by -3. However, when we divide by a negative number, we need to flip the inequality sign:

(-3x) / (-3) < (-12) / (-3)

Simplifying gives us:

x < 4.

For similar question on inequality.

https://brainly.com/question/30239213

#SPJ8

Find the level of confidence assigned to an interval estimate of the mean formed using the following intervals. (Round your answers to four decimal places.)
(a) x − 0.93·σx to x + 0.93·σx
(b) x − 1.67·σx to x + 1.67·σx
(c) x − 2.17·σx to x + 2.17·σx
(d) x − 2.68·σx to x + 2.68·σx

Answers

The level of confidence assigned to the interval estimates are:

(a) 82.89%

(b) 95.45%

(c) 98.48%

(d) 99.63%

To find the level of confidence assigned to an interval estimate of the mean, we need to use the z-table to determine the corresponding z-score for each given interval multiplier.

The level of confidence can be calculated by subtracting the area in the tails from 1 and multiplying by 100%.

(a) x - 0.93·σx to x + 0.93·σx

The interval multiplier is 0.93. Using the z-table, we find the area in the tails corresponding to this value: 0.1711. Therefore, the level of confidence is approximately (1 - 0.1711) * 100% = 82.89%.

(b) x - 1.67·σx to x + 1.67·σx

The interval multiplier is 1.67. Using the z-table, we find the area in the tails corresponding to this value: 0.0455. Therefore, the level of confidence is approximately (1 - 0.0455) * 100% = 95.45%.

(c) x - 2.17·σx to x + 2.17·σx

The interval multiplier is 2.17. Using the z-table, we find the area in the tails corresponding to this value: 0.0152. Therefore, the level of confidence is approximately (1 - 0.0152) * 100% = 98.48%.

(d) x - 2.68·σx to x + 2.68·σx

The interval multiplier is 2.68. Using the z-table, we find the area in the tails corresponding to this value: 0.0037. Therefore, the level of confidence is approximately (1 - 0.0037) * 100% = 99.63%.

In summary, the level of confidence assigned to the interval estimates are:

(a) 82.89%

(b) 95.45%

(c) 98.48%

(d) 99.63%

To know more about interval refer here:

https://brainly.com/question/11051767#

#SPJ11

In a large company, 40% of all employees take public transit to work. Part A If 350 employees are selected at random, calculate the probability that more than 43% of the selected employees take public transit to work. Probability = Note: (1) DO NOT NEED to add or subtract 0.5 (2) Keep the standard deviation of the sampling distribution to at least 8 decimal places. (2) Express the probability in decimal form and round it to 4 decimal places (e.g. 0.1234 ).

Answers

The probability that more than 43% of the selected employees take public transit to work is P(Z > 1.377) = 0.0846

Here, we have

In a large company, the probability that an employee takes public transport to work is 40%. The company has a total of employees. If 350 employees are chosen at random, we must first establish that the sample size, n, is big enough to justify the usage of the normal distribution to compute probabilities.

Therefore, it can be stated that n > 10 np > 10, and nq > 10. Where: n = 350

np = 350 × 0.4 = 140

q = 1 − p = 1 − 0.4 = 0.6

np = 350 × 0.4 = 140 > 10

nq = 350 × 0.6 = 210 > 10

Therefore, we can use the normal distribution to compute probabilities.μ = np = 350 × 0.4 = 140σ = sqrt(npq) = sqrt(350 × 0.4 × 0.6) ≈ 8.02Using continuity correction, we obtain:

P(X > 0.43 × 350) = P(X > 150.5) = P((X - μ) / σ > (150.5 - 140) / 8.02) = P(Z > 1.377), where X is the number of employees who use public transport. Z is the standard normal random variable.

The probability that more than 43% of the selected employees take public transit to work is P(Z > 1.377) = 0.0846 (rounded to 4 decimal places).

Therefore, the required probability is 0.0846, which can be expressed in decimal form.

To learn about probability here:

https://brainly.com/question/24756209

#SPJ11

Which one is correct about positive and negative biases and bias towards zero and bias away from zero? Check all that apply. (Two correct answers.) A positive bias when the true coefficient is negative, is the same as a bias towards zero. A positive bias when the true coefficient is positive, is the same as a bias away from zero. It is impossible to have a positive bias when the true coefficient is negative. A positive bias is the same as a bias towards zero and a negative bias is the same as a bias away from zero.

Answers

The correct statements about positive and negative biases and bias towards zero and bias away from zero are:

1. A positive bias when the true coefficient is negative is the same as a bias towards zero.

2. A positive bias when the true coefficient is positive is the same as a bias away from zero.

Bias refers to the systematic deviation of the estimated coefficient from the true value in statistical analysis. It can be positive or negative, indicating the direction of the deviation, and can be towards zero or away from zero, indicating the magnitude of the deviation.

If the true coefficient is negative and there is a positive bias, it means that the estimated coefficient is consistently overestimating the true value. In this case, the positive bias is towards zero because the estimated coefficient is being pulled closer to zero than the true negative value.

Conversely, if the true coefficient is positive and there is a positive bias, it means that the estimated coefficient is consistently underestimating the true value. In this case, the positive bias is away from zero because the estimated coefficient is being pushed further away from zero than the true positive value.

It is possible to have a positive bias when the true coefficient is negative. This occurs when the estimated coefficient consistently overestimates the magnitude of the negative effect, resulting in a positive bias towards zero.

Learn more about coefficient here:

https://brainly.com/question/13431100

#SPJ11

Given 1−e−x for x∈(0,[infinity]). Show that this is a valid CDF. Derive the appropriate pdf.

Answers

To prove that the given function is a valid CDF, we need to show the following: It should be non-negative everywhere.

It should be continuous from the right everywhere. It should be non-decreasing everywhere. It should have a limiting value of 0 as x approaches -∞ and 1 as x approaches ∞.

Let us check these properties one by one.

1. Non-negativity of CDF [tex]f(x) = 1-e^{-x}[/tex] is non-negative for all x > 0.f(x) > 0 for all x > 0

Therefore, this property is satisfied.

2. Right continuity of CDF[tex]f(x) = 1-e^{-x}[/tex] is continuous for all x > 0.

Let x0 be an arbitrary point in the domain of the function.

Let us take a sequence xn of values such that xn → x0 as n → ∞.

Then, we need to show that f(xn) → f(x0) as n → ∞.

As the function is defined only for positive values of x, xn > 0 for all n > 0.So, as n → ∞, xn → x0+

Therefore,[tex]lim_{n \to \infty} f(x_n) = \lim_{x \to x_0^+} f(x)= \lim_{x \to x_0^+} (1-e^{-x})=1-e^{-x_0} = f(x_0)[/tex]

Therefore, f(x) is right continuous for all x > 0.

3. Non-decreasing of CDF [tex]f(x) = 1-e^{-x}[/tex] is non-decreasing for all x > 0.

To prove that the function is non-decreasing, we need to show that for all x1 < x2, we have f(x1) ≤ f(x2).

Consider the case when x1 < x2, then[tex]e^{-x1} > e^{-x2}[/tex].

Therefore, [tex]f(x1) = 1-e^{-x1} ≤ 1-e^{-x2} = f(x2)[/tex]

Hence, f(x) is non-decreasing for all x > 0.4. Limiting values of CDF

The limiting value of f(x) as x → ∞ is

[tex]lim_{x \to \infty} f(x) = \lim_{x \to \infty} (1-e^{-x})= 1- \lim_{x \to \infty} e^{-x} = 1 - 0 = 1[/tex]

This property is satisfied.

The limiting value of f(x) as x → -∞ is

[tex]lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (1-e^{-x})= 1 - \lim_{x \to -\infty} e^{-x} = 1 - \infty = -\infty[/tex]

This property is not satisfied. Therefore, this function is not a valid CDF.

To derive the appropriate PDF, we need to differentiate the CDF [tex]f(x) = 1-e^{-x}.f(x) = 1-e^{-x}[/tex]

Now, we can differentiate both sides with respect to x using the chain rule.

We get:

[tex]f'(x) = (1-e^{-x})' = -(-1)e^{-x} = e^{-x}[/tex]

The PDF is therefore: [tex]f(x) = e^{-x}[/tex] for x > 0 and 0 elsewhere.

To know more about CDF visit :

https://brainly.com/question/30344248

#SPJ11

Use the following information to sketch a graph of the original function, f(X) write the equations of any asymptotes. - lim x→[infinity]

f(x)=5 - f ′
(x)>0 on (−2,1)∪(1,[infinity]) - f ′
(x)<0 on (−[infinity],−2) - f ′′
(x)>0 on (−[infinity],−4)∪(1,4) - f ′′
(x)<0 on (−4,−2)∪(−2,1)∪(4,[infinity])

Answers

The equations of the vertical asymptotes can be given as x = -4, -2, and 1. The function f(x) does not have any horizontal asymptotes.

The function, f(x) is given as f(x)=5 - f ′(x)>0 on (−2,1)∪(1,[infinity]) f ′(x)<0 on (−[infinity],−2)f ′′(x)>0 on (−[infinity],−4)∪(1,4)f ′′(x)<0 on (−4,−2)∪(−2,1)∪(4,[infinity])

To sketch the graph of the original function, we have to determine the critical points, intervals of increase and decrease, the local maximum and minimum, and asymptotes of the given function.

Using the given information, we can form the following table of f ′(x) and f ′′(x) for the intervals of the domain.

The derivative is zero at x = -2, 1.

To get the intervals of increase and decrease of the function f(x), we need to test the sign of f ′(x) at the intervals

(−[infinity],−2), (-2,1), and (1,[infinity]).

Here are the results:

f′(x) > 0 on (−2,1)∪(1,[infinity])f ′(x) < 0 on (−[infinity],−2)

As f ′(x) is positive on the intervals (−2,1)∪(1,[infinity]) which means that the function is increasing in these intervals.

While f ′(x) is negative on the interval (−[infinity],−2), which means that the function is decreasing in this interval.

To find the local maximum and minimum, we need to determine the sign of f ′′(x).

f ′′(x)>0 on (−[infinity],−4)∪(1,4)

f ′′(x)<0 on (−4,−2)∪(−2,1)∪(4,[infinity])

We find the inflection points of the function f(x) by equating the second derivative to zero.

f ′′(x) = 0 for x = -4, -2, and 1.

The critical points of the function f(x) are -2 and 1.

The inflection points of the function f(x) are -4, -2, and 1.

Hence, the equations of the vertical asymptotes can be given as x = -4, -2, and 1.The function f(x) does not have any horizontal asymptotes.

Learn more about vertical asymptotes visit:

brainly.com/question/32526892

#SPJ11

1. What porition in the distribution cormspends to a z-sore of - 1.20: A. Belowe the mean by 1.20 points B. Beiow the mean by a difstance equal to 1.20 stanuard deviations C. Abave the incain try 1.20 points D. Abave the mican try a distance equal to 1.20 standard deviations 2. What zscore corresponds to a score that is above the mean by 2 standard dieviations? A. 1 13. −2 C. 2 D. 41 3. If a student's exam score in Chemistry was the same as the mean score for. the entire Chemistry class of 35 students, what would that stutent's z-score be: A. 2=35.00 8. z=−0.50 C. z=41.00 D. z=0.00 4. For a population with M=75 and 5=5, what is the z - score correspondin g to x=65? A 4
​ =−2.00 Ba 4
​ +1.00 C. +1.50 D. +2.00 5. A zrcore indicates how an individual perfoemed an w test relative to the other people who took the same tent. A. True 9. False 6. Suppose the 3000 students taking Introduction to Prycholody at a lage univera ty all take the same fin al exam. What can you conclude about a rtudeat takug Introduction to Dpychosogy at this univernfy whic taves the finai exam and qas a j-score of +0.80 on the final exam? คi. The rudent's icore was balaw the nuen of the 3000 wiudents. 8. The itudent answe red corsectiy ant 30 quevicions. C. The itudents score harequal to the mears of ait 1000 students. D. The student's score wras above the me in of the 3000 studenta.

Answers

1. The portion in the distribution corresponding to a z-score of -1.20 is option B. Below the mean by a distance equal to 1.20 standard deviations. This is because the z-score measures the number of standard deviations that a given data point is from the mean of the data set.

A z-score of -1.20 means that the data point is 1.20 standard deviations below the mean. 2. The z-score corresponding to a score that is above the mean by 2 standard deviations is option C. 2. This is because the z-score measures the number of standard deviations that a given data point is from the mean of the data set. A score that is 2 standard deviations above the mean corresponds to a z-score of 2.3.

If a student's exam score in Chemistry was the same as the mean score for the entire Chemistry class of 35 students, their z-score would be option D. z = 0.00. This is because the z-score measures the number of standard deviations that a given data point is from the mean of the data set. If the student's score is the same as the mean, their z-score would be zero.4. For a population with M = 75 and

s = 5, the z-score corresponding to

x = 65 is option A.

z = -2.00. This is because the z-score measures the number of standard deviations that a given data point is from the mean of the data set.

Therefore, the z-score can be calculated as follows: z = (x - M) / s

= (65 - 75) / 5

= -2.005. True. A z-score indicates how an individual performed on a test relative to the other people who took the same test.6. The student's score was above the mean of the 3000 students. This is because a z-score of +0.80 means that the student's score was 0.80 standard deviations above the mean of the data set. Therefore, the student performed better than the average student in the class. Option D is the correct answer.

To know more about z-score visit:

https://brainly.com/question/31871890

#SPJ11

Close Enough?
One common problem with this practice occurs when the samples do not fully reflect the population, or do not reflect the population well. For example, perhaps the population of interest is predominately male, but the sample is predominanty women. This increases the likelihood of the sample producing data that differs from what would be produced by the population. Consider the following research situation:
A group of researchers is studying the relationship between cortisol (stress hormone) levels and memory, and they want to see if a sample of 100 adults that has been recruited is a good representation of the population it came from, before they conduct additional research. The population has been found to be normally distributed and have a mean cortisol level of 12 mcg/dL, with a standard deviation of 2 mcg/dL. The sample was found to have a mean cortisol level of 15 mcg/DL with a standard deviation of 3 mcg/dL
For this assignment, construct a confidence interval to determine if this sample mean is significantly different from the population mean. Explain how you know, based on the confidence interval and specify the confidence level you used. Be sure to show your work and calculations. This can be tricky with Word, so if necessary you may take a photo of your hand calculations and add it to the Word document.
Be sure to include supporting detail from the readings, as well as other scholarly sources,

Answers

We would reject the null hypothesis and conclude that the sample mean cortisol level of 15 mcg/dL is significantly different from the population mean.

How to explain the hypothesis

The critical value for a 95% confidence level is approximately ±1.96. In this case, the margin of error is 1.96 * 0.2 = 0.392 mcg/dL.

The confidence interval is 15 ± 0.392, which gives us the range (14.608, 15.392).

In this case, with a 95% confidence level, we can be 95% confident that the true population mean cortisol level falls within the range of 14.608 mcg/dL to 15.392 mcg/dL.

Based on the confidence interval of (14.608, 15.392) and assuming a 95% confidence level, we can see that the population mean cortisol level of 12 mcg/dL falls outside the confidence interval. Therefore, we would reject the null hypothesis and conclude that the sample mean cortisol level of 15 mcg/dL is significantly different from the population mean of 12 mcg/dL at a 95% confidence level.

Learn more about confidence interval on

https://brainly.com/question/11555274

#SPJ4

Some criminologists argue there is a relationship between "impulsivity" and criminal offending. The idea is that impulsive people act on immediate gratification and that since crime involves quick pleasure and only the long-term possibility of any cost (getting caught and punished), it should be highly attractive to them. To test this notion, you take a random sample of 65 people who responded to a personality test showing they were impulsive and a second independent random sample of 80 who indicated by the test that they were not impulsive. Each person was asked to report the number of criminal offenses they have committed in the last year. For the group of 65 impulsive people, they have a mean number of criminal acts of 13.5 with a standard deviation of 4.9. For the group of 80 nonimpulsive people, they have mean number of criminal acts of 10.3 with a standard deviation of 4.0. Test the hypothesis that there is no difference year. For the group of 65 impulsive people, they have a mean number of criminal acts of 13.5 with a standard deviation of 4.9. For the group of 80 nonimpulsive people, they have mean number of criminal acts of 10.3 with a standard deviation of 4.0. Test the hypothesis that there is no difference between the two groups in the number of delinquent acts. Use an alpha of 0.01. Assume that the two population standard deviations are equal (σ1=σ2). What is your alternative hypothesis?
a. H1:μ impulsive ​<μnon_impulsive b. H1:μ impulsive >μnon_impulsive a. H1:μ impulsive ≠μnon_impulsive

Answers

The alternative hypothesis for this problem is given as follows:

H1:μ impulsive ≠ μ non impulsive

How to obtain the null and the alternative hypothesis?

The hypothesis tested for this problem is given as follows:

"There is no difference between the two groups in the number of delinquent acts."

At the null hypothesis, we test if we have no evidence to conclude that the claim is true, hence:

H0: μ impulsive = μ non impulsive

At the alternative hypothesis, we test if we have evidence to conclude that the claim is true, hence:

H1:μ impulsive ≠ μ non impulsive

More can be learned about the test of an hypothesis at https://brainly.com/question/15980493

#SPJ4

Each of the following statements is an attempt to show that a given series is convergent or divergent using the Comparison Test (NOT the Limit Comparison Test.) For each statement, enter C (for "correct") if the argument is valid, or enter I (for "incorrect") if any part of the argument is flawed. (Note: if the conclusion is true but the argument that led to it was wrong, you must enter 1.) In(n) с 1. For all n > 2, > 1/1, and the series Σ diverges, so by the Comparison Test, the n n n series Σ diverges. n C 2. For all n > 1, 1 < and the series Σ " converges, so by the Comparison Test, the 7-n³ n² n² series Σ converges. 3. For all n > 1, 1 < n ln(n) n and the series 2 Σ diverges, so by the Comparison Test, the " n 1 series Σ diverges. n ln(n) In(n) C 4. For all n > 1, 1 1 and the series Σ " converges, so by the Comparison Test, the n² n¹.5 n1.5 series Σ converges. In(n) n² n C 5. For all n > 2, and the series 2 Σ , " n³-4 converges, so by the Comparison Test, n the series Σ converges. n³-4 6. For all n > 2, 1 n²-4 converges, so by the Comparison Test, the n² series Σ converges. 1 n²-4 In(n) n n 7-n³ < n² < and the series Σ " n² Ť

Answers

Incorrect statement

1. For all n > 2, In(n) > 1/1, and the series Σ In(n) diverges, so by the Comparison Test, the series Σ n/n diverges.

3. For all n > 1, 1 < n ln(n) < n, and the series Σ n²/n diverges, so by the Comparison Test, the series Σ n ln(n) diverges.

7. For all n > 2, 1 < 7-n³ < n², and the series Σ n² converges.

1. For all n > 2, In(n) > 1/1, and the series Σ In(n) diverges, so by the Comparison Test, the series Σ n/n diverges.

Response: I (Incorrect)

The argument is flawed. Comparing In(n) to 1/1 does not provide a conclusive comparison for the convergence or divergence of the series Σ In(n).

2. For all n > 1, 1 < 7-n³/n² < n²/n², and the series Σ n²/n² converges, so by the Comparison Test, the series Σ 7-n³ converges.

Response: C (Correct)

3. For all n > 1, 1 < n ln(n) < n, and the series Σ n²/n diverges, so by the Comparison Test, the series Σ n ln(n) diverges.

Response: I (Incorrect)

The argument is flawed. Comparing n ln(n) to n is not a valid comparison for the convergence or divergence of the series Σ n ln(n). Additionally, the series Σ n²/n is not a valid reference series for the comparison.

4. For all n > 1, 1 < In(n) < n, and the series Σ n² converges, so by the Comparison Test, the series Σ In(n) converges.

Response: C (Correct)

5. For all n > 2, 1/n < 1/(n³-4), and the series Σ 1/(n³-4) converges, so by the Comparison Test, the series Σ 1/n converges.

Response: C (Correct)

6. For all n > 2, 1/(n²-4) < 1/n², and the series Σ 1/n² diverges, so by the Comparison Test, the series Σ 1/(n²-4) diverges.

Response: C (Correct)

7. For all n > 2, 1 < 7-n³ < n², and the series Σ n² converges.

Response: I (Incorrect)

The argument does not apply the Comparison Test correctly. To determine the convergence or divergence of the series Σ 7-n³, we need to compare it to a known convergent or divergent series. The given comparison to n² does not provide enough information to make a conclusion.

To know more about Comparison Test click here :

https://brainly.com/question/32525743

#SPJ4

Other Questions
Use the matrices A and B given below to compute the indicated entries of E=A TB. Enter all answers in exact, reduced form. (Answers involving variables are case sensitive.) A= 15q14m1348nB=[ 11v9w32r141] (a) e 21= (b) a 31b 23+e 12= You can purchase a 30,000 Egyptian pound pure discount bill that matures in 1 year for 28,000 Egyptian pounds. The Egyptian Pound is currently trading at .005 Swiss Francs and is expected to rise to .0055 Swiss Francs in a years time.The expect net return on this discount bill expressed in Swiss Francs is _____% (Round to the nearest 2 decimal points; e.g., 6.894921 is 6.89) Why do organizations find it so difficult to address the requirements of differentiation and integration simultaneously? McConnell Corporation has bonds on the market with 17 years to maturity, a YTM of 10.0 percent, a par value of $1,000, and a current price of $1,196.50. The bonds make semiannual payments. What must the coupon rate be on these bonds? Multiple Choice 20.81% 10.39% 24.90% 12.53% 12.43% Frontline Agricultural Processing Systems uses several ingredients to make wheat crackers. After several years of operations and testing, their scientists found high protein and carbohydrates in two of their ingredients, barley and corn. While an ounce of barley costs $0.25, an ounce of corn costs $0.46. While an ounce of barley provides 9 mg of protein and 2 mg of carbohydrates, an ounce of corn provides 6 mg and 5 mg of carbohydrates. Recently, demand for wheat crackers has increased. To lower the overall cost of producing wheat crackers, Frontline Agricultural Processing Systems will want to know how many ounces of barley and corn to include in each box of wheat crackers to meet the minimum requirements of 60 milligrams of protein and 32 milligrams of carbohydrates. Frontline Agricultural Processing Systems decides to only increase its protein requirement by 3 more milligrams. What will be the minimum cost value? Working with a partner, youll need some computer parts and the antistatic tools you learned about in this appendix. Practice touching and picking up the parts and passing them between you. As you do so, follow the rules to protect the parts against ESD. Have a third person watch as you work and point out any ways you might have exposed a part to ESD. As you work, be careful not to touch components on circuit boards or the gold "fingers" on the edge connector of an expansion card. When you are finished, store the parts in antistatic bags. (1.5 points) An organization has a revenue of $250 million, purchases of $150 million, and labor and overhead of 65 million giving a profit of $35 million before tax. SG\&A and interest costs another 25 million. A process improvement project reduced the purchase cost by 4%. Calculate the percentage increase in net profit. The Nielsen compary collects a simple random sample of residents in Lexington and has each member take a survey about their local shopping habits ino one refuses to fill out the survey). What is a potential weakness of this sampling strategy? A lot of demographic intormation murt be krowen about the population prior to sampling Thure are no weaknesses If is probably expensive relative to takine census of the population of Lexington The sample may not be representative Please be sure that your response is clear, complete, convincing and substantive: Provide an example of when it might be most appropriate to apply the MAPP framework for program planning. Why is this an appropriate application? Is region of the world where a country is located associated with a country's GDP? Please address this question by using SPSS and a One-Way ANOVA to statistically analyze the following two variables" Michael is a professor who is quick to mention this when he first meets other people. He also tends to perceive himself and other professors in a more favourable way than non-professorial staff. Which concept best explains Michael's perceptual process? O a. External locus of control O b. Self-serving bias O c. False-consensus effect O d. Social identity theory Oe. Attribution theory Explain the basic plot of the Bible that is revealed from the very beginning.Briefly walk through the basic story beginning with Abraham until we find a nation of his descendants in Egypt.What 3 roles does Moses play for the nation of Israel.By the end of the Torah (the book of Deuteronomy) what major problems have come up? What hope(s) does Moses have for the future of God's people?In the Neviim (Prophets) things start off well with Joshua. How does the Neviim conclude (many books later)? What hope does God provide?What was the job of the Old Testament prophets?How are the books of the Ketuvim related to the books in the Torah and the Neviim?Describe the unified story and hope told throughout the TaNaK. Compute how much money you need to invest today in order to be able to have retirement income of $3500 per month for U+28 months if you can earn 6.22% per year and if you plan to retire in 40 years? STO, Inc. produces pet products. The company expects to produce and sell 12,000 units of it most popular product next year. Each unit produced requires 1.5 pounds of direct material. Each pound of direct material costs $2.20 from the supplier. STO would like 500 pounds of direct material on hand at the end of each month but expects to only have 250 pounds of raw material on hand at the beginning of the year. All direct material purchases are made on account and carry payment terms of net 30 . Each unit produced requires 2.0 hours of direct labor time. Direct laborers are paid at an average wage rate of $28 per hour. All direct labor wages are paid in the week following the week they are incurred. Additionally, the company has developed the following cost behavior formula for manufacturing overhead expenses: total annual manufacturing overhead =$1.80 per unit produced x number of units produced +$21,000. Included in the fixed costs is $4,500 of expected annual depreciation. All cash manufacturing overhead costs are paid in the period in which they are incurred. Which of the following is correct with regard to the above information? The expected direct material purchases for the year are $40,150. The budgeted direct labor costs for the year are $672,000. The budgeted manufacturing overhead costs for the year are $42,600. The budgeted manufacturing overhead costs included as a disbursement in the overall cash budget are $38,100. All of the above statements are correct. Discuss considerations and potential issues with the implementation for each of your recommendations: 2021 forecast, EOQ \&ROP, Supplier, Transportation, and Location What changes or resources would be necessary to implement them, and what decisions might create challenges and require additional leadership attention? Write a few sentences on each recommendation. Company Background Information Throx sells higher-end custom-design socks in three-sock sets (rather than two). The company operates from a small packaging and distribution facility in Richmond, CA from which it ships product to customers. Given the company's location and focus, 97% of sales are in California, primarily in the major urban areas of the San Francisco bay area, Los Angeles, Sacramento (and last but not least) San Diego. The company sells exclusively via online sales, at an average price of $18/ three-sock set, plus shipping costs charged to the customer. The company currently orders its product from the Chinese sock manufacturer Zhejiang Datang Hosiery Group Co., Ltd in so-called "Sock City." Socks are shipped via truck to the port of Shanghai, from where they are shipped to the port at Los Angeles-Long Beach via ocean freight. Once offloaded in Los Angeles-Long Beach, the socks are shipped via truck to the Richmond facility. On average, shipment from the manufacturer to the Richmond facility takes 4 weeks. In addition to the transit time required for shipment, the lead time from when an order is placed with the manufacturer to when it is shipped from Zhejiang is 3 weeks. So, the total lead time is considered to be 7 weeks from when Throx places an order until it reaches the Richmond facility. Historically, the standard deviation of lead time has been 1.5 weeks. Product Orders (Demand) Information The company provides you with the following information for the past two fiscal years: Product Forecasting Information Throx uses two main forecasting methods based on annual data to predict orders for the following year, a weighted moving average and exponential smoothing. They provide you with the following information about forecasts for FY 2017 through FY2020: Weighted Moving Average uses W t=0.7 and W t1=0.3 Exponential Smoothing uses =0.8. Inventory Management Information The initial inventory for all sock styles combined at the beginning of FY 2021 is 2,250 units. You also have information on current costs, which includes: - Order cost to Throx for an order placed with its current supplier, $/ order =S=$275 - Holding cost per set per year =H=$1.75 - The company currently pays $6.80 for each set of socks. =P The company uses a continuous review replenishment policy, and has IT systems in place that allow constant monitoring of key information. Last year, the company used an ROP under this policy of 2,200 units for all sock styles and an order quantity Q of 5,000 units for all sock styles. Potential Alternatives to Current Supply Chain Management The company has asked you to evaluate a number of alternatives to their current SCM practices, including at a minimum their choice of supplier, transportation modes, warehouse capacity, order quantities and safety stock. Alternative Suppliers The company has contacted potential alternative suppliers in China, who have offered the following information relative to the current supplier: For the quality performance assessment of the suppliers, Throx would like you determine the Capability Index CPk for each Supplier based on the following information. Throx considers it critical that the suppliers can meet their minimum Sock Thickness: 6 mm Alternative Transportation An alternative to their current transportation approach available to Throx is shipment by UPS Express Air from Shanghai to Richmond, which averages 3.5 days. The comparison of costs is given as: * No data are available about variation in transit times, so Throx assumes this is constant. Similar to their decision about sourcing, Throx wants to use a single-sourcing strategy for transportation, so they want a recommendation about which mode would be best. NOTE: Ignore the current port capacity issues when making your decision/ recommendation Alternative Warehouse Location The company would also like to assess whether its current warehouse location is appropriate based on where customers are located. It provides you the following information about its key markets, and indicates that its orders in each market are roughly proportional to the total population. X and Y are complementary goodc his known that the consumer's expenses en Xe find A in prof labor employed in production of X will ANSWERS KX Display all questions a b C d Increase market prices of X and Y None of the above. Certainly decrease the revenue in market Y Not affect the price of market Read the paper "Activity-Based Costing In Small Manufacturing Firms: South African Study". Applying your understanding from the paper, compare the application of ABC costing and traditional costing in your own country. The problems found in todays society reflect the new needs of individuals and the new challenges to which they are exposed. Dias (2009) asserts that governments, the market and institutions of the third sector are not able to resolve the challenges of the twenty-first century, so other possibilities should be considered to minimize social disparities (high unemployment, urban poverty, social exclusion and all types of discrimination etc.). Organizations of the third sector are often influenced by a practice immersed in philanthropy and assistance. Demo (2002) criticizes this form of solidarity by pointing out that the intelligence of the beneficiaries is often denigrated. These entities at times are seen as inefficient, ineffective and bereft of responses. In contrast, social entrepreneurship comes, in principle, to respond to the new demands of society, by combining the passion for a social mission with the procedures of traditional economic activities, such as productivity, discipline, efficiency, innovation and determination to achieve results. Compare and contrast Social Entrepreneurship from Business Entrepreneurship and evaluate the impact of social entrepreneurship in national economic development by giving practical examples. A broadcasting corporation purchase d corporation purchased an equipment for $63,000 and paid 1,500 for freight and delivery charges to the job site. The equipment has a normal life of 10 years with trade-in value of $5,000 against the purchase life. of a new equipment at the end ofa) Determine the annual depreciation cost by the DBMb.) Determine the book value at the end of 5 years by DBM. Project S requires an initial outlay at t - 0 of $17,000, and its expected cash flows would be $6,500 per year for 5 years. Mutually exclusive Project L requires an initial outlay at t 0 of $30,500, and its expected cash flows would be $9,600 per year for 5 years. If both projects have a WACC of 13%, which project would you recommend? Select the correct answer. a. Project S, since the NPVs > NPVL. b. Project L, since the NPVL > NPVs. c. Both Projects S and L, since both projects have IRR's > 0. d. Both Projects S and L, since both projects have NPV's > 0. e. Neither Project S nor L, since each project's NPV < 0. Grade it Now Save & Continue Continue without saving.