The function relating the height of an object off the ground to the time spent falling is quadratic relationship. Travis drops a tennis ball from the top of an office building 90 meters tall. Three seconds later the ball lands on the ground. After 2 seconds, how far is the ball off the ground

Answers

Answer 1

The ball is 50 meters off the ground after 2 seconds.

To determine how far the ball is off the ground after 2 seconds, we can use the quadratic relationship between the height of the object and the time spent falling.

Let's denote the height of the ball at time t as h(t). We are given that the ball is dropped from a building 90 meters tall, so we have the initial condition h(0) = 90.

The general form of a quadratic function is h(t) = at^2 + bt + c, where a, b, and c are constants.

Since the ball is falling, we can assume the acceleration due to gravity is acting in the downward direction, resulting in a negative coefficient for the quadratic term. Therefore, we can write the equation as h(t) = -at^2 + bt + c.

To find the constants a, b, and c, we can use the given information. We know that after 3 seconds, the ball lands on the ground, so we have h(3) = 0. Plugging in these values, we get:

0 = -a(3)^2 + b(3) + c

0 = -9a + 3b + c (equation 1)

We also know that the ball is dropped, meaning its initial velocity is 0. This implies that its initial rate of change of height with respect to time (velocity) is 0. Therefore, we have h'(0) = 0, where h'(t) represents the derivative of h(t) with respect to t. Taking the derivative of the quadratic equation, we get:

h'(t) = -2at + b

Plugging in t = 0, we have:

0 = -2a(0) + b

0 = b (equation 2)

Using equations 1 and 2, we can simplify the equation 1 to:

0 = -9a + 3(0) + c

0 = -9a + c

Since b = 0, we can further simplify this to:

c = 9a (equation 3)

We now have two equations (equations 2 and 3) with two unknowns (a and c). Solving these equations simultaneously, we find that a = -10 and c = 90.

Therefore, the equation relating the height of the ball to time is h(t) = -10t^2 + 90.

To find how far the ball is off the ground after 2 seconds, we can substitute t = 2 into the equation:

h(2) = -10(2)^2 + 90

= -10(4) + 90

= -40 + 90

= 50 meters

for such more question on quadratic

https://brainly.com/question/12356021

#SPJ8

Question

The function relating the height of an object off the ground to the time spent falling is quadratic relationship. Travis drops a tennis ball from the top of an office building 90 meters tall. Three seconds later the ball lands on the ground. After 2 seconds, how far is the ball off the ground?

30 meters

40 meters

50 meters

60 meters


Related Questions

For the function
f(x)=(x²+5x+4)²
f′(x) =
f′(2)=

Answers

The derivative of the function f(x) can be found by applying the chain rule. Evaluating f'(x) will yield a new function representing the rate of change of f(x) with respect to x. f'(2) is equal to 128.

To find the derivative of f(x), we apply the chain rule. Let's denote f(x) as u and the inner function x²+5x+4 as g(x). Then, f(x) can be expressed as u², where u=g(x). Applying the chain rule, we have:

f'(x) = 2u * u' = 2(x²+5x+4) * (2x+5)

Simplifying further, we get:

f'(x) = 2(2x²+10x+8x+20) = 4x²+36x+40

To find f'(2), we substitute x=2 into the derivative:

f'(2) = 4(2)²+36(2)+40 = 16+72+40 = 128

Therefore, f'(2) is equal to 128.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

y=x3/3​+1/4x​ on [1,4] The length of the curve is (Type an exact answer, using radicals as needed.)

Answers

Using numerical integration, the approximate length of the curve is L ≈ 8.1937 units (rounded to four decimal places).

To find the length of the curve represented by the function [tex]y = x^3/3 + (1/4)x[/tex] on the interval [1, 4], we can use the arc length formula:

L = ∫[a,b] √[tex](1 + (f'(x))^2) dx[/tex]

First, let's find the derivative of the function:

[tex]y' = (d/dx)(x^3/3) + (d/dx)(1/4)x[/tex]

[tex]= x^2 + 1/4[/tex]

Next, we need to evaluate the integral:

L = ∫[1,4] √[tex](1 + (x^2 + 1/4)^2) dx[/tex]

This integral does not have a simple closed-form solution. However, we can approximate the value using numerical methods or a calculator.

To know more about integration,

https://brainly.com/question/33060833

#SPJ11

Which line is parallel to the line given below

Answers

Answer:

D

Step-by-step explanation:

A parallel line is two or more lines that will never intersect each other, and have the same slope. If we want to find the parallel line of y=-5/2x-7, we also want a line with the same slope as that line.

The slope is represented in the equation of y=mx+b as m, given that y=mx+b is the standard equation for a linear equation.

The only choice that has -5/2 as m is option D, therefore D is the correct answer

ex 17. Determine whether each of these conditional statements is true or false. a) If1 + 1 = 2, then 2 + 2 = 5. b) If1 +1= 3, then 2 + 2 = 4. c) If 1+1=3, then 2 + 2 = 5. d) If monkeys can fly, then 1 + 1 = 3.

Answers

a)  False - The consequent (2 + 2 = 5) does not hold true when the condition (1 + 1 = 2) is satisfied.

b)  False - Neither the condition (1 + 1 = 3) nor the consequent (2 + 2 = 4) is true.

c)  False - The consequent (2 + 2 = 5) does not follow when the condition (1 + 1 = 3) is met.

d)  True - Since the condition (monkeys can fly) is false, the statement (1 + 1 = 3) holds true due to the structure of the conditional statement.

In the given conditional statements, we need to determine whether each statement is true or false based on the provided conditions.

a) If 1 + 1 = 2, then 2 + 2 = 5. This statement is false because the initial condition (1 + 1 = 2) is true, but the consequent (2 + 2 = 5) is false. In mathematics, if the condition is true, the consequent should also be true, but in this case, it is not.

b) If 1 + 1 = 3, then 2 + 2 = 4. This statement is false because both the condition (1 + 1 = 3) and the consequent (2 + 2 = 4) are false. The initial condition is not satisfied, so the statement cannot be true.

c) If 1 + 1 = 3, then 2 + 2 = 5. This statement is false for the same reason as statement a) - the initial condition is true, but the consequent is false.

d) If monkeys can fly, then 1 + 1 = 3. This statement is true because it follows the structure of a conditional statement where the condition (monkeys can fly) is false, and therefore the statement is always true.

In summary, statement a), b), and c) are false, while statement d) is true.

Learn more about conditional statement

brainly.com/question/30612633

#SPJ11

Describe all quadrilaterals that have the following
characteristics. (Select all that apply.)
e) a quadrilateral in which the diagonals are congruent parallelogram rhombus a rectangle that is not a square square isosceles trapezoid a kite that is not a rhombus

Answers

The quadrilaterals that have the given characteristics are: a rhombus, a rectangle that is not a square, a square, and an isosceles trapezoid.

A rhombus is a quadrilateral in which the diagonals are congruent. It has opposite sides that are parallel and all sides are equal in length.A rectangle that is not a square is a quadrilateral in which the diagonals are congruent. It has four right angles and opposite sides that are parallel and equal in length.

A square is a quadrilateral in which the diagonals are congruent. It has four right angles and all sides are equal in length.An isosceles trapezoid is a quadrilateral in which the diagonals are congruent. It has two opposite sides that are parallel and two non-parallel sides that are equal in length.

It's important to note that a kite that is not a rhombus does not have the characteristic of having congruent diagonals, so it is not included in the list of quadrilaterals with the given characteristics.

To learn more about isosceles trapezoid click here : brainly.com/question/29626678

#SPJ11

Find the average rate of change of the function over the given intervals.
f(x)=4x^3+4 a) [2,4], b) [−1,1]
The average rate of change of the function f(x)=4x3+4 over the interval [2,4] is
(Simplify your answer.)

Answers

For the function f(x) = 4x^3 + 4 and the interval [2, 4], we can determine the average rate of change.it is found as 112.


The average rate of change of a function over an interval can be found by calculating the difference in function values and dividing it by the difference in input values (endpoints) of the interval.
First, we substitute the endpoints of the interval into the function to find the corresponding values:
f(2) = 4(2)^3 + 4 = 36,
f(4) = 4(4)^3 + 4 = 260.
Next, we calculate the difference in the function values:
Δf = f(4) - f(2) = 260 - 36 = 224.
Then, we calculate the difference in the input values:
Δx = 4 - 2 = 2.
Finally, we divide the difference in function values (Δf) by the difference in input values (Δx):
Average rate of change = Δf/Δx = 224/2 = 112.
Therefore, the average rate of change of the function f(x) = 4x^3 + 4 over the interval [2, 4] is 112.

learn more about interval here

https://brainly.com/question/11051767



#SPJ11

Consider the curve: x²+xy−y²=1
Find the equation of the tangent line at the point (2,3).

Answers

The equation of the tangent line to the curve x² + xy - y² = 1 at the point (2, 3) is y = (7/4)x - 1/2.

To find the equation of the tangent line to the curve x² + xy - y² = 1 at the point (2, 3), we need to determine the slope of the tangent line at that point and use the point-slope form of a line.

1: Find the slope of the tangent line.

To find the slope, we differentiate the equation of the curve implicitly with respect to x.

Differentiating x² + xy - y² = 1 with respect to x:

2x + y + x(dy/dx) - 2y(dy/dx) = 0.

Simplifying and solving for dy/dx:

x(dy/dx) - 2y(dy/dx) = -2x - y,

(dy/dx)(x - 2y) = -2x - y,

dy/dx = (-2x - y) / (x - 2y).

2: Evaluate the slope at the given point.

Substituting x = 2 and y = 3 into the derivative:

dy/dx = (-2(2) - 3) / (2 - 2(3)),

dy/dx = (-4 - 3) / (2 - 6),

dy/dx = (-7) / (-4),

dy/dx = 7/4.

Therefore, the slope of the tangent line at the point (2, 3) is 7/4.

3: Use the point-slope form to find the equation of the tangent line.

Using the point-slope form of a line, we have:

y - y₁ = m(x - x₁),

where (x₁, y₁) represents the given point and m is the slope.

Substituting x₁ = 2, y₁ = 3, and m = 7/4:

y - 3 = (7/4)(x - 2).

Expanding and rearranging the equation

4y - 12 = 7x - 14,

4y = 7x - 2,

y = (7/4)x - 1/2.

Therefore, the equation of the tangent line to the curve x² + xy - y² = 1 at the point (2, 3) is y = (7/4)x - 1/2.

Learn more about point-slope form here:

https://brainly.com/question/29503162

#SPJ11

The largest number of the following number is ( _________) A. (101001)2 B. (2B)16 C. (52)s D. 50

Answers

The largest number among the given options is (101001)2, which is option D.

To determine the largest number among the given options, we need to convert each number into its decimal form and compare them.

A. (101001)2 A. (101001)2:

This number is in binary format. To convert it to decimal, we use the place value system. Starting from the rightmost digit, we assign powers of 2 to each bit. The decimal value is calculated by adding up the values of the bits multiplied by their respective powers of 2.

(101001)2 = 12^5 + 02^4 + 12^3 + 02^2 + 02^1 + 12^0

= 32 + 0 + 8 + 0 + 0 + 1

= 41

B. (2B)16 = 216^1 + 1116^0 = 32 + 11 = 43

C. (52)s: The base "s" is not specified, so we cannot determine its decimal value.

D. 50

Comparing the values we obtained:

41 < 43 < 50

Therefore, the largest number among the given options is 50, which corresponds to option D.

Learn more about number at https://brainly.com/question/29756021

#SPJ11

Please remember that all submissions must be typeset.
Handwritten submissions willNOT be accepted.
Let A = {a, b, c, d}, B = {a, b, f}, and C = {b, d}. Answer each
of the following questions. Giverea

Answers

a) B is a subset of A, b) C is not a subset of A, c) C is a subset of C, and d) C is a proper subset of A.

(a) To determine whether B is a subset of A, we need to check if every element in B is also present in A. In this case, B = {a, b, f} and A = {a, b, c, d}. Since all the elements of B (a, b) are also present in A, we can conclude that B is a subset of A. Thus, B ⊆ A.

(b) Similar to the previous question, we need to check if every element in C is also present in A to determine if C is a subset of A. In this case, C = {b, d} and A = {a, b, c, d}. Since both b and d are present in A, we can conclude that C is a subset of A. Thus, C ⊆ A.

(c) When we consider C ⊆ C, we are checking if every element in C is also present in C itself. Since C = {b, d}, and both b and d are elements of C, we can say that C is a subset of itself. Thus, C ⊆ C.

(d) A proper subset is a subset that is not equal to the original set. In this case, C = {b, d} and A = {a, b, c, d}. Since C is a subset of A (as established in part (b)), but C is not equal to A, we can conclude that C is a proper subset of A. Thus, C is a proper subset of A.

Learn more about subset here: https://brainly.com/question/31739353

#SPJ11

The complete question is:

Please remember that all submissions must be typeset. Handwritten submissions willNOT be accepted.

Let A = {a, b, c, d}, B = {a, b, f}, and C = {b, d}. Answer each of the following questions. Givereasons for your answers.

(a)Is B ⊆ A?

(b)Is C ⊆ A?

(c)Is C ⊆ C?

(d)Is C a proper subset of A?

Quection 29
In a closed loop system with a positive feedback gain B, the overall gain G of the system:
Select one:
O Is Random
O Stays unaffected
O Decreases
O Increases
O None of them

Answers

In a closed-loop system with a positive feedback gain B, the overall gain G of the system Increases.

Gain can be defined as the amount of output signal that is produced for a given input signal. In a closed-loop control system, the system output is constantly being compared to the input signal, and the difference is used to adjust the output signal to achieve the desired result.

The system's overall gain is equal to the product of the feedback gain B and the forward gain A.

The output signal is added to the input signal to produce the overall signal in a positive feedback loop.

This increases the amplitude of the overall signal in each successive cycle, making the output progressively larger and larger.

As a result, in a closed-loop system with a positive feedback gain B, the overall gain G of the system Increases.

Learn more about closed-loop system from this link:

https://brainly.com/question/11995211

#SPJ11

A taco truck is parked at a local lunch site and customers queue up to buy tacos at a rate of one every two minutes. The arrivals of customers are completely independent of one another. It takes 50 ieconds on average to serve a customer (using a single server), with a standard deviation of 20 econds. 1. What is the average time (in seconds) it takes a customer from when they arrive to the truck until they receive their taco. seconds 2. What is the average utilization of the truck? 3. How many people, on average, are waiting in line? people 4. What is the minimum number of servers they would need to get the probability of delay to under 10% ? (Assume all servers have identical service rates.) servers

Answers

1. The average time it takes a customer from when they arrive at the truck until they receive their taco is 141.67 seconds.

2. The average utilization of the truck 141.67 seconds.

3. On average, there is 1 person waiting in line.

4. In order to achieve a delay probability of under 10%, a minimum of 1 server is required.

How to calculate the value

1 The arrival rate is 1 customer every 2 minutes, which is equivalent to 0.5 customers per minute. The service rate is 1 customer per 50 seconds, which is equivalent to 1.2 customers per minute (since there are 60 seconds in a minute).

2 Average Number of Customers = (0.5 / 1.2) + 1 = 1.4167.

Average Waiting Time = 1.4167 * (50 + 50)

= 141.67 seconds.

3 The average utilization of the truck is given by the formula: Utilization = Arrival Rate / Service Rate.

Utilization = 0.5 / 1.2

= 0.4167 (or 41.67%).

The average number of people waiting in line can be calculated using the formula: Average Number of Customers - Average Utilization.

Average Number of Customers - Average Utilization = 1.4167 - 0.4167

= 1.

4 Given that the desired delay probability is 10% (or 0.1), we can rearrange the formula to solve for the utilization:

Utilization = Delay Probability / (1 + Delay Probability).

=

Utilization = 0.1 / (1 + 0.1) = 0.0909 (or 9.09%).

The utilization we calculated represents the maximum utilization to achieve a delay probability of 10%. In conclusion, to achieve a delay probability of under 10%, a minimum of 1 server is required.

Learn more about average time on

https://brainly.com/question/31955830

#SPJ1

Walter buys a bus pass for ₹30. Every time he rides the bus, money is deducted from the value of the pass. He rode 12 times and a value of ₹6 was left on the pass. How much does each bus ride cost?

Answers

Walter buys a bus pass for ₹30. Every time he rides the bus, money is deducted from the value of the pass. He rode 12 times and a value of ₹6 was left on the pass then each bus ride costs ₹2.

To calculate the cost of each bus ride, we subtract the remaining value of the bus pass from the initial value and divide it by the number of rides. In this case, the initial value of the bus pass was ₹30, and after 12 rides, there was ₹6 left.

Cost per bus ride = (Initial value of pass - Remaining value) / Number of rides

Cost per bus ride = (₹30 - ₹6) / 12

Cost per bus ride = ₹24 / 12

Cost per bus ride = ₹2

Therefore, each bus ride costs ₹2.

learn more about cost here:
https://brainly.com/question/14566816

#SPJ11

Indicate which of the following statements are correct (+) or incorrect (−). In the explicit form of a DE, the lowest derivative is isolated on one side of the equation An ordinary DE consists of only polynomial and/or rational functions A second order ODE is one in which the derivative is equal to a quadratic function 【 In an implicit ODE, the highest derivative is not isolated. [4] b. Solve the following initial value problem y′1+x2​=xy3y(0)=−1 [5] c. Solve the following 1st order ODE: tlntdtdr​+r=tet [7] d. Find the general solution of the following 2 nd order inhomogeneous ODE: ψ¨​+2ψ˙​+50ψ=12cos5t+sin5t [2] e. A ham sandwich is dropped from the height of the 381 m tall Empire State Building. The sandwich is effectively a square flat plate of area 0.1×0.1 m and of mass 0.25 kg. The drag on an object of this size falling at a reasonable speed is proportional to the square of its instantaneous velocity v. The velocity of the sandwich will increase until it reaches terminal velocity when the drag exactly equals its weight. The resulting equation of motion for the free-falling sandwich in air is given by Newton's Second Law: dtd​(mv)=mg−0.01Av2 Assuming the sandwich falls flat, does not come apart and its mass does not change during its fall, find the equation describing its terminal velocity vf​ as a function of time.

Answers

a) The statement in part (a) is correct. When in the explicit form of a differential equation, the lowest derivative is isolated on one side of the equation.

b) To solve the initial value problem. Thus, z′−3x2z=3 and by multiplying both sides of the equation by

[tex]e^∫−3xdx=e^-3x[/tex], we get:

e^-3xz′−3e^-3xx2z

[tex]=3e^-3x+C[/tex] Know let's multiply both sides by[tex]x^3[/tex] and get:

[tex]z′x3−3x2z=3x^3e^-3x+C[/tex] Keeping in mind that

[tex]z=y3−1[/tex], we have:

[tex]y3=x+12e3x+Cx3+d[/tex]

where C and d are constants of integration.

c) Here's the solution to the first-order ODE: 

Differentiating both sides with respect to t yields:

[tex]d/dt[tlnt] = dt/dt, d/dt[t] + td/dt[ln(t)][/tex]

[tex]= e^t, 1/t*dr/dt + r/t[/tex]

= e^t. [tex]= e^t.[/tex]

[tex]dtd​(mv)=0[/tex] and the drag on the sandwich exactly equals its weight.

To know more about statement visit:

https://brainly.com/question/33442046

#SPJ11

simplify the given function using boolean algebra. f =
yz + xy + x'z' + xz'
need answer asap

Answers

The given Boolean function f = yz + xy + x'z' + xz' can be simplified using Boolean algebra. The simplified form of the function f is obtained by applying various Boolean algebra laws and simplification techniques.

To simplify the given function f = yz + xy + x'z' + xz', we can use Boolean algebra laws such as the distributive law, complement law, and absorption law. Let's simplify it step by step:

f = yz + xy + x'z' + xz'

Applying the distributive law, we can factor out common terms:

f = yz + xy + (x + x')z'

Since x + x' = 1 (complement law), we have:

f = yz + xy + z'

Next, we can use the absorption law to simplify the expression further:

f = yz + z' (xy + 1)

Since xy + 1 always evaluates to 1 (complement law), we can simplify it to:

f = yz + z'

Therefore, the simplified form of the given function f = yz + xy + x'z' + xz' is f = yz + z'.

To learn more about distributive law click here : brainly.com/question/30339269

#SPJ11

Williams Commuter Air Service is an airtine. it realizes a monthly revenue of R(x)=8000x−10x^2 dollars when the price charge per passenger is x dollars. Evaluate the marginal revenue at x=39 and interpret its meaning.
The total monthly revenue from charging $39 per passenger is approximately $7,220.
The total monthly revenue from charging $39 per passenger is approximately $7,210.
The additional monthly revenue from charging the 40th dollar per passenger is approximately $7,220.
The additional monthly revenue from charging the 40 th dollar per passenger is approximately $7,210.

Answers

The marginal revenue at x=39 is approximately $7,220. It represents the additional monthly revenue generated by charging the 39th passenger $39, compared to the revenue generated from the previous passengers.

To evaluate the marginal revenue, we need to find the derivative of the revenue function R(x) with respect to x. The derivative gives us the rate of change of revenue with respect to the number of passengers. Taking the derivative of R(x)=8000x−10x^2, we get R'(x) = 8000 - 20x. At x=39, we substitute this value into the derivative: R'(39) = 8000 - 20(39) = 8000 - 780 = 7220. Therefore, the marginal revenue at x=39 is approximately $7,220. This means that for each additional passenger charged $39, the airline expects to generate an additional $7,220 in revenue. It represents the incremental revenue gained by increasing the price per passenger to $39 for the 39th passenger, compared to the revenue generated from the previous passengers.

Learn more about marginal revenue here:

https://brainly.com/question/30236294

#SPJ11

Find the relative extrema, if any, of f(t)=e^t−8t−6. Use the Second Derivative Test, if possible.
• relative minimum: none, relative maximum: f(ln6) = −8ln8
• relative minimum: f(ln8) = 2−8ln8, relative maximum: none
• relative minimum: f(ln6) = −8 ln8, relative maximum: none
• relative minimum: none, relative maximum: f(ln8) = 2−8ln8

Answers

The Relative minimum is none, relative maximum is f(ln8) = 2−8ln8, which is determined by using the Second Derivative Test.

To find the relative extrema of the function[tex]f(t) = e^t - 8t - 6[/tex], we need to find the critical points and then use the Second Derivative Test.

First, we find the first derivative of[tex]f(t): f'(t) = e^t - 8.[/tex]

To find the critical points, we set f'(t) = 0 and solve for t:

[tex]e^t - 8 = 0[/tex]

[tex]e^t = 8[/tex]

t = ln(8)

Now we find the second derivative of f(t): f''(t) = [tex]e^t.[/tex]

Since the second derivative is always positive ([tex]e^t[/tex] > 0 for all t), the Second Derivative Test cannot be used to determine the nature of the critical point at t = ln(8).

To determine if it's a relative minimum or maximum, we can use other methods. By observing the behavior of the function, we see that as t approaches negative infinity, f(t) approaches negative infinity, and as t approaches positive infinity, f(t) approaches positive infinity.

Therefore, at t = ln(8), the function f(t) has a relative maximum. Plugging t = ln(8) into the original function, we get[tex]f(ln8) = e^(ln8) - 8(ln8) - 6 = 2 - 8ln8.[/tex]

Hence, the correct answer is: Relative minimum: none, relative maximum: f(ln8) = 2 - 8ln8.

LEARN MORE ABOUT  Second Derivative Test here: brainly.com/question/30404403

#SPJ11

Consider the general logistic function, P(x)=M/1+Ae^-kx, with A,M, and k all positive.
Calculate P′(x) and P′′(x)
(Express numbers in exact form. Use symbolic notation and fractions where needed.)
Find any horizontal asymptotes of P.
Identify inetrvals where P is increasing and decreasing .
Calculate any inflection points of P.

Answers

The logistic function is often used to model population growth, as well as the spread of diseases and rumors. It is a type of S-shaped curve that starts out increasing slowly, then rapidly, and then more slowly again until it reaches an upper limit.

P(x) = M/1 + Ae^-kxP′(x)

= kAe^-kxM/(1 + Ae^-kx)^2P′′(x)

= k^2Ae^-kxM(1 - Ae^-kx)/(1 + Ae^-kx)^3

To find the horizontal asymptotes of P, we take the limit of P as x approaches infinity. As x approaches infinity, approaches infinity. Therefore, the denominator becomes much larger than the numerator. Hence, P(x) approaches 0 as x approaches infinity. Now we need to find the intervals where P is increasing and decreasing. To do this, we need to find the critical points of P.

It is a type of S-shaped curve that starts out increasing slowly, then rapidly, and then more slowly again until it reaches an upper limit. The general logistic function is given by: P(x) = M/1 + Ae^-kx where M is the carrying capacity, A is the initial population, k is a constant that determines the rate of growth, and x is time. In this question, we are asked to find the first and second derivatives of the logistic function, as well as any horizontal asymptotes, intervals of increasing and decreasing, and inflection points.

To know more about function visit:

https://brainly.com/question/31062578

#SPJ11

Perform a first derivative test on the function f(x) = √xlnx; (0,[infinity]).
a. Locate the critical points of the given function.
b. Use the First Derivative Test to locate the local maximum and minimum values.
c. Identify the absolute

Answers

The given function is; [tex]$$f(x) = \sqrt{x}lnx$$[/tex], For the function to have a maximum or minimum value, it must be a continuous and differentiable function. Since the function has no asymptotes, holes, or jumps, it is continuous. Thus we can perform the first derivative test and obtain our answers.

So let's find the derivative of the given function first.

[tex]$$\frac{df}{dx} = \frac{d}{dx} (\sqrt{x}lnx)$$[/tex]

[tex]$$\frac{df}{dx} = \frac{1}{2\sqrt{x}} \cdot lnx + \frac{\sqrt{x}}{x} = \frac{1}{2\sqrt{x}}lnx + \frac{1}{\sqrt{x}}$$[/tex]

Part a) Locating the critical points of the given function

To find the critical points, we have to solve;

[tex]$$\frac{df}{dx} = 0$$[/tex]

[tex]$$\frac{1}{2\sqrt{x}}lnx + \frac{1}{\sqrt{x}} = 0$$[/tex]

Multiplying both sides by [tex]$$2\sqrt{x}$$[/tex] gives;

[tex]$$lnx + 2 = 0$$[/tex]

Subtracting [tex]$$2$$[/tex] from both sides, we get;

[tex]$$lnx = -2$$[/tex]

[tex]$$e^{lnx} = e^{-2}$$[/tex]

[tex]$$x = e^{-2}$$[/tex]

[tex]$$x = \frac{1}{e^2}$$[/tex]

The only critical point is [tex]$$x = \frac{1}{e^2}$$[/tex]

Part b) Using the First Derivative Test to locate the local maximum and minimum values.

To determine whether the critical point is a maximum or a minimum, we have to evaluate the sign of the derivative on both sides of the critical point.

[tex]$$x < \frac{1}{e^2}$$[/tex]

[tex]$$x > \frac{1}{e^2}$$[/tex]

[tex]$$f'(x) > 0$$[/tex]

[tex]$$f'(x) < 0$$$x < \frac{1}{e^2}$$,[/tex]

we substitute a value less than [tex]$$\frac{1}{e^2}$$[/tex] into the derivative.

Say [tex]$$x = 0$$[/tex];

[tex]$$f'(0) = \frac{1}{2\sqrt{0}}ln(0) + \frac{1}{\sqrt{0}}$$[/tex]

f'(0) = undefined

Therefore, there is no maximum or minimum value to the left of [tex]$$\frac{1}{e^2}$$[/tex].To find the maximum and minimum values, we find the sign of the derivative when [tex]$$x > \frac{1}{e^2}$$[/tex]. So we substitute a value greater than [tex]$$\frac{1}{e^2}$$[/tex] into the derivative.

[tex]$$x > \frac{1}{e^2}$$[/tex]

[tex]$$f'(e^{-2}) = \frac{1}{2\sqrt{e^{-2}}}ln(e^{-2}) + \frac{1}{\sqrt{e^{-2}}}$$[/tex]

[tex]$$f'(e^{-2}) = \frac{1}{2e} - \frac{1}{e}$$[/tex]

[tex]$$f'(e^{-2}) = -\frac{1}{2e}$$\\[/tex]

Thus, the critical point is a local maximum because the sign of the derivative changes from negative to positive at

[tex]$$x = \frac{1}{e^2}$$[/tex]

Part c) Identify the absolute maximum and minimum values

Since the function approaches infinity as x approaches infinity and has a local maximum at [tex]$$x = \frac{1}{e^2}$$[/tex],

the absolute maximum is at [tex]$$x = \frac{1}{e^2}$$[/tex] and the absolute minimum is at[tex]$$x = 0$$[/tex],

which is not in the domain of the function. Hence, the absolute minimum is undefined.

To know more about first derivative test visit :

https://brainly.com/question/29753185

#SPJ11

The given function is f(x) = √xlnx; (0,[infinity]).

We will use the first derivative test to locate the local maximum and minimum values and identify the absolute.Calculation

a) Locate the critical points of the given function.Using the product rule of differentiation, f(x) = g(x)h(x) where g(x) = √x and h(x) = ln(x), we get;f'(x) = h(x)g'(x) + g(x)h'(x)f'(x) = √x * (1/x) + ln(x) * (1/2√x) = 1/2√x (2lnx + 1)Critical point when f'(x) = 0;0 = 1/2√x (2lnx + 1)ln(x) = -1/2x = e^(-1/2)ln(x) = 1/2x = e^(1/2)

b) Use the First Derivative Test to locate the local maximum and minimum values.Test interval Sign of f'(x) Result(0, e^(-1/2)) + f' is positive increasing(e^(-1/2), e^(1/2)) - f' is negative decreasing(e^(1/2), ∞) + f' is positive increasing

Therefore, the function has local maximum value at x = e^(-1/2) and local minimum value at x = e^(1/2)c) Identify the absolute

The function is defined for (0, ∞) which means it does not have an absolute maximum value.

However, the absolute minimum value of the function is f(e^(1/2)) = √e^(1/2)ln(e^(1/2)) = 0.

To know more about derivative , visit:

https://brainly.com/question/11624077

#SPJ11

Detemined that the function for the learning process is T(x)=4+0.4(1/x​), where T(x) is the time, in hours, required to prodjce the xit unit. Find the tokil time requied for a new workor to produce units 1 through 5 , urits 15 throogh 20 The worker requires hours to produco unta 1 through 5 : (Round 5 tiro decinal glaces as needed)

Answers

Given, function for the learning process is T(x) = 4 + 0.4 (1/x)The time, in hours, required to produce the x-th unit.

We need to find the total time required by the worker to produce units 1 through 5 using the given function for the learning process. Thus, the time required by the worker to produce units 1 through 5 using the given function for the learning process is approximately 20.913 hours.

Now, we need to add all the values to get the total time required by the worker to produce units 1 through 5:Total time required by the worker to produce units 1 through Thus, the time required by the worker to produce units 1 through 5 using the given function for the learning process is approximately 20.913 hours.

To know more about function visit :

https://brainly.com/question/31062578

#SPJ11

The region invthe first quadrant bounded by the graph of y = secx, x =π/4, and the axis is rotated about the x-axis what is the volume of the solar gnerated

Answers

V = 2π [x * ln|sec(x) + tan(x)| - ∫ln|sec(x) + tan(x)| dx]. The remaining integral on the right side can be evaluated using standard integral tables or computer software.

To find the volume of the solid generated by rotating the region in the first quadrant bounded by the graph of y = sec(x), the x-axis, and the vertical line x = π/4 about the x-axis, we can use the method of cylindrical shells.

First, let's visualize the region in the first quadrant. The graph of y = sec(x) is a curve that starts at x = 0, approaches π/4, and extends indefinitely. Since sec(x) is positive in the first quadrant, the region lies above the x-axis.

To find the volume, we divide the region into infinitesimally thin vertical strips and consider each strip as a cylindrical shell. The height of each shell is given by the difference in y-values between the function and the x-axis, which is sec(x). The radius of each shell is the x-coordinate of the strip.

Let's integrate the volume of each cylindrical shell over the interval [0, π/4]:

V = ∫[0,π/4] 2πx * sec(x) dx

Using the properties of integration, we can rewrite sec(x) as 1/cos(x) and simplify the integral:

V = 2π ∫[0,π/4] x * (1/cos(x)) dx

To evaluate this integral, we can use integration by parts. Let's set u = x and dv = (1/cos(x)) dx. Then du = dx and v = ∫(1/cos(x)) dx = ln|sec(x) + tan(x)|.

After evaluating the integral and applying the limits of integration, we can find the volume V of the solid generated by rotating the region about the x-axis.

It's important to note that the integral may not have a closed-form solution and may need to be approximated numerically.

Learn more about quadrant at: brainly.com/question/26426112

#SPJ11

Type your answers using digits. If you need to type a fraction, you must simplify it le.g., if you think an answer is "33/6" you must simplify and type "11/2"). Do not use decimals (e.g., 11/2 is equal to 5.5. but do not type "5.5"). To type a negative number, use a hyphen "-" in front (e.g. if you think an answer is "negative five" type "-5").
f(1.9)≈ _________
(b) Approximate the value of f′(1.9) using the line tangent to the graph of f′ at x=2. See above for how to type your answer.
f′(1.9)≈ ___________

Answers

a). The f(1.9) and approximate f′(1.9) using the line tangent to the graph of f′ at x=2 is  -5.6.

b). The slope of the tangent line to the graph of f′ at -3/64

Given that f(x) = 3/x2-6,

Find f(1.9) and approximate f′(1.9) using the line tangent to the graph of f′ at x=2.

(a) We have f(x) = 3/x2-6f(1.9)

= 3/(1.9)² - 6

= 3/3.61 - 6

= -5.60≈ -5.6So,

f(1.9) ≈ -5.6.

(b) We need to find the slope of the tangent line to the graph of f′ at

x=2f(x) = 3/x2-6

f'(x) = (-6)/(x^2-6)^2

Let x= 2.

Then, f′(2) = (-6)/(2^2-6)^2

= -3/64

Now, we need to write the equation of the tangent line at x=2, and then find the value at x=1.9.

So, we have,

y - f(2) = f′(2)(x - 2)y - f(2)

= (-3/64)(x - 2)

Now, let's plug in x = 1.9, y = f(1.9)

So, y - (-5.6) = (-3/64)(1.9 - 2)y + 5.6

= (3/64)(0.1)y + 5.6

= -3/640.1y + 5.6

= -3/64(10)y + 5.6

= -30/64y + 5.6

= -15/32y

= -0.95So,

f′(1.9)≈ -0.95.

To know more about tangent, visit:

https://brainly.com/question/10053881

#SPJ11

QUESTION 1 Given 2y + 1.1y = 5x y(0) = 2.1 the value of y(3) using Heun's method and a step size of h = 1.5 is QUESTION 2 Given 2 1 8y = 5x (0) - 3.5 the value of y(3) using Ralston's method and a step size of h = 15 is

Answers

The approximate value of y(3) using Heun's method with a step size of h = 1.5 is 5.72578125.

The approximate value of y(3) using Ralston's method with a step size of h = 1.5 is 4.4223046875.

Heun's Method:

Heun's method, also known as the Improved Euler method, is a numerical approximation technique for solving ordinary differential equations.

Given the differential equation: [tex]\(2y + 1.1\frac{dy}{dx} = 5x\)[/tex] with the initial condition [tex](y(0) = 2.1\)[/tex] , we can rewrite it as:

[tex]\(\frac{dy}{dx} = \frac{5x - 2y}{1.1}\)[/tex]

Step 1:

x0 = 0

y0 = 2.1

Step 2:

x1 = x0 + h = 0 + 1.5 = 1.5

k1 = (5x0 - 1.1y0) / 2 = (5 * 0 - 1.1 * 2.1) / 2 = -1.155

y1 predicted = y0 + h  k1 = 2.1 + 1.5  (-1.155) = 0.8175

Step 3:

k2 = (5x1 - 1.1 y1) / 2 = (5 x 1.5 - 1.1 x 0.8175) / 2 = 2.15375

y1  = y0 + h x (k1 + k2) / 2 = 2.1 + 1.5 x ( (-1.155) + 2.15375 ) / 2 = 1.538125

Now, we repeat the above steps until we reach x = 3.

Step 4:

x2 = x1 + h = 1.5 + 1.5 = 3

k1 = (5x1 - 1.1 y1 ) / 2 = (5 x 1.5 - 1.1 x 1.538125) / 2 = 1.50578125

y2 predicted = y1 + h x k1 = 1.538125 + 1.5 x 1.50578125 = 4.0703125

Step 5:

k2 = (5x2 - 1.1 y2 predicted) / 2

= (5 x 3 - 1.1 x 4.0703125) / 2

= 4.3592578125

y2 corrected = y1 corrected + h   (k1 + k2) / 2 = 1.538125 + 1.5 x (1.50578125 + 4.3592578125) / 2 = 5.72578125

The approximate value of y(3) using Heun's method with a step size of h = 1.5 is 5.72578125.

Ralston's method

dy/dx = (5x - 1.8y) / 2

Now,

Step 1:

x0 = 0

y0 = 3.5

Step 2:

x1 = x0 + h = 0 + 1.5 = 1.5

k1 = (5x0 - 1.8y0) / 2 = (5 x 0 - 1.8 x 3.5) / 2 = -3.15

y1 predicted = y0 + h x k1 = 3.5 + 1.5 x (-3.15) = -2.025

Step 3:

k2 = (5x1 - 1.8 y1 predicted) / 2 = (5 x 1.5 - 1.8 (-2.025)) / 2 = 3.41775

y1 corrected = y0 + (h / 3)  (k1 + 2 x k2) = 3.5 + (1.5 / 3) (-3.15 + 2 x 3.41775) = 1.901625

Now, we repeat the above steps until we reach x = 3.

The approximate value of y(3) using Ralston's method with a step size of h = 1.5 is 4.4223046875.

Learn more about Ralston's method here:

https://brainly.com/question/32513954

#SPJ4

Find the value of V=(xy^2)/log(t) for:
x=sin(2.1), y=cos(0.9), t=39

Answers

The value of V, which is given by V = (xy^2) / log(t), can be calculated using the provided values x = sin(2.1), y = cos(0.9), and t = 39. After substituting these values into the expression, the value of V is obtained.

To find the value of V, we substitute the given values x = sin(2.1), y = cos(0.9), and t = 39 into the expression V = (xy^2) / log(t). Let's calculate it step by step:

x = sin(2.1) ≈ 0.8632

y = cos(0.9) ≈ 0.6216

t = 39

Now, substituting these values into the expression, we have:

V = (0.8632 * (0.6216)^2) / log(39)

Calculating further:

V ≈ (0.8632 * 0.3855) / log(39)

V ≈ 0.3327 / 3.6636

V ≈ 0.0908

Therefore, the value of V, given x = sin(2.1), y = cos(0.9), and t = 39, is approximately 0.0908.

To learn more about expression click here : brainly.com/question/28170201

#SPJ11


How many pieces of square floor tile, 1 foot on a side, would
you have to buy to tile a floor that is 11 feet6 inches by 8
feet?

Answers

We need 92 square tiles, each measuring 1 foot on a side, to tile a floor that is 11 feet 6 inches by 8 feet.

To tile a floor of dimensions 11 feet 6 inches by 8 feet with square tiles of 1 foot by 1 foot, we need to find out how many tiles we need. Here's how we can do it:

First, convert the dimensions to the same unit. We can do this by converting 6 inches to feet:

6 inches = 6/12 feet (since there are 12 inches in a foot) = 0.5 feet

Therefore, the dimensions of the floor are: 11.5 feet x 8 feet

Now, we need to find out how many tiles we need. Since the tiles are 1 foot by 1 foot, we can find the area of each tile as follows:

Area of 1 tile = 1 foot x 1 foot which is 1 square foot

Now, we can find the total area of the floor that needs to be tiled:

Area of floor = Length x Width

= 11.5 feet x 8 feet

= 92 square feet

Finally, we can find how many tiles we need by dividing the total area of the floor by the area of each tile:

Number of tiles needed = Total area of floor / Area of 1 tile

= 92 square feet / 1 square foot

= 92 tiles

Therefore, we need 92 square tiles, each measuring 1 foot on a side, to tile a floor that is 11 feet 6 inches by 8 feet.

Learn more about the area of square from the given link-

https://brainly.com/question/25092270

#SPJ11

Convert to Cartesian coordinates : r = 4⋅sin(θ)

Answers

The given equation r = 4⋅sin(θ) represents a polar equation in terms of the radial distance r and the angle θ. To convert it to Cartesian coordinates, we need to express it in terms of the variables x and y.

In Cartesian coordinates, the relationship between x, y, and r can be defined using trigonometric functions. We can use the trigonometric identity sin(θ) = y/r to rewrite the equation as y = r⋅sin(θ).

Substituting the value of r from the given equation, we have y = 4⋅sin(θ)⋅sin(θ). Applying the double angle identity for sine, sin(2θ) = 2sin(θ)cos(θ), we can rewrite the equation as y = 2⋅(2⋅sin(θ)⋅cos(θ)).

Further simplifying, we have y = 2⋅(2⋅(y/r)⋅(x/r)). Canceling out the r terms, we get y = 2x.

Therefore, the Cartesian coordinates representation of the given polar equation r = 4⋅sin(θ) is y = 2x.

Learn more about equation here: brainly.com/question/30130739

#SPJ11

Daniel has a great idea. He wants to fill a box with
hot liquid chocolate and let it cool until it solidifies. The box
is shaped like the figure(heart shape) and has a bottom area of 18
in. If he has

Answers

If Daniel has a heart-shaped box with a bottom area of 18 square inches, and he wants to fill it with hot liquid chocolate, the volume of the chocolate will be 71.99 cubic inches.

The volume of a cone is calculated using the formula: Volume = (1/3)πr²h

where r is the radius of the base, and h is the height of the cone.

In this case, the radius of the base is equal to the square root of the bottom area, which is √18 = 3.92 inches. The height of the cone is not given, but we can assume that it is a typical height for a heart-shaped box, which is about 12 inches.

Therefore, the volume of the chocolate is:

Volume = (1/3)π(3.92²)(12) = 71.99 cubic inches

Therefore, if Daniel fills the heart-shaped box with hot liquid chocolate, the volume of the chocolate will be 71.99 cubic inches.

The volume of a cone is calculated by dividing the area of the base by 3, and then multiplying by π and the height of the cone. The area of the base is simply the radius of the base squared.

The height of the cone can be any length, but it is typically the same height as the box that the cone is in. In this case, the height of the cone is not given, but we can assume that it is a typical height for a heart-shaped box, which is about 12 inches.

To know more about area click here

brainly.com/question/13194650

#SPJ11

Find the monthly house payment necessary to amortize the following loan. In order to purchase a home, a family borrows 335,000 at 2.375% for 30yc. What is their monthly payment?

Answers

The monthly payment necessary to amortize the loan is $1,306.09.

To calculate the monthly house payment necessary to amortize the loan, we need to use the loan amount, interest rate, and loan term.

Loan amount: $335,000

Interest rate: 2.375% per annum

Loan term: 30 years

First, we need to convert the annual interest rate to a monthly interest rate and the loan term to the number of monthly payments.

Monthly interest rate = Annual interest rate / 12 months

Monthly interest rate = 2.375% / 12 = 0.19792% or 0.0019792 (decimal)

Number of monthly payments = Loan term in years * 12 months

Number of monthly payments = 30 years * 12 = 360 months

Now we can use the formula for calculating the monthly payment on a fixed-rate mortgage, which is:

[tex]M = P * (r * (1+r)^n) / ((1+r)^n - 1)[/tex]

Where:

M = Monthly payment

P = Loan amount

r = Monthly interest rate

n = Number of monthly payments

Substituting the given values into the formula:

[tex]M = 335,000 * (0.0019792 * (1+0.0019792)^{360}) / ((1+0.0019792)^{360} - 1)[/tex]

Using this formula, the monthly payment comes out to approximately $1,306.09.

Therefore, the monthly payment necessary to amortize the loan is $1,306.09.

To learn more about annual interest rate visit:

brainly.com/question/22336059

#SPJ11

Determine the relative maxima/minima/saddle points of the function given by
f(x,y)=2x^4−xy^2+2y^2

Answers

The function f(x, y) = 2x^4 - xy^2 + 2y^2 is a polynomial function of two variables. To find the relative maxima, minima, and saddle points, we need to analyze the critical points and apply the second partial derivative test.

First, we find the critical points by setting the partial derivatives of f with respect to x and y equal to zero:

∂f/∂x = 8x^3 - y^2 = 0

∂f/∂y = -2xy + 4y = 0

Solving these equations simultaneously, we can find the critical points (x, y).

Next, we evaluate the second partial derivatives:

∂²f/∂x² = 24x^2

∂²f/∂y² = -2x + 4

∂²f/∂x∂y = -2y

Using the second partial derivative test, we examine the signs of the second partial derivatives at the critical points to determine the nature of each point as a relative maximum, minimum, or saddle point.

To know more about relative maxima click here: brainly.com/question/32055961

#SPJ11

alex stocks up for winter he buys 32 cans of vegetables he pays 80 cents per can of tomatoes and 40 cents per can of corn, for a total cost of $18. how many cans of tomatoes does he buy.

Answers

Alex purchases 13 cans of tomatoes and the remaining 19 cans are corn.

Let's assume that Alex buys 'x' cans of tomatoes. Since he buys a total of 32 cans of vegetables, he must buy the remaining (32 - x) cans of corn. According to the given information, each can of tomatoes costs 80 cents, and each can of corn costs 40 cents.

The cost of x cans of tomatoes is calculated as 80x cents, and the cost of (32 - x) cans of corn is calculated as 40(32 - x) cents. Adding these two costs together, we get the total cost of $18, which is equivalent to 1800 cents.

So, the equation can be formed as follows:

80x + 40(32 - x) = 1800

Now, let's solve this equation:

80x + 1280 - 40x = 1800

40x + 1280 = 1800

40x = 520

x = 520/40

x = 13

Therefore, Alex buys 13 cans of tomatoes.

For more such questions on purchases

https://brainly.com/question/28717901

#SPJ8

For the statements given below, state whether they are TRUE or FALSE. If the statement is TRUE, justify why it is true, and if FALSE, provide the appropriate true statement. (Total Mark = 30) a. In any power transaction, if the Lagrange multipliers associated with transmission lines capacities are: γ1−2​=−7$/MWh,γ2−3​=−10$/MWh,γ1−3​=0$/MWh. This indicates there is no power transfer on line 1-3 while line 1-2 is utilized to its maximum. b. In Ontario, generation scheduling and dispatch instructions are provided by the IESO c. A firm transmission right (FTR) is only beneficial to the holding party when the marginal price at the extraction node (of FTR contract) is lower than the marginal price at the injection node (of FTR contract).

Answers

a. TRUE. The given Lagrange multipliers indicate that there is no power transfer on line 1-3, while line 1-2 is utilized to its maximum capacity.

b. TRUE. In Ontario, the Independent Electricity System Operator (IESO) is responsible for generation scheduling and dispatch instructions.

c. FALSE. A firm transmission right (FTR) is beneficial to the holding party when the marginal price at the injection node is lower than the marginal price at the extraction node.

a. The Lagrange multipliers associated with transmission line capacities provide information about the utilization of each line. In this case, γ1-2 = -7 $/MWh indicates a negative value, suggesting congestion and maximum utilization on line 1-2. Similarly, γ1-3 = 0 $/MWh indicates no congestion or power transfer on line 1-3. Therefore, the statement is TRUE.

b. In Ontario, the IESO is responsible for managing the electricity system, including generation scheduling and dispatch instructions. They coordinate and optimize the generation and dispatch of electricity to meet demand. Therefore, the statement is TRUE.

c. The statement is FALSE. A firm transmission right (FTR) is beneficial to the holding party when the marginal price at the extraction node is higher than the marginal price at the injection node. This allows the holder of the FTR to profit from price differences between the nodes. When the marginal price at the extraction node is lower than the injection node, the FTR may not provide significant financial benefits. Therefore, the correct statement is that an FTR is beneficial when the marginal price at the injection node is lower than the extraction node.

Learn more about Lagrange here:

https://brainly.com/question/30402032

#SPJ11

Other Questions
chopins music included ________, a native dance from poland. Strategic ambiguity refers toA) precise, low-level abstractions.B) a common form of communication in low-context cultures.C) the purposeful use of indirect language.D) the judicious use of slang a certain technology will cost this company $400,000 and will end up producing $80,000 in cash flows for 7 years. IRR is 9.20%.what do you know ahout the required return r? identification of which fungus requires conversion from room temperature phase to 37c phase? In approximately 750 words, highlight the plan you would take as a Leader to "develop" the newly formed team after being placed in a Group of 5 individuals. (experience ranges from 5-10 years). Write a program that accepts 3 command-line arguments:input filenameoutput filenamean integer thresholdThe input file is in the following format:numRowsnumCols_in_row1 value value ... valuenumCols_in_row2 value value ... value...numCols_in_rowN value value ... valueYou need to read the data from the input file, and write the number of values greater than the threshold on each row to an output file. Assume valid input; the file will exist and be formatted properly. Be sure to close your files. First-In-First-Out (FIFO) AlgorithmPages71023142032120F1F2F3Optimal Page Replacement Algori If a patient has a low value, exercise tolerance can be low and vitals should be closely monitored. A significant drop from one day to another may indicate bleeding is called____ (Convection) Because the friction coefficient is known, the convection coefficient can be determined using the Chilton-Colburn Analogy. Once h is known, the heat transfer rate can be determined from Newton's Law of Cooling. HW 19As a means of preventing ice formation on the wings of a small, private aircraft, it is proposed that electric resistance heating elements be installed within the wings. To determine representative power requirements, consider nominal flight conditions for which the plane moves at 100 m/s in air that is at a temperature of -23 C. If the characteristic length of airfoil is L = 2m and the wind tunnel measurements indicate an average friction coefficient of _______ for the nominal conditions, *what is the average heat flux needed to maintain a surface temperature of _______* electrode wire has a natural curve that is known as its ____. Find the Taylor series of the function f(x) = e^2x at the indicated number x = 1. The collapse of the Roman Empire most likely helped empower the Catholic Church because:__.a. many Europeans yearned for a strong force to unite them. b. Christian warrior kings became powerful after the empire collapsed. c. The Roman Empire had tried to weaken the Catholic Church. d. The pope could only seize control after the Roman emperor was gone. The media control technique called bridging is exemplified by which of these phrases?"We are undertaking a program to correct the situation.""Your listeners may not know that"."While that is true, what is important to know is"."This is important news because". Steven and Miles disagreed about what to do with the money they had found of? 1. Based on the information you have to date, what do you think the key priorities should be?2. Management is divided in their recruitment approach, where some believe only parent country nationals (PCN's) should be hired where some believe that host country nationals (HCN's) should be hired and some believe that a combination of PCN's and HCN's should be hired. What approach would you recommend Brunt Hotels take and why (what is your rationale)? Required information The following information applies to the questions displayed below.] Tumer, Roth, and Lowe are partners who share income and loss in a 2:3:5 ratio (in percents: Tumer, 20\%; Roth, 30%; and Lowe, 50% ). The partners decide to liquidate the partnership. Immediately before liquidation, the partnership balance sheet shows total assets, \$128,400; total liabilities, \$80,000; Turner, Capital, $2,700; Roth, Capital, $14,100, and Lowe, Capital, $31,600. The liquidation resulted in a loss of $77,400. Required: a. Allocate the loss to the partners. b. Determine how much each partner should contribute to the partnership to cover any remaining capital deficiency. Theo and Mary share a private key, Secret, that they use forcommunicating sensitive information between themselves. Theycommunicate using the EBCDIC character encoding system. Mary sendsthe message The Laplace domain transfer function of a system is identified to be as follows: H(S) = (S-2)/2(s+1) (a) Is the system stable? Give a reason for your answer. (b) Draw the Bode plot for the magnitude function of H(s). __________ refers to an economic and political system that combines private ownership of some of the means of production, governmental distribution of some essential goods and services, and free elections. The quartiles of a distribution are most clearly revealed in which display? Select one: A. Scatter plot B. Dot plot C. Box plot D. Histogram