The point estimate of the difference between the population means, as calculated in your example, is indeed 15. This is obtained by subtracting the sample mean of Sample 2 from the sample mean of Sample 1. In this case, the point estimate suggests that the population mean of the first group is estimated to be 15 units higher than the population mean of the second group as follows :
Sample 1:
Sample mean ₁ = 50
Sample standard deviation ₁ = 13.1
Sample size ₁ = 2
Sample 2:
Sample mean ₂ = 35
Sample standard deviation ₂ = 11.6
Sample size ₂ = 3
The point estimate of the difference between the population means (µ₁ - µ₂) is given by:
Point Estimate = Sample mean ₁ - Sample mean ₂
= 50 - 35
= 15
Therefore, the point estimate of the difference between the population means is 15.
To know more about mean visit-
brainly.com/question/32758775
#SPJ11
Using the following stem & leaf plot, find the five number summary for the data by hand. 1147 21578 3157 410588 5106667 6|11 Min = Q1 Med = Q3 Max =
The interquartile range (IQR) is the difference between Q3 and Q1 and equals 6. A stem and leaf plot is a type of data visualization that allows us to see how data is distributed quickly and easily. In this type of plot, we write the digits in the first column (the stem) and the numbers in the second column (the leaf).
The five-number summary is a way to describe the distribution of the data. It includes the minimum value, the first quartile (Q1), the median, the third quartile (Q3), and the maximum value. To find the five-number summary for the data given in the stem and leaf plot, we need to use the following steps:
Step 1:
Write the data in order from smallest to largest.
1147 21578 3157 410588 5106667
Step 2:
Find the minimum and maximum values.
The minimum value is 1147, and the maximum value is 5106667.
Step 3:
Find the median (Q2).
There are six observations, so the median is the average of the two middle values: 3157 and 4105. The median is
(3157 + 4105) / 2
= 3631.
Step 4:
Find Q1.
This is the median of the lower half of the data. There are three observations in the lower half: 1, 1, and 4. The median is (1 + 1) / 2
= 1.
Step 5:
Find Q3.
This is the median of the upper half of the data. There are three observations in the upper half: 5, 6, and 8. The median is
(6 + 8) / 2
= 7.
The five-number summary for the data is:
Min = 1147
Q1 = 1
Med = 3631
Q3 = 7
Max = 5106667
The interquartile range (IQR) is the difference between Q3 and Q1:
IQR = Q3 - Q1
= 7 - 1
= 6.
To know more about the interquartile range, visit:
brainly.com/question/29173399
#SPJ11
hi
im not sure how to solve this one , the answers in purple are right
, i just dont know how to calculate n understand them
A survey randomly sampled 25 college students in California and asked about their opinions about online social networking 15 of them prefer the digital way of communicating with friends and family. 10
The standard error, in this case, is approximately 0.0979.
Based on the given information, we have:
Sample size (n): 25
Number of students who prefer online social networking (successes): 15
To calculate the sample proportion (p-hat), which represents the proportion of students who prefer online social networking, we divide the number of successes by the sample size:
p-hat = successes / n = 15 / 25 = 0.6
The sample proportion, in this case, is 0.6 or 60%.
To calculate the standard error (SE) of the sample proportion, we use the formula:
SE = √(p-hat * (1 - p-hat) / n)
SE = √(0.6 * (1 - 0.6) / 25) = √(0.6 * 0.4 / 25) = √(0.024 / 25) = 0.0979
The standard error, in this case, is approximately 0.0979.
Learn more about Sample from
https://brainly.com/question/24466382
#SPJ11
A marketing research company has run a survey of customers on four airways to measure their brand equity. Brand equity has been measured based on five dimensions: Familiarity of the product, perceived uniqueness of the product, popularity of the product, relevancy of the product to lifestyle, customer loyalty of the product. The respondents were instructed to answer each of the following questions on a scale of 1 to 10. The more they agreed, the closer would be the answer to 10. Famil: I am familiar and understand what this brand is about Uniqu: This brand has unique or different features or a distinct image other brands in this category don’t have. Relev: This brand is appropriate and fits my lifestyle and needs Loyal: This brand is the only brand for me Popul: This brand is popular brand The marketing firm decided to categorize the responses into two parts: Responses from 1to 7 as not loyal (0), responses from 8 to 10 as loyal(1). The dataset given have survey results of 1500 respondents. Analyze the data and present the managerial implications.
The managers of Airline 1 and Airline 2 should prioritize the uniqueness of their brand to improve their brand equity as a means of differentiating themselves from the competition.
The administrative ramifications in light of the information examination is as per the following: With a score of 0.523, Airline 3 was the airline with the highest brand equity. Airline 4 came in second place with a score of 0.516. With scores of 0.505 and 0.483, airline 1 and airline 2 follow.
According to the table above, survey respondents who are committed to a particular brand have the highest values for familiarity, uniqueness, and popularity. These observations should be used to determine the implications for brand loyalty. By prioritizing the three dimensions of brand equity that have a direct relationship with loyalty—familiarity, uniqueness, and popularity—managers of Airline 3 and Airline 4 should concentrate their marketing efforts on increasing customer loyalty in order to maintain or improve their brand equity.
As a means of distinguishing themselves from the competition, the managers of Airline 1 and Airline 2 ought to give priority to the uniqueness of their brands in order to increase their brand equity.
To know more about marketing refer to
https://brainly.com/question/31179706
#SPJ11
There are 10 members on board of directors_ of them must be elected to the offices of president; vice-president, secretary, and treasurer, then how many different slates of candidates are possible? Assume that no board member may be elected to more than one of these offices.
There are 5,040 different slates of candidates possible for the offices of president, vice-president, secretary, and treasurer.
To determine the number of different slates of candidates for the offices of president, vice-president, secretary, and treasurer, we can use the concept of permutations.
There are 10 members on the board of directors, and we need to select 4 members for the 4 different offices.
We can think of this as arranging the 10 members in a specific order, where the first member selected becomes the president, the second member becomes the vice-president, the third member becomes the secretary, and the fourth member becomes the treasurer.
The number of ways to arrange the members in this specific order is given by the formula for permutations:
P(n, r) = n! / (n - r)!
Where n is the total number of items and r is the number of items to be selected.
In this case, we have n = 10 (total number of members) and r = 4 (number of offices to be filled).
Using the formula, we can calculate the number of different slates of candidates:
P(10, 4) = 10! / (10 - 4)!
= 10! / 6!
[tex]= (10 \times 9 \times 8 \times 7 \times 6!) / 6![/tex]
[tex]= 10 \times 9 \times8 \times7[/tex]
= 5,040
For similar question on permutations.
https://brainly.com/question/1216161
#SPJ8
find the surface area of the portion of the bowl z = 6 − x 2 − y 2 that lies above the plane z = 3.
Here's the formula written in LaTeX code:
To find the surface area of the portion of the bowl [tex]\(z = 6 - x^2 - y^2\)[/tex] that lies above the plane [tex]\(z = 3\)[/tex] , we need to determine the bounds of integration and set up the surface area integral.
The given surfaces intersect when [tex]\(z = 6 - x^2 - y^2 = 3\)[/tex] , which implies [tex]\(x^2 + y^2 = 3\).[/tex]
Since the bowl lies above the plane \(z = 3\), we need to find the surface area of the portion where \(z > 3\), which corresponds to the region inside the circle \(x^2 + y^2 = 3\) in the xy-plane.
To calculate the surface area, we can use the surface area integral:
[tex]\[ \text{{Surface Area}} = \iint_S dS, \][/tex]
where [tex]\(dS\)[/tex] is the surface area element.
In this case, since the surface is given by [tex]\(z = 6 - x^2 - y^2\)[/tex] , the normal vector to the surface is [tex]\(\nabla f = (-2x, -2y, 1)\).[/tex]
The magnitude of the surface area element [tex]\(dS\)[/tex] is given by [tex]\(\|\|\nabla f\|\| dA\)[/tex] , where [tex]\(dA\)[/tex] is the area element in the xy-plane.
Therefore, the surface area integral can be written as:
[tex]\[ \text{{Surface Area}} = \iint_S \|\|\nabla f\|\| dA. \][/tex]
Substituting the values into the equation, we have:
[tex]\[ \text{{Surface Area}} = \iint_S \|\|(-2x, -2y, 1)\|\| dA. \][/tex]
Simplifying, we get:
[tex]\[ \text{{Surface Area}} = 2 \iint_S \sqrt{1 + 4x^2 + 4y^2} dA. \][/tex]
Now, we need to set up the bounds of integration for the region inside the circle [tex]\(x^2 + y^2 = 3\)[/tex] in the xy-plane.
Since the region is circular, we can use polar coordinates to simplify the integral. Let's express [tex]\(x\)[/tex] and [tex]\(y\)[/tex] in terms of polar coordinates:
[tex]\[ x = r\cos\theta, \][/tex]
[tex]\[ y = r\sin\theta. \][/tex]
The bounds of integration for [tex]\(r\)[/tex] are from 0 to [tex]\(\sqrt{3}\)[/tex] , and for [tex]\(\theta\)[/tex] are from 0 to [tex]\(2\pi\)[/tex] (a full revolution).
Now, we can rewrite the surface area integral in polar coordinates:
[tex]\[ \text{{Surface Area}} = 2 \iint_S \sqrt{1 + 4x^2 + 4y^2} dA= 2 \iint_S \sqrt{1 + 4r^2\cos^2\theta + 4r^2\sin^2\theta} r dr d\theta. \][/tex]
Simplifying further, we get:
[tex]\[ \text{{Surface Area}} = 2 \iint_S \sqrt{1 + 4r^2} r dr d\theta. \][/tex]
Integrating with respect to \(r\) first, we have:
[tex]\[ \text{{Surface Area}} = 2 \int_{\theta=0}^{2\pi} \int_{r=0}^{\sqrt{3}} \sqrt{1 + 4r^2} r dr d\theta. \][/tex]
Evaluating this double integral will give us the surface area of the portion of
the bowl above the plane [tex]\(z = 3\)[/tex].
Performing the integration, the final result will be the surface area of the portion of the bowl [tex]\(z = 6 - x^2 - y^2\)[/tex] that lies above the plane [tex]\(z = 3\)[/tex].
To know more about coordinates visit-
brainly.com/question/18632594
#SPJ11
1. If X is uniformly distributed over 0,1), find the probability density function of Y = ex 2. If X has a uniform distribution U(-/2, /2), find the probability density function of Y = tan X.
The PDF of Y = tan X is: fY(y) = {[tan-1y + π/2]/π} - 1, -∞ < y < ∞.
1. If X is uniformly distributed over 0,1), the probability density function (PDF) of Y = ex is given by: fY(y) = P(Y ≤ y) = P(ex ≤ y) = P(x ≤ ln y) = ∫0lnyfX(x)dx where fX(x) is the PDF of X.
Since X is uniformly distributed over (0,1), its PDF is:fX(x) = { 1, 0 ≤ x < 1, otherwise Substituting f X(x) in the above equation, fY(y) = ∫0lnyfX(x)dx= ∫0 lny1dx= ln y, 0 < y < 1
Therefore, the PDF of Y = ex is: fY(y) = ln y, 0 < y < 1.2. If X has a uniform distribution U(-π/2, π/2), the probability density function (PDF) of Y = tan X is given by: fY(y) = P(Y ≤ y) = P(tan X ≤ y) = P(X ≤ tan-1y) + P(X ≥ π/2 + tan-1y)= Fx (tan-1y) - Fx(π/2 + tan-1y),where Fx(x) is the cumulative distribution function (CDF) of X.
Since X is uniformly distributed over (-π/2, π/2), its CDF is given by:Fx(x) = { 0, x < -π/2, (x + π/2)/π, -π/2 ≤ x < π/2, 1, x ≥ π/2Substituting Fx(x) in the above equation, we get: fY(y) = Fx(tan-1y) - Fx(π/2 + tan-1y)= {[tan-1y + π/2]/π} - 1, -∞ < y < ∞
To Know more about probability density function visit:
https://brainly.com/question/31039386
#SPJ11
draw the image histogram. explain the intensity histogram. apply the negative transformation. apply the log transformation, where c=1.
An image histogram is a graphical representation of the intensity distribution of pixel values in an image. It shows the frequency of occurrence of each intensity level. To apply transformations, we can use techniques like negative transformation and log transformation.
The image histogram is a bar graph where the x-axis represents the intensity levels and the y-axis represents the frequency or number of pixels with that intensity level.
The height of each bar indicates the number of pixels with a particular intensity.
The intensity histogram provides insights into the distribution of intensity values in the image. It helps in understanding the overall brightness and contrast of the image.
A peak in the histogram indicates a significant number of pixels with a specific intensity, while a spread-out histogram suggests a wider range of intensity values.
To apply the negative transformation, we simply invert the intensity values of each pixel. Bright areas become dark, and vice versa. This transformation enhances the image's negative space and can be used for artistic or visual effects.
The log transformation is applied by taking the logarithm of the intensity values. With c = 1, the formula becomes log(1 + intensity). This transformation is useful for expanding the dynamic range of images, particularly those with low contrast. It compresses the higher intensity values while expanding the lower ones, resulting in improved visibility of details in both dark and bright regions.
Both negative and log transformations modify the intensity distribution, altering the image's appearance. The choice of transformation depends on the desired outcome and the characteristics of the original image.
To learn more about transformations visit:
brainly.com/question/29032688
#SPJ11
6) Convert a WAIS-IV IQ (Mean = 100, s = 15) of 95 to a z-score: a) -0.05 b) -0.33 c) -0.95 d) 6.33 7) A z-score of 0.5 is at what percentile? a) 25th b) 50th c) 69th d) 84th 8) Abdul obtains a score
The correct answer is c) 69th. A z-score of 0.5 corresponds to a percentile of approximately 69.15%. This means that approximately 69.15% of the data falls below the given z-score.
To convert an IQ score of 95 to a z-score, we need to use the formula:
z = (x - μ) / σ
where:
x = IQ score
μ = mean
σ = standard deviation
Given:
x = 95
μ = 100
σ = 15
Plugging in the values into the formula, we get:
z = (95 - 100) / 15
z = -0.33
Therefore, the correct answer is b) -0.33.
To determine the percentile corresponding to a z-score of 0.5, we can refer to the standard normal distribution table or use a statistical calculator.
A z-score of 0.5 corresponds to a percentile of approximately 69.15%. This means that approximately 69.15% of the data falls below the given z-score.
Therefore, the correct answer is c) 69th.
The question regarding Abdul's score seems to be incomplete. Please provide the missing information or details related to Abdul's score so that I can assist you further.
Learn more about percentile here
https://brainly.com/question/28839672
#SPJ11
The probability distribution for the random variable x follows. x 21 25 32 36 a. Is this probability distribution valid? Explain. - Select your answer - b. What is the probability that x = 32 (to 2 de
a. The probability distribution is valid since the sum of the probabilities is equal to 1, which means that the probabilities of all the possible events must add up to 1.
To check the distribution’s validity, it is necessary to add up the probability values of all the possible events. This is because a probability value that is less than 0 or more than 1 makes no sense and hence is not valid. The probabilities must also be non-negative.
Thus, we add the given probabilities together.
P(21) + P(25) + P(32) + P(36) = 0.15 + 0.25 + 0.3 + 0.15 = 0.85.
Hence, the probability distribution is valid.
b. To find the probability that x = 32 .
The probability of the random variable being equal to 32 is given as
P(x = 32) = 0.30
Therefore, the probability that x = 32 is 0.30.
To know more about probability distribution, visit:
https://brainly.com/question/29062095
#SPJ11
A smart phone
manufacturer wants to find out what proportion of its customers are
dissatisfied with the service received from their local
distributor. The manufacturer surveys a random sample of 65
cu
Smartphone manufacturer conducts survey to determine customers' satisfaction with service A smartphone manufacturer can use a random sampling technique to determine the percentage of customers who are dissatisfied with the services received from the local distributor.
The survey should aim to represent all smartphone users who have purchased their devices from the local distributor. A survey is a method of collecting data from a population, and in this case, the target population is smartphone users who have bought their phones from the local distributor.
The smartphone manufacturer can use a sample size calculator to determine the sample size required to achieve a margin of error that meets the survey's purpose. The sample size calculator considers the population size, level of confidence, margin of error, and population proportion to determine the required sample size.
With a margin of error of 5% and a 95% level of confidence, a sample size of 65 would be sufficient to represent the entire population.With the survey results, the smartphone manufacturer can determine the percentage of customers who are dissatisfied with the services provided by the local distributor.
If a significant percentage of customers are not satisfied with the service, the smartphone manufacturer can take corrective measures such as finding a new local distributor or working with the existing distributor to improve the service quality.
To know more about Smartphone visit:
https://brainly.com/question/28400304
#SPJ11
Describe a data set that you could collect with ordinal level of
measurement. Include where and how you could get this data.
The data set can be collected through surveys, interviews, or observations of patient behavior, and the data could be used to evaluate the quality of medical care provided by hospitals.
Ordinal degree of estimation is a scale used to quantify factors with various classes, every one of which is given an inconsistent positioning in light of its relative position. This degree of estimation is especially valuable in getting information for consumer loyalty overviews, for example, eatery or lodging audits, as well as in estimating mental develops like misery and tension.
The patient's level of satisfaction with hospital medical care is one example of a data set that could be gathered using an ordinal level of measurement. This informational collection will quantify patient fulfillment utilizing scales that action angles like correspondence, tidiness, and idealness of care. The reactions from the patients will be positioned by their degree of understanding, which will go from firmly consent to differ emphatically. The information could be gathered from a clinical office or clinic.
A survey that could be given to the patients directly while they are in the hospital or distributed to them online can be used to collect the data. The data can also be gathered by interviewing patients after they have received treatment or by observing how they act while they are in the hospital. To summarize, patient satisfaction with hospital medical care is a data set that can be gathered using the ordinal level of measurement. The data set can be gathered through surveys, interviews, or observations of patient behavior, and it could be used to assess the quality of hospital medical care.
To know more about consumer loyalty refer to
https://brainly.com/question/32372893
#SPJ11
Find the point of inflection of the graph of the function. (If an answer does not exist, enter DNE.) f(x)=sin2x,[0,4π](x,y)=( Describe the concavity of the graph of the function. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) concave upward concave downward Find the point of inflection of the graph of the function. (If an answer does not exist, enter DNE.) f(x)=5sec(x−2π),(0,4π)(x,y)=( Describe the concavity. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) concave upward concave downward
We see that the graph of the function is concave upward on the intervals [π/2, 3π/2] and [5π/2, 4π], and concave downward on the intervals [0, π/2] and [3π/2, 5π/2].
Hence, we conclude that the point of inflection is the point (3π/2, 5).
For the given function f(x) = sin(2x) over the interval [0, 4π], let's first find its first and second derivative.The first derivative of f(x) is obtained by using the chain rule of differentiation as follows:f'(x) = d/dx [sin(2x)] = cos(2x) × d/dx (2x) = 2cos(2x)Therefore, f''(x) = d²/dx² [sin(2x)] = d/dx [2cos(2x)] = -4sin(2x)
Now, to find the point of inflection, we need to find the values of x for which f''(x) = 0.=> -4sin(2x) = 0=> sin(2x) = 0=> 2x = nπ, where n is an integer=> x = nπ/2For the interval [0, 4π], the values of x that satisfy the above equation are x = 0, π/2, π, 3π/2, 2π, and 5π/2. These values of x divide the interval [0, 4π] into six smaller intervals, so we need to test the sign of f''(x) in each of these intervals. Interval | 0 < x < π/2:f''(x) = -4sin(2x) < 0Interval | π/2 < x < π:f''(x) = -4sin(2x) > 0Interval | π < x < 3π/2:f''(x) = -4sin(2x) < 0Interval | 3π/2 < x < 2π:f''(x) = -4sin(2x) > 0Interval | 2π < x < 5π/2:f''(x) = -4sin(2x) < 0Interval | 5π/2 < x < 4π:f''(x) = -4sin(2x) > 0
Thus, we see that the graph of the function is concave downward on the intervals [0, π/2], [π, 3π/2], and [2π, 5π/2], and concave upward on the intervals [π/2, π], [3π/2, 2π], and [5π/2, 4π].The point of inflection is the point at which the graph changes concavity, i.e., the points (π/2, 1) and (3π/2, -1).
Next, for the function f(x) = 5sec(x - 2π), let's first find its first and second derivative.The first derivative of f(x) is obtained by using the chain rule of differentiation as follows:f'(x) = d/dx [5sec(x - 2π)] = 5sec(x - 2π) × d/dx (sec(x - 2π))= 5sec(x - 2π) × sec(x - 2π) × tan(x - 2π)= 5sec²(x - 2π) × tan(x - 2π)
Therefore, f''(x) = d²/dx² [5sec(x - 2π)] = d/dx [5sec²(x - 2π) × tan(x - 2π)] = d/dx [5tan(x - 2π) + 5tan³(x - 2π)] = 5sec²(x - 2π) × (1 + 6tan²(x - 2π))Now, to find the point of inflection, we need to find the values of x for which f''(x) = 0.=> 5sec²(x - 2π) × (1 + 6tan²(x - 2π)) = 0=> sec²(x - 2π) = 0 or 1 + 6tan²(x - 2π) = 0=> sec(x - 2π) = 0 or tan(x - 2π) = ±√(1/6)
For the interval [0, 4π], the values of x that satisfy the above equations are x = π/2, 3π/2, and 5π/2.
These values of x divide the interval [0, 4π] into four smaller intervals, so we need to test the sign of f''(x) in each of these intervals. Interval | 0 < x < π/2:f''(x) = 5sec²(x - 2π) × (1 + 6tan²(x - 2π)) > 0Interval | π/2 < x < 3π/2:f''(x) = 5sec²(x - 2π) × (1 + 6tan²(x - 2π)) < 0Interval | 3π/2 < x < 5π/2:f''(x) = 5sec²(x - 2π) × (1 + 6tan²(x - 2π)) > 0Interval | 5π/2 < x < 4π:f''(x) = 5sec²(x - 2π) × (1 + 6tan²(x - 2π)) < 0
Thus, we see that the graph of the function is concave upward on the intervals [π/2, 3π/2] and [5π/2, 4π], and concave downward on the intervals [0, π/2] and [3π/2, 5π/2].
Hence, we conclude that the point of inflection is the point (3π/2, 5).
To know more about derivative visit:
https://brainly.com/question/23819325
#SPJ11
Here are summary statistics for randomly selected weights of newborn girls: n=229, x = 30.1 hg, s= 7.9 hg. Construct a confidence interval estimate of the mean. Use a 90% confidence level. Are these r
The formula for constructing a confidence interval estimate for the mean when the population standard deviation is unknown is given as: CI = x ± tα/2 * s/√n Where; CI = Confidence Interval x = Sample Mean tα/2 = t-distribution value at α/2 level of significance, n-1 degrees of freedom. s = Sample Standard Deviation n = Sample Size
Given; Sample Size (n) = 229 Sample Mean (x) = 30.1 hg Sample Standard Deviation (s) = 7.9 hg Confidence Level = 90%, which means that the level of significance (α) = 1 - 0.90 = 0.10 or α/2 = 0.05 and degree of freedom = n-1 = 228 Substituting the values into the formula, we get; CI = 30.1 ± t0.05, 228 * 7.9/√229We find t 0.05, 228 from the t-distribution table or calculator at α/2 = 0.05 level of significance and degree of freedom = 228, as follows:t0.05, 228 = ±1.646 (to three decimal places) Therefore; CI = 30.1 ± 1.646 * 7.9/√229CI = 30.1 ± 1.207CI = (30.1 - 1.207, 30.1 + 1.207)CI = (28.893, 31.307) The confidence interval estimate of the mean is (28.893, 31.307).Yes, these results are reliable because the sample size (n = 229) is greater than or equal to 30 and the data is normally distributed. Also, the confidence interval estimate of the mean is relatively narrow, which shows that the sample is relatively precise.
Know more about confidence interval here:
https://brainly.com/question/32546207
#SPJ11
Question 1 An assumption of non parametric tests is that the distribution must be normal O True O False Question 2 One characteristic of the chi-square tests is that they can be used when the data are measured on a nominal scale. True O False Question 3 Which of the following accurately describes the observed frequencies for a chi-square test? They are always the same value. They are always whole numbers. O They can contain both positive and negative values. They can contain fractions or decimal values. Question 4 The term expected frequencies refers to the frequencies computed from the null hypothesis found in the population being examined found in the sample data O that are hypothesized for the population being examined
The given statement is false as an assumption of non-parametric tests is that the distribution does not need to be normal.
Question 2The given statement is true as chi-square tests can be used when the data is measured on a nominal scale. Question 3The observed frequencies for a chi-square test can contain fractions or decimal values. Question 4The term expected frequencies refers to the frequencies that are hypothesized for the population being examined. The expected frequencies are computed from the null hypothesis found in the sample data.The chi-square test is a non-parametric test used to determine the significance of how two or more frequencies are different in a particular population. The non-parametric test means that the distribution is not required to be normal. Instead, this test relies on the sample data and frequency counts.The chi-square test can be used for nominal scale data or categorical data. The observed frequencies for a chi-square test can contain fractions or decimal values. However, the expected frequencies are computed from the null hypothesis found in the sample data. The expected frequencies are the frequencies that are hypothesized for the population being examined. Therefore, option D correctly describes the expected frequencies.
To know more about FALSE statement visit:
https://brainly.com/question/31965986
#SPJ11
You are the night supervisor at a local McDonalds. The table below gives the PDF corresponding to the number of workers who call in sick on a given night. x P(x) 0 0.7 1 0.15 2 0.1 3 0.05 What is the
The expected number of employees who will call in sick on a given night at the local McDonald's is 0.5.
To calculate the expected number of employees who will call in sick on a given night, we need to multiply each value of x (number of workers calling in sick) by its corresponding probability P(x), and then sum up these products.
The following probability distribution function (PDF) is:
x P(x)
0 0.7
1 0.15
2 0.1
3 0.05
To calculate the expected number of employees calling in sick, we perform the following calculations:
Expected number = (0 * 0.7) + (1 * 0.15) + (2 * 0.1) + (3 * 0.05)
Expected number = 0 + 0.15 + 0.2 + 0.15
Expected number = 0.5
Therefore, the expected number of employees who will call in sick on a given night is 0.5.
The correct question should be :
You are the night supervisor at a local McDonalds. The table below gives the PDF corresponding to the number of workers who call in sick on a given night. x P(x) 0 0.7 1 0.15 2 0.1 3 0.05 What is the expected number of employees who will call in sick on a given night?
Oo 0.5 0.9
To learn more about probability visit : https://brainly.com/question/13604758
#SPJ11
Navel County Choppers, Inc., is experiencing rapid growth. The company expects dividends to grow at 18 percent per year for the next 11 years before leveling off at 4 percent into perpetuity. The required return on the company’s stock is 10 percent. If the dividend per share just paid was $1.94, what is the stock price?
The stock price of Navel County Choppers, Inc. can be determined using the dividend discount model. With expected dividend growth of 18% for the next 11 years and a perpetual growth rate of 4%, and a required return of 10%, we can calculate the stock price.
To calculate the stock price, we need to find the present value of the expected future dividends. The formula for the present value of dividends is:
Stock Price = (Dividend / (Required Return - Growth Rate))
In this case, the dividend just paid is $1.94, the required return is 10%, and the growth rate is 18% for the first 11 years and 4% thereafter. Using these values, we can calculate the stock price.
Stock Price = ($1.94 / (0.10 - 0.18)) + ($1.94 * (1 + 0.04)) / (0.10 - 0.04)
Simplifying the equation, we find the stock price of Navel County Choppers, Inc.
Learn more about present value here: brainly.com/question/28304447
#SPJ11
A spinner is divided into 4 sections. The spinner is spun 100 times.
The probability distribution shows the results.
What is P(2 ≤ x ≤ 4)?
Is my answer correct?
A spinner is divided into 4 sections. The spinner is spun 100 times and the probability distribution is given as follows:
Outcome 1234 Probability 0.450.200.250.10
Using the cumulative probability,
P(2 ≤ x ≤ 4) is:
P(2 ≤ x ≤ 4) = P(x = 2) + P(x = 3) + P(x = 4)P(2 ≤ x ≤ 4) = 0.2 + 0.25 + 0.1P(2 ≤ x ≤ 4) = 0.55
Therefore, the probability that the spinner lands on 2, 3 or 4 is 0.55. The answer is correct.P.S.: The question does not provide any information on how many sections the spinner has, but it gives the probability distribution of the spinner landing on each of the sections.
To know more about probability distribution visit:
https://brainly.com/question/29062095
#SPJ11
nearest foot and recorded them as shown.
width = 9 feet
length = 15 feet
Based on the rounded measurements, which of the following statements could be true?
A) The actual width of the floor is 8 feet 4 inches,
B) The actual length of the floor is 15 feet 5 inches.
C) The actual area of the floor is 149.5 square feet.
D) The actual perimeter of the floor is 44 feet 10 inches.
Based on the rounded measurements, none of the given statements could be true.
Based on the rounded measurements provided:
Width = 9 feet
Length = 15 feet
Let's evaluate each statement:
A) The actual width of the floor is 8 feet 4 inches.
Since the rounded width is 9 feet, it is not possible for the actual width to be 8 feet 4 inches. So, statement A is not true.
B) The actual length of the floor is 15 feet 5 inches.
Since the rounded length is 15 feet, it is not possible for the actual length to be 15 feet 5 inches. So, statement B is not true.
C) The actual area of the floor is 149.5 square feet.
To calculate the area of the floor, we multiply the width and length: 9 feet * 15 feet = 135 square feet. Since the rounded measurements were used, the actual area cannot be 149.5 square feet. So, statement C is not true.
D) The actual perimeter of the floor is 44 feet 10 inches.
To calculate the perimeter of the floor, we add up the four sides: 2 * (9 feet + 15 feet) = 2 * 24 feet = 48 feet. Since the rounded measurements were used, the actual perimeter cannot be 44 feet 10 inches. So, statement D is not true.
Based on the rounded measurements, none of the given statements could be true.
To know more about perimeter visit:
brainly.com/question/7486523
#SPJ11
14. On a math test, 7 out of 30 students got the first question wrong. If 3 different students are chosen to present their answer on the board, what is the probability they all got it right? 15. Jenni
14. The probability that all 3 students got the first question right can be calculated as (7/30) * (6/29) * (5/28), which equals approximately 0.0069 or 0.69%.
15. The probability that all 3 children choose pizza can be calculated as (1/4) * (1/4) * (1/4), which equals 1/64 or approximately 0.0156 or 1.56%.
14. For the first question, 7 out of 30 students got it wrong, which means 23 students got it right. When choosing 3 different students to present their answers on the board, the probability that the first student got it right is 23/30 since there are 23 students who got it right out of 30 total students.
For the second student, after one student has been chosen, there are now 29 students left, and the probability that the second student got it right is 22/29 since there are 22 students who got it right out of the remaining 29 students.
Similarly, for the third student, after two students have been chosen, there are 28 students left, and the probability that the third student got it right is 21/28 since there are 21 students who got it right out of the remaining 28 students.
To find the probability that all 3 students got it right, we multiply the probabilities together: (23/30) * (22/29) * (21/28), which equals approximately 0.0069 or 0.69%.
15. Since each child independently writes down their choice without talking, the probability that each child chooses pizza is 1/4 since there are 4 food options and they have an equal chance of choosing any of them.
To find the probability that all 3 children choose pizza, we multiply the probabilities together: (1/4) * (1/4) * (1/4), which equals 1/64 or approximately 0.0156 or 1.56%.
The correct question should be :
14. On a math test, 7 out of 30 students got the first question wrong. If 3 different students are chosen to present their answer on the board, what is the probability they all got it right?
15. Jennifer wants to make grilled chicken for her 3 children for dinner. They all moan and groan asking for something different. She gives them a choice of hamburgers, pizza, chicken nuggets, or hot dogs. If they can all agree on the same food item, she will make it for them. Without talking, each child writes down what they want for dinner. What is the probability all 3 of them choose pizza?
To learn more about probability visit : https://brainly.com/question/13604758
#SPJ11
Use the standard normal table to find the following values. Z is a standard normal random variable. (a) P(Z < 1.5) (b) P(-1.5
The value of P(Z < 1.5) is approximately 0.9332 or 93.32%.
To find the value P(Z < 1.5) using the standard normal table, follow these steps:
1. Look up the z-score 1.5 in the standard normal table.
2. Identify the corresponding probability value in the table.
The standard normal table provides the cumulative probability from the left tail of the standard normal distribution. Therefore, P(Z < 1.5) represents the probability of the standard normal random variable being less than 1.5.
Using the standard normal table, the value for P(Z < 1.5) is approximately 0.9332.
Therefore, P(Z < 1.5) is approximately 0.9332 or 93.32%.
Learn more about Z-score here
https://brainly.com/question/31500061
#SPJ4
Q4: Suppose X is a positive and continuous random variable, and Y = In(X) follows a normal distribution with mean μ and variance o ², i.e. Y = ln(X) ~ N (μ‚σ²), fy(y): = 1 V2πσε exp{-- (y-μ
Given that X is a positive and continuous random variable, and Y = ln(X) follows a normal distribution with mean μ and variance σ². That is, Y = ln(X) ~ N(μ, σ²), fy(y): = 1 / √2πσ² * exp{-(y-μ)² / 2σ²}.
We know that when Y = ln(X) follows a normal distribution with mean μ and variance σ², then X follows a log-normal distribution with mean and variance given by the following formulas. Mean of X= eμ+σ²/2, Variance of X= (eσ²-1) * e2μ+σ². Here, we have to find the mean and variance of X. Since Y = ln(X) ~ N(μ, σ²), Mean of Y = μ, Variance of Y = σ². We know that mean of X= eμ+σ²/2. Let's find μ.μ = mean of Y = E(Y), E(Y) = ∫fy(y)*y dy. As given, fy(y) = 1/√2πσ² * exp{-(y-μ)² / 2σ²}, fy(y) = 1/√2πσ² * exp{-(ln(X)-μ)² / 2σ²}. The integral of fy(y) is taken over negative infinity to infinity. So, E(Y) = ∫ -∞ ∞ (1/√2πσ² * exp{-(ln(X)-μ)² / 2σ²}) (ln(X)) dX.
Let's do u-substitution, u = ln(X). Then, du/dx = 1/X => dx = Xdu. Therefore, E(Y) = ∫ -∞ ∞ (1/√2πσ² * exp{-(u-μ)² / 2σ²}) (u) e^u du, E(Y) = ∫ -∞ ∞ (1/√2πσ² * exp{-(u-μ)² / 2σ²}) (u) du + ∫ -∞ ∞ (1/√2πσ² * exp{-(u-μ)² / 2σ²}) du ------(1). As given, the integral of exp{-(u-μ)² / 2σ²} over negative infinity to infinity is 1. So, ∫ -∞ ∞ (1/√2πσ² * exp{-(u-μ)² / 2σ²}) du = 1. Therefore, E(Y) = ∫ -∞ ∞ (1/√2πσ² * exp{-(u-μ)² / 2σ²}) (u) du + 1.
Now, let's evaluate the first integral ∫ -∞ ∞ (1/√2πσ² * exp{-(u-μ)² / 2σ²}) (u) duu = (u-μ) + μ. Therefore, ∫ -∞ ∞ (1/√2πσ² * exp{-(u-μ)² / 2σ²}) (u) du = ∫ -∞ ∞ (1/√2πσ² * exp{-u² / 2σ²}) (u-μ) du + μ ∫ -∞ ∞ (1/√2πσ² * exp{-u² / 2σ²}) duuσ√(2π) = uσ√(2π) - σ√(2π) * μσ√(2π) = E(Y) - μσ√(2π) + μσ√(2π) = E(Y). Therefore, E(Y) = μ. The mean of X is eμ+σ²/2eμ+σ²/2 = μ. Therefore, μ = eμ+σ²/2μ - ln(2πσ²)/2 = μeμ+σ²/2 = eμσ²/2ln(eμ+σ²/2) = μln(eμσ²/2) = ln(eμ) + ln(eσ²/2)ln(eμσ²/2) = μ + σ²/2, Variance of X = (eσ² - 1) * e2μ+σ², Variance of Y = σ² = (ln(X) - μ)²σ² = (ln(X) - μ)²σ² = ln²(X) - 2μln(X) + μ², Variance of X = (eσ² - 1) * e2μ+σ²(eσ² - 1) * e2μ+σ² = e2ln(eμσ²/2) - eμσ²/2, Variance of X = eσ²-1 * e2μ+σ²- σ². Therefore, variance of X = e2ln(eμσ²/2) - eμσ²/2 - σ²= e2μ+σ² - eμ+σ²/2 - σ².Therefore, variance of X = e2μ+σ² - eμ+σ²/2 - σ² = e2μ+σ² - eμσ²/2 - σ².
To know more about normal distribution, visit:
https://brainly.com/question/14916937
#SPJ11
Consider the following baseband message signals (0) m1o)sin 150; (ii) m2(0) D sgn(); and (v) = ing baseband message signals i) mit)sin 150t r m2(t) 2exp(-2)11(1); (iii) cos 200tr + rect(100); (iv) m() = 50exp(-1001t m(t) = 500 exp(-100ltー0.51). For each of the five message signals. (a) sketch the spectrum of m(t); (b) sketch the spectrum of the DSB-SC signal 2m() cos 2000m : (c) identify the USB and the LSB spectra.
(a) The spectrum of each message signal has been analyzed and described. (b) The spectrum of the DSB-SC signal 2m(t)cos(2000t) has been determined by shifting the spectra of the message signals to the carrier frequency. (c) The Upper Sideband (USB) and Lower Sideband (LSB) spectra have been identified for each DSB-SC signal.
To sketch the spectra of the given message signals and the DSB-SC (Double Sideband Suppressed Carrier) signal, we need to analyze their frequency components. Here's the analysis for each message signal:
(i) m1(t) = sin(150t)
(a) The spectrum of m1(t) consists of a single frequency component at 150 Hz.
(b) The spectrum of the DSB-SC signal 2m1(t)cos(2000t) is obtained by shifting the spectrum of m1(t) to the carrier frequency of 2000 Hz. It will have two sidebands symmetrically placed around the carrier frequency, each containing the same frequency components as the original spectrum of m1(t).
(c) In this case, the USB (Upper Sideband) is located above the carrier frequency at 2000 Hz + 150 Hz = 2150 Hz, and the LSB (Lower Sideband) is located below the carrier frequency at 2000 Hz - 150 Hz = 1850 Hz.
(ii) m2(t) = sgn(t)
(a) The spectrum of m2(t) is a continuous spectrum that extends infinitely in both positive and negative frequencies.
(b) The spectrum of the DSB-SC signal 2m2(t)cos(2000t) will have two sidebands symmetrically placed around the carrier frequency. However, due to the nature of the signum function, the spectrum will consist of continuous frequency components.
(c) Since the spectrum of m2(t) extends infinitely in both positive and negative frequencies, both the USB and the LSB will contain the same frequency components.
(iii) m3(t) = cos(200t) + rect(100t)
(a) The spectrum of m3(t) will consist of frequency components at 200 Hz (due to the cosine term) and a sinc function spectrum due to the rectangular pulse.
(b) The spectrum of the DSB-SC signal 2m3(t)cos(2000t) will have two sidebands symmetrically placed around the carrier frequency of 2000 Hz. The frequency components from the spectrum of m3(t) will be shifted to the corresponding sidebands.
(c) The USB will contain the frequency components shifted to the upper sideband, while the LSB will contain the frequency components shifted to the lower sideband.
(iv) m4(t) = 50exp(-100t)
(a) The spectrum of m4(t) will be a continuous spectrum that decays exponentially as the frequency increases.
(b) The spectrum of the DSB-SC signal 2m4(t)cos(2000t) will have two sidebands symmetrically placed around the carrier frequency. The frequency components from the spectrum of m4(t) will be shifted to the corresponding sidebands.
(c) Since the spectrum of m4(t) decays exponentially, the majority of the frequency components will be concentrated around the carrier frequency. Thus, both the USB and the LSB will contain similar frequency components.
(v) m5(t) = 500exp(-100t) - 0.51
(a) The spectrum of m5(t) will be similar to m4(t), with an additional frequency component at 0 Hz due to the constant term (-0.51).
(b) The spectrum of the DSB-SC signal 2m5(t)cos(2000t) will have two sidebands symmetrically placed around the carrier frequency. The frequency components from the spectrum of m5(t) will be shifted to the corresponding sidebands.
(c) Similar to m4(t), the USB and the LSB will contain similar frequency components concentrated around the carrier frequency.
To know more about message signal,
https://brainly.com/question/31973313
#SPJ11
A population of unknown shape has a mean of
4,500
and a standard deviation of
300.
a.
Find the minimum proportion of observations in the population
that are in the range
3,900
to
5,100.
b.
D
To find the minimum proportion of observations in the population that are in the range from 3,900 to 5,100, we can use the properties of a normal distribution.
a) Proportion of observations in the range 3,900 to 5,100:
First, we need to standardize the range using the given mean and standard deviation.
Standardized lower bound = (3,900 - 4,500) / 300
Standardized upper bound = (5,100 - 4,500) / 300
Once we have the standardized values, we can use a standard normal distribution table or calculator to find the corresponding proportions.
Let's denote the standardized lower bound as z1 and the standardized upper bound as z2.
P(z1 ≤ Z ≤ z2) represents the proportion of observations between z1 and z2, where Z is a standard normal random variable.
Using the standard normal distribution table or calculator, we can find the corresponding probabilities and subtract from 1 to get the minimum proportion.
b) To find the maximum value that 20% of the observations exceed, we can use the concept of the z-score.
Given that the mean is 4,500 and the standard deviation is 300, we need to find the z-score corresponding to the 80th percentile (since we want the top 20%).
Using a standard normal distribution table or calculator, we can find the z-score that corresponds to a cumulative probability of 0.80. Let's denote this z-score as z.
To find the actual value that 20% of the observations exceed, we can use the formula:
Value = Mean + (z * Standard Deviation)
Substituting the values, we can find the maximum value.
Please note that in both cases, we are assuming a normal distribution for the population. If the population distribution is known to be significantly non-normal, other methods or assumptions may need to be considered.
Learn more about standardize here:
https://brainly.com/question/16927061
#SPJ11
For each of the following journal articles, briefly describe the research methodology used based on the following headings: research philosophy, research approach to theory development, methodological choice, research strategy, time horizon, data analysis and presentation methods, and reliability and validity/trustworthiness [100 marks]
1. Fowler et al. (2014)
2. Chikerema & Makanyeza (2021)
3. Makanyeza & Chikazhe (2017)
4. Makanyeza & Du Toit (2017)
5. Makanyeza & Mutambayashata (2018)
6. Makanyeza (2017)
7. Musenze & Mayende (2019)
8. McEachern (2015)
9. Manyati & Mutsau (2021)
10. Makanyeza, Chitambara & Kakava (2018)
The primary data collected from reliable sources and checked for accuracy of the data.
1.Fowler et al. (2014):
Research Philosophy: Constructivist
Research Approach to Theory Development: Qualitative investigation
Methodological Choice: Grounded Theory
Research Strategy: Semi-structured interviews
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Open and axial coding with narrative analysis for reporting results
Reliability and Validity/Trustworthiness: Participant and researcher triangulation used to increase credibility
2.Chikerema & Makanyeza (2021):
Research Philosophy: Constructivist
Research Approach to Theory Development: Qualitative exploration
Methodological Choice: Phenomenological inquiry
Research Strategy: Interviews and focus group discussions combined with document review and observation
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Thematic analysis with painting of synthesized interpretations
Reliability and Validity/Trustworthiness: Using participant and researcher triangulation to test initial and emergent findings
3.Makanyeza & Chikazhe (2017):
Research Philosophy: Constructivist
Research Approach to Theory Development: Qualitative exploration
Methodological Choice: Narrative inquiry
Research Strategy: Interviews
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Thematic analysis with reporting of the narratives presented
Reliability and Validity/Trustworthiness: Self-check and investigator triangulation to evaluate the accuracy of the data
4.Makanyeza & Du Toit (2017):
Research Philosophy: Constructivist
Research Approach to Theory Development: Qualitative investigation
Methodological Choice: Grounded Theory
Research Strategy: Interviews and document review
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Open, axial, and selective coding to identify themes and patterns
Reliability and Validity/Trustworthiness: Member checking and researcher triangulation to promote trustworthiness of the results
5.Makanyeza & Mutambayashata (2018):
Research Philosophy: Constructivist
Research Approach to Theory Development: Qualitative exploration
Methodological Choice: Participatory action research
Research Strategy: Semi-structured interviews, focus group discussions, and classroom observation
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Thematic analysis involving open coding and reduction of data into core themes
Reliability and Validity/Trustworthiness: Peer review and researcher triangulation to increase credibility of the results.
6.Makanyeza (2017):
Research Philosophy: Constructivist
Research Approach to Theory Development: Qualitative exploration
Methodological Choice: Ethnography
Research Strategy: Participant observation, semi-structured interviews, and focus group discussions
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Open coding for generating categories and themes for analysis before developing a thematic framework
Reliability and Validity/Trustworthiness: Multiple data sources and triangulation of findings for enhancing validity and reliability.
7.Musenze & Mayende (2019):
Research Philosophy: Constructivist
Research Approach to Theory Development: Qualitative investigation
Methodological Choice: Grounded Theory
Research Strategy: Interviews and document review
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Open coding, axial coding, and analytical memoing for identifying and testing themes
Reliability and Validity/Trustworthiness: Combining participant and researcher triangulation to increase reliability and credibility of results.
8.McEachern (2015):
Research Philosophy: Postpositivist
Research Approach to Theory Development: Quantitative exploration
Methodological Choice: Panel regression analysis
Research Strategy: Secondary data analysis
Time Horizon: Longitudinal
Data Analysis and Presentation Methods: Panel regression analysis to analyse relationships between key variables over time
Reliability and Validity/Trustworthiness: Primary data collected from reliable sources and checked for accuracy of the data.
9.Manyati & Mutsau (2021):
Research Philosophy: Postpositivist
Research Approach to Theory Development: Quantitative investigation
Methodological Choice: Structural equation modelling
Research Strategy: Questionnaire survey
Time Horizon: Cross-sectional
Data Analysis and Presentation Methods: Structural equation modelling for prediction of behavioural intentions
Reliability and Validity/Trustworthiness: Reliability and validity of the underlying scales/instruments used were assessed.
Hence, the primary data collected from reliable sources and checked for accuracy of the data.
Learn more about the data here:
https://brainly.com/question/13650923.
#SPJ4
suppose f(x,y,z)=x2 y2 z2 and w is the solid cylinder with height 5 and base radius 5 that is centered about the z-axis with its base at z=−1. enter θ as theta.
Suppose [tex]f(x,y,z)=x²y²z²[/tex] and w is the solid cylinder with height 5 and base radius 5 that is centered about the z-axis with its base at z = −1.
Let us evaluate the triple integral[tex]∭w f(x, y, z) dV[/tex]by expressing it in cylindrical coordinates.
The cylindrical coordinates of a point in three-dimensional space are represented by (r, θ, z).Here, the base of the cylinder is at z = -1, and the cylinder is symmetric about the z-axis. As a result, the range for z is -1 ≤ z ≤ 4. Because the cylinder is centered about the z-axis, the range of θ is 0 ≤ θ ≤ 2π.
The radius of the cylinder is 5 units, and it is centered about the z-axis. As a result, r ranges from 0 to 5.
To know more about radius visit:
https://brainly.com/question/13449316
#SPJ11
Question 6 of 12 a + B+ y = 180° a b α BI Round your answers to one decimal place. meters meters a = 85.6", y = 14.5", b = 53 m
The value of the angle αBI is 32.2 degrees.
Step 1
We know that the sum of the angles of a triangle is 180°.
Hence, a + b + y = 180° ...[1]
Given that a = 85.6°, b = 53°, and y = 14.5°.
Plugging in the given values in equation [1],
85.6° + 53° + 14.5°
= 180°153.1°
= 180°
Step 2
Now we have to find αBI.αBI = 180° - a - bαBI
= 180° - 85.6° - 53°αBI
= 41.4°
Hence, the value of the angle αBI is 32.2 degrees(rounded to one decimal place).
To know more about angle visit:
https://brainly.com/question/31818999
#SPJ11
Find all values of x such that
(9, x, −14)
and
(5, x, x)
are orthogonal.
Here's the formula written in LaTeX code:
Two vectors are orthogonal if their dot product is zero.
Let's find the dot product of the given vectors and set it equal to zero:
[tex]\((9, x, -14) \cdot (5, x, x) = (9)(5) + (x)(x) + (-14)(x) = 45 + x^2 - 14x = 0\)[/tex]
To solve this equation, let's rearrange it:
[tex]\(x^2 - 14x + 45 = 0\)[/tex]
Now we can factor the quadratic equation:
[tex]\((x - 9)(x - 5) = 0\)[/tex]
Setting each factor equal to zero, we get:
[tex]\(x - 9 = 0\)[/tex] or [tex]\(x - 5 = 0\)[/tex]
Solving for [tex]\(x\)[/tex] , we find:
[tex]\(x = 9\) or \(x = 5\)[/tex]
Therefore, the values of [tex]\(x\)[/tex] for which the given vectors [tex]\((9, x, -14)\)[/tex] and [tex]\((5, x, x)\)[/tex] are orthogonal are [tex]\(x = 9\)[/tex] and [tex]\(x = 5\).[/tex]
To know more about vectors visit-
brainly.com/question/31422435
#SPJ11
Anewspaper published an article about a stay in which technology results, and using a 005 significance level, te Click the icon to view the technology What are the mall and stative hypothese? M₂ By
Given that a newspaper published an article about a stay in which technology results, and using a 0.05 significance level, the main and alternative hypotheses are to be determined.
Hypotheses: The main hypothesis, denoted by H₀, is that there is no significant difference between the two samples, and that any difference is due to random chance or error. The alternative hypothesis, denoted by H₁, is that there is a significant difference between the two samples that cannot be explained by random chance or error. The null hypothesis in this case is, H₀: The technology does not result in a significant difference. The alternative hypothesis is, H₁: The technology results in a significant difference. Therefore, the main hypothesis is H₀: The technology does not result in a significant difference, and the alternative hypothesis is H₁: The technology results in a significant difference.
Know more about hypotheses here:
https://brainly.com/question/8546696
#SPJ11
help please
If the joint probability density of X and Y is given by f(x, y) r(x) = (2x + y) Find a) Marginal density of X b) Conditional density of Y given that X=1/4 c) P(Y < 1|X = ¹ 3) d) E (Y|X = ¹) and Var
a) To get the marginal density of X, we integrate over all values of Y. fX(x) = ∫f(x, y)dy. We know that f(x, y) = r(x)(2x + y), so we can substitute it into the formula above and integrate.
We get: fX(x) = ∫r(x)(2x + y)dy = r(x)(2xy + ½y²) evaluated from y = -∞ to y = ∞.
Simplifying, we get fX(x) = r(x)(2x(E(Y|X=x)) + Var(Y|X=x))b) To find the conditional density of Y given X = ¼, we can use the formula: f(y|x) = f(x, y)/fX(x) where fX(x) is the marginal density of X found above.
Plugging in, we get:f(y|1/4) = f(1/4, y)/fX(1/4) = r(1/4)(2(1/4)+y) / [r(1/4)(3/4)] = (8/3)(1/4+y).c) We need to find P(Y < 1|X = 1/3). We know that P(Y < 1|X = x) = ∫f(y|x)dy from -∞ to 1.
Using the formula we found in part b, we get: P(Y < 1|X = 1/3) = ∫(8/3)(1/3+y) dy from -∞ to 1 = (13/9)d) To find E(Y|X = x), we can use the formula: E(Y|X = x) = ∫yf(y|x) dy from -∞ to ∞.We can use the formula for f(y|x) found in part b to get: E(Y|X = 1) = ∫y(8/3)(1+y)dy from -∞ to ∞ = 5/2.To find Var(Y|X = x),
we use the formula: Var(Y|X = x) = E(Y²|X = x) - [E(Y|X = x)]²We know that E(Y|X = x) = 5/2 from above. To get E(Y²|X = x), we use the formula: E(Y²|X = x) = ∫y²f(y|x)dy from -∞ to ∞.
Substituting the formula for f(y|x) we found in part b, we get:E(Y²|X = 1) = ∫y²(8/3)(1+y)dy from -∞ to ∞ = 143/36.So, Var(Y|X = 1) = 143/36 - (5/2)² = 11/36.
To know more about density function visit:
https://brainly.com/question/14012634
#SPJ11
the driving time for an individual from his home to his work is uniformly distributed between 200 to 470 seconds.
The probability that his driving time is between 350 and 400 seconds is approximately 0.185.
GThe driving time for an individual from his home to his work is uniformly distributed between 200 to 470 seconds.
To find the probability that his driving time is between 350 and 400 seconds
Let X be the driving time in seconds from his home to work, then X follows a uniform distribution between a=200 and b=470.
The probability density function of a uniform distribution is given by;`f(x) = 1/(b-a)` for `a ≤ x ≤ b`
Otherwise, `f(x) = 0`The probability that his driving time is between 350 and 400 seconds is given by;`P(350 ≤ X ≤ 400)`
We know that the uniform distribution is equally likely over the entire range of values from a to b, thus the probability of X being between any two values will be given by the ratio of the length of the interval containing those values to the length of the whole interval.
So,`P(350 ≤ X ≤ 400) = (length of the interval 350 to 400)/(length of the whole interval 200 to 470)
`Now,`Length of the interval 350 to 400 = 400 - 350 = 50 seconds``
Length of the whole interval 200 to 470 = 470 - 200 = 270 seconds`
Hence,`P(350 ≤ X ≤ 400) = (50)/(270)``P(350 ≤ X ≤ 400) ≈ 0.185`
To know more about probability please visit :
https://brainly.com/question/13604758
#SPJ11