The insoluble AgCl can react with NH3 to form the soluble complex ion Ag(NH3)27. Which acts as a Lewis base in this reaction? NH3 Agt There is no Lewis base in this reaction

Answers

Answer 1

NH₃ acts as a Lewis base in this reaction.

In the given reaction, NH₃ (ammonia) acts as a Lewis base. A Lewis base is a species that donates a pair of electrons to form a coordinate bond with a Lewis acid. In this case, NH₃ donates a lone pair of electrons to the silver ion (Ag+) in AgCl, forming a coordinate covalent bond. This bond formation results in the formation of the complex ion Ag(NH₃)₂+, where the silver ion is surrounded by two ammonia molecules.

The ammonia molecule, NH₃, has a lone pair of electrons on the central nitrogen atom. These electrons can be donated to a vacant orbital of the silver ion, acting as a Lewis base. By forming a coordinate bond with Ag+, the ammonia molecule stabilizes the positively charged silver ion, resulting in the formation of the soluble complex ion Ag(NH₃)₂+.

This reaction is commonly known as the formation of a coordination complex. Coordination complexes involve the formation of a central metal ion or atom surrounded by ligands (in this case, ammonia molecules) that donate electron pairs to the metal ion.

Learn more about Lewis base

brainly.com/question/15103003

#SPJ11


Related Questions

consider the two electron arrangements for neutral atoms a and b. what is the difference between atom a and atom b? a - 1s22s22p63s1 b - 1s22s22p65s1

Answers

The two electron arrangements for neutral atoms A and B are given as below:

A: 1s²2s²2p⁶3s¹B: 1s²2s²2p⁶5s¹.

The main difference between atom A and atom B can be identified by looking at the electronic configuration of both atoms. The electronic configuration of atom A shows that it has 3 electrons in the outermost shell whereas atom B has only 1 electron in the outermost shell. This difference in the number of electrons in the outermost shell results in different chemical and physical properties of both atoms.

For example, atom A is more likely to form ionic bonds with other elements, while atom B is more likely to form covalent bonds. Another difference between the two atoms is their size. Since atom A has more electrons than atom B, it has a larger atomic radius and a larger ionic radius. This means that atom A is more likely to form ionic compounds with smaller elements, while atom B is more likely to form covalent compounds with larger elements.

To know more about covalent bonds refer to:

https://brainly.com/question/3447218

#SPJ11

A student titrated a 50. 0 mL of 0. 15 M glycolic acid with 0. 50 M NaOH. Answer the following questionsa. What is the initial pH of the analyte? K, of glycolic acid is 1. 5 x 104 b. The student added 15. 0 mL of NaOH to the analyte and measured the pH. What is the new expected pH? c. Additionally, to the previous solution question b, 10. 0 mL of NaOH was added. What is the new pH?

Answers

The initial pH of the analyte can be calculated using the following formula:pH = pKa + log [A-]/[HA] Where pKa is the dissociation constant, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the acid. Given that the K, of glycolic acid is 1.5 x 10-4, the pKa is -log(1.5 x 10-4) = 3.82.

The initial concentration of the glycolic acid is (0.15 mol/L)(0.050 L) = 0.0075 mol. Since glycolic acid is a monoprotic acid, [HA] = 0.0075 M. At the start of the titration, there is no NaOH in the solution, so [A-] = 0. The initial pH is therefore:

pH = 3.82 + log (0/0.0075) = 3.82

The second part of the question asks what the new expected pH would be if 15.0 mL of NaOH were added to the solution. We can use the Henderson-Hasselbalch equation for this:

pH = pKa + log [A-]/[HA]

We already know the pKa value and the initial concentration of glycolic acid [HA]. We now need to calculate the concentration of the conjugate base [A-]. We can do this by considering that the addition of NaOH will react with glycolic acid to form glycolate anion and water. The balanced chemical equation for this reaction is:

C2H4O3 + NaOH → C2H4O3Na + H2O

We can see from this equation that the mole ratio of glycolic acid to NaOH is 1:1. Therefore, when 15.0 mL of 0.50 M NaOH is added, the moles of NaOH added is:

moles NaOH = (0.50 mol/L)(0.015 L) = 0.0075 mol

Since the initial concentration of glycolic acid is also 0.0075 mol/L, all of the glycolic acid will react with the NaOH. The concentration of the conjugate base can therefore be calculated as:

[A-] = (0.0075 mol/L + 0.0075 mol)/(0.050 L + 0.015 L) = 0.142 M

Plugging in the values for pKa, [A-], and [HA] into the Henderson-Hasselbalch equation gives:

pH = 3.82 + log (0.142/0.0075) = 9.25

This is the expected pH after 15.0 mL of NaOH is added.

Finally, the third part of the question asks what the new pH would be if an additional 10.0 mL of NaOH is added. We can approach this question in a similar way to the previous one. Since the initial volume of the solution is 50.0 mL, the addition of 10.0 mL of NaOH means that the total volume is now 0.050 L + 0.015 L + 0.010 L = 0.075 L. The moles of NaOH added is:moles NaOH = (0.50 mol/L)(0.010 L) = 0.005 molThis means that there is still 0.0025 mol of glycolic acid remaining, and the new concentration of the conjugate base is:[A-] = (0.0025 mol + 0.0075 mol)/(0.050 L + 0.015 L + 0.010 L) = 0.100 M Plugging this value into the Henderson-Hasselbalch equation with the same pKa and [HA] values as before gives:pH = 3.82 + log (0.100/0.0025) = 11.47 Therefore, the new pH after an additional 10.0 mL of NaOH is added is 11.47.

To learn more about Henderson-Hasselbalch equation visit:

brainly.com/question/31732200

#SPJ11

On the basis of their positions in the periodic table, select the atom with the larger atomic radius in each of the following pairs:
(a) Na,Cs
(b) Be,Ba
(c)N,Sb
(D)F,Br
(e) Ne,Xe

Answers

Based on their positions in the periodic table, (a) Cs > Na, (b) Ba > Be, (c) Sb > N, (d) Br > F, and (e) Xe > Ne. Atomic radius generally increases down a group, so the lower elements in each pair have larger atomic radii.

(a) Cs has a larger atomic radius than Na.

The atomic radius generally increases as we move down a group in the periodic table. Cs (Cesium) is located below Na (Sodium) in Group 1 of the periodic table.

As we move down Group 1, the principal quantum number (n) increases, leading to the addition of more energy levels and an increase in atomic size. Therefore, Cs has a larger atomic radius than Na.

(b) Ba has a larger atomic radius than Be.

The atomic radius generally increases as we move down a group in the periodic table. Ba (Barium) is located below Be (Beryllium) in Group 2 of the periodic table.

As we move down Group 2, the principal quantum number (n) increases, resulting in the addition of more energy levels and an increase in atomic size. Therefore, Ba has a larger atomic radius than Be.

(c) Sb has a larger atomic radius than N.

The atomic radius generally increases as we move down a group in the periodic table. Sb (Antimony) is located below N (Nitrogen) in Group 15 of the periodic table.

As we move down Group 15, the principal quantum number (n) increases, leading to the addition of more energy levels and an increase in atomic size. Therefore, Sb has a larger atomic radius than N.

(d) Br has a larger atomic radius than F.

The atomic radius generally increases as we move down a group in the periodic table. Br (Bromine) is located below F (Fluorine) in Group 17 of the periodic table.

As we move down Group 17, the principal quantum number (n) increases, resulting in the addition of more energy levels and an increase in atomic size. Therefore, Br has a larger atomic radius than F.

(e) Xe has a larger atomic radius than Ne.

The atomic radius generally increases as we move down a group in the periodic table. Xe (Xenon) is located below Ne (Neon) in Group 18 of the periodic table.

As we move down Group 18, the principal quantum number (n) increases, leading to the addition of more energy levels and an increase in atomic size. Therefore, Xe has a larger atomic radius than Ne.

To know more about atomic radius, refer to the link:

https://brainly.com/question/32036952#

#SPJ11

When dissolved in water, of HClO4, Ca(OH)2, KOH, HI, which are bases?
1)
Ca(OH)2 and KOH

2)
only HI

3)
HClO4 and HI

4)
only KOH

Answers

When dissolved in water, the compounds Ca(OH)2 and KOH are bases. Ca(OH)2, known as calcium hydroxide or slaked lime

Which compounds among HClO4, Ca(OH)2, KOH, and HI are bases when dissolved in water?

When dissolved in water, the compounds Ca(OH)2 and KOH are bases. Ca(OH)2, known as calcium hydroxide or slaked lime, is a strong base that dissociates into calcium ions (Ca2+) and hydroxide ions (OH-) in water.

KOH, or potassium hydroxide, is also a strong base that dissociates into potassium ions (K+) and hydroxide ions (OH-) in water.

HI, or hydroiodic acid, is not a base but an acid. It dissociates into hydrogen ions (H+) and iodide ions (I-) in water, making it an acidic compound.

HClO4, or perchloric acid, is a strong acid that dissociates into hydrogen ions (H+) and perchlorate ions (ClO4-) in water. It is also not a base but an acid.

Therefore, among the given compounds, only Ca(OH)2 and KOH are bases.

Learn more about compounds

brainly.com/question/14117795

#SPJ11

the h⁺ concentration in an aqueous solution at 25 °c is 4.3 × 10⁻⁴. what is [oh⁻]?

Answers

The [OH⁻] is found by applying the equation: Kw = [H⁺] [OH⁻] where Kw is the ion-product constant of water which is equal to 1.0 × 10⁻¹⁴ M² at 25 °C.

The ion product constant of water, Kw is the product of the concentration of hydrogen ions and hydroxide ions in pure water. Given that the concentration of H⁺ ions in an aqueous solution at 25 °C is 4.3 × 10⁻⁴, the [OH⁻] can be calculated as follows:[OH⁻] = Kw / [H⁺]=[OH⁻]=[1.0 × 10⁻¹⁴ M²] / [4.3 × 10⁻⁴ M]=2.33 × 10⁻¹¹ M. Therefore, the [OH⁻] is 2.33 × 10⁻¹¹ M. The given problem can be solved using the following formula: Kw = [H⁺] × [OH⁻]Kw represents the equilibrium constant for the reaction that occurs between H₂O (water) molecules to form H⁺ and OH⁻ ions. Its value is 1.0 × 10⁻¹⁴ at 25 °C. [H⁺] and [OH⁻] represent the concentration of H⁺ and OH⁻ ions, respectively.

We are given [H⁺] = 4.3 × 10⁻⁴We need to find [OH⁻]Let's start with finding Kw and then we will proceed with our solution. Kw = [H⁺] × [OH⁻]= (1.0 × 10⁻¹⁴ )Kw = [H⁺] × [OH⁻] = 4.3 × 10⁻⁴ × [OH⁻]We know, [OH⁻] = Kw /[H⁺] = 1.0 × 10⁻¹⁴ / 4.3 × 10⁻⁴= 2.3 × 10⁻¹¹So, [OH⁻] is 2.3 × 10⁻¹¹.

To know more about concentration visit:-

https://brainly.com/question/3045247

#SPJ11

titration of 25.0 ml of an unknown concentration h2so4 solution requires 41.5 ml of 0.1185 m naoh solution. what is the concentration of the h2so4 solution (in m)?

Answers

The concentration of the H2SO4 solution is 0.0900 M.

What is the molarity of the H2SO4 solution?

To determine the concentration of the H2SO4 solution, we can use the concept of stoichiometry and the balanced chemical equation of the reaction between H2SO4 and NaOH. The balanced equation is:H2SO4 + 2NaOH → Na2SO4 + 2H2O

From the equation, we can see that one mole of H2SO4 reacts with two moles of NaOH. Using the volume and concentration information given in the question, we can calculate the number of moles of NaOH used in the titration.

Moles of NaOH = volume (in L) × concentration (in M)

              = 0.0415 L × 0.1185 M

              = 0.00491175 mol

Since the ratio of H2SO4 to NaOH is 1:2, the moles of H2SO4 present in the solution are also 0.00491175 mol. Now, we can calculate the concentration of H2SO4.Concentration of H2SO4 = moles of H2SO4 / volume (in L)

                            = 0.00491175 mol / 0.025 L

                               = 0.19647 M

However, we need to consider that only half of the H2SO4 was used in the reaction, as one mole of H2SO4 reacts with two moles of NaOH. Therefore, we need to divide the calculated concentration by 2.

Concentration of H2SO4 = 0.19647 M / 2

                               = 0.098235 M

                               ≈ 0.0900 M (rounded to four significant figures)

Thus, the concentration of the H2SO4 solution is approximately 0.0900 M.

Learn more about stoichiometry

brainly.com/question/29019892

#SPJ11

what is the identity of the missing daughter nucleotide in the following nuclear reaction

Answers

The identity of the missing daughter nucleotide in the given nuclear reaction is adenosine.

The given nuclear reaction is not mentioned in the question. However, based on the given terms "missing daughter nucleotide", we can assume that the question is related to the process of DNA replication. During DNA replication, the parental DNA strands serve as a template for the synthesis of a new complementary strand.

The order of nucleotides is determined by the sequence of nucleotides in the parental DNA strand. The new nucleotide that is added to the growing strand is complementary to the nucleotide in the parental strand.In DNA, the nucleotides are adenine, thymine, guanine, and cytosine. Adenine pairs with thymine and guanine pairs with cytosine through hydrogen bonds.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

Citric acid, which is present in citrus fruits, is a triprotic acid (Table 16.3). Calculate the pH and the citrate ion (C6H5O73) concentration for a 0.050M solution of citric acid. Explain any approximations or assumptions that you make in your calculations.

Answers

Citric acid, a triprotic acid found in citrus fruits, can be used to calculate the pH and concentration of citrate ions in a 0.050M solution.

To calculate the pH and citrate ion concentration of a 0.050M solution of citric acid, we need to consider the dissociation of each acidic hydrogen ion ([tex]H^+[/tex]). Citric acid has three dissociation steps, where each step corresponds to the removal of one hydrogen ion.

First, we assume that the dissociation of citric acid is independent and occurs sequentially. This means that each step only depends on the concentration of the previous species. In reality, this assumption may not be perfectly accurate, especially at higher concentrations or extreme pH values.

To calculate the pH, we need to determine the concentrations of citric acid and the citrate ions at each dissociation step. Starting with a 0.050M citric acid solution, we can use the Ka values to find the concentration of [tex]H^+[/tex] ions and citrate ions at each step. The pH can then be calculated using the equation: pH = [tex]-log[H^+].[/tex]

The citrate ion concentration can be obtained by subtracting the concentration of [tex]H^+[/tex] ions at each step from the initial citric acid concentration. This gives us the concentration of the citrate ion ([tex]C_6H_5O_7_3[/tex]) at each dissociation step.

In conclusion, by considering the dissociation of citric acid and making certain assumptions about its behavior, we can calculate the pH and citrate ion concentration in a 0.050M solution of citric acid. These calculations are based on the dissociation constants and involve sequential removal of acidic hydrogen ions.

Learn more about citric acid here:

https://brainly.com/question/16735211

#SPJ11

build the orbital diagram for the ion most likely formed by phosphorus.

Answers

The most stable ion that phosphorus is likely to form is the phosphide ion (P3-).

This ion has 18 electrons: 15 from phosphorus and 3 extra to achieve the stable noble gas configuration of argon (18 electrons). Here is the orbital diagram for the phosphide ion (P3-):[Ar] 3s²3p⁶. The orbital diagram shows the distribution of electrons in each orbital, with the orbitals listed in order of increasing energy. The noble gas configuration of argon is indicated in brackets to show that the phosphide ion has the same number of electrons as argon.

The first two energy levels are completely filled, with two electrons in the 1s orbital and two in the 2s orbital. The third energy level has three orbitals: 3s, 3p_x, and 3p_y, each of which can hold up to two electrons. In the phosphide ion, all three of these orbitals are completely filled with six electrons, leaving the remaining five electrons to fill the 3p_z orbital, which can hold up to six electrons. Therefore, the phosphide ion has three unpaired electrons in its 3p_z orbital.

To know more about phosphide ion refer to:

https://brainly.com/question/11690635

#SPJ11

Assessment Saved Help Save Which element has four completely filled s sublevels, and three d electrons In Its ground-state electron configuration? 7 Multiple Choice Nb O Sc 0 TI < Prev 4 of 25 Next > A 2 W i

Answers

The element that has four completely filled s sublevels and three d electrons in its ground-state electron configuration is Scandium (Sc).Therefore, the correct answer is option C, which is Sc.

An electron configuration refers to the arrangement of electrons in an atom, molecule, or any other physical structure. The arrangement of electrons in a structure may have a significant impact on the properties and behavior of that structure. The ground state of an atom refers to the lowest energy level that an electron can occupy. An electron in an atom can only exist in certain energy levels, which are represented by the electron configuration of the atom.

Scandium (Sc) has the following ground-state electron configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹. This indicates that Scandium has four completely filled s sublevels (1s² 2s² 2p⁶ 3s² 3p⁶ 4s²) and three d electrons (3d¹) in its ground-state electron configuration.

To know more about electrons visit:-

https://brainly.com/question/18367541

#SPJ11

A protein's net charge depends on the pKa value of its protonatable groups and the pH of the surrounding solution.
the point?
a. What is the net charge of the protein at a pH corresponding to its isoelectric point?
b. What net charge does the protein have at a pH lower than the isoelectric
c. How is the isoelectric point calculated?
d. Different proteins can be separated from each other using a method called isoelectric focusing. Explain how that method works.

Answers

A protein's net charge depends on the pKa value of its protonatable groups and the pH of the surrounding solution.

The following are the answers to the questions:

a. The protein has a net charge of zero at the isoelectric point's pH. The isoelectric point is the pH at which the protein has no net charge. At this point, the protein will not migrate in an electric field because it is neither positively nor negatively charged.

b. The protein has a net charge at a pH lower than the isoelectric point. When the pH of the solution surrounding the protein is less than the isoelectric point's pH, the protein becomes positively charged since the pH is less than the protein's isoelectric point. Similarly, when the pH is greater than the protein's isoelectric point, the protein becomes negatively charged.

c. Isoelectric point is calculated as the average of the two pKa values for the acidic and basic groups. Isoelectric point (pI) = (pKa of the acidic group + pKa of the basic group) / 2.

d. Isoelectric focusing is a technique for separating proteins. It's based on the fact that proteins travel to the pH where their net charge is zero, which is the isoelectric point. Proteins are subjected to an electric field in this method and migrate to the isoelectric point, where they become immobile. This separation technique is highly efficient and is used to identify proteins in complex mixtures.

Learn more about pka values for the protonatable groups

https://brainly.com/question/11168324

#SPJ11

Which of the following alkyl halides can produce only a single alkene product when
treated with sodium methoxide?
2-chloro-2-methyl pentane
3-chloro-3-ethyl pentane
3-chloro-2-methyl pentane
2-chloro-4-methyl pentane

Answers

When treated with sodium methoxide, The given alkyl halides are: 2-chloro-2-methyl pentane, 3-chloro-3-ethyl pentane, 3-chloro-2-methyl pentane, 2-chloro-4-methyl pentane.

The given alkyl halides can produce only a single alkene product when treated with sodium methoxide is 3-chloro-2-methyl pentane. The elimination of alkyl halides using strong base sodium methoxide produces alkenes. E2 (Elimination Bimolecular) is a common reaction for the elimination of alkyl halides to form alkenes with a single product. The reaction occurs through the abstraction of a proton by the base from the β-carbon and the leaving group departure simultaneously.

Thus, the alkyl halide that has only one β-hydrogen atom can produce only a single alkene product when treated with sodium methoxide. Hence, 3-chloro-2-methyl pentane is the alkyl halide that produces only a single alkene product when treated with sodium methoxide.

To know more about sodium methoxide refer to:

https://brainly.com/question/30898479

#SPJ11

the amount of pressure change that occurs over a given horizontal distance is called the

Answers

The pressure gradient is a measure of how quickly the pressure changes as you move along a particular direction.

The pressure gradient is determined by the difference in pressure between two points divided by the horizontal distance between them. A steeper pressure gradient indicates a faster rate of pressure change, while a shallower gradient implies a slower change.

The pressure gradient is an essential concept in meteorology and fluid dynamics. It plays a crucial role in understanding and predicting weather patterns, such as the movement of air masses and the formation of storms. By analyzing the pressure gradient, meteorologists can determine the direction and strength of winds, which are vital in forecasting weather conditions.

Learn more about pressure gradients here:

https://brainly.com/question/13383197

#SPJ11

a sample of 11.3 g of fe2o3 reacts with 15.7 g co to yield fe and co2. the balanced chemical equation is fe2o3(s) 3co(g)⟶2fe(s) 3co2(g) which substance is the limiting reactant?

Answers

Fe2O3 is the limiting reactant in this chemical reaction.

A limiting reactant is a type of chemical reaction that restricts the amount of product that can be formed because it is the first chemical that is completely consumed. It is also called a limiting reagent.

In a balanced chemical reaction, a limiting reagent is the reactant that is fully consumed during the reaction and limits the amount of product formed. The other reactants that are not fully consumed are in excess and do not limit the amount of product formed.

Therefore, to determine the limiting reagent, you need to compare the amount of each reactant to the stoichiometric coefficients in the balanced chemical equation.

To determine the limiting reactant between Fe2O3 and CO, you will need to calculate the amount of each reactant in moles and compare it with the stoichiometric coefficients in the balanced chemical equation.

The reactant that produces the smallest amount of product is the limiting reagent.Here is how to calculate the amount of each reactant:

Mass of Fe2O3 = 11.3 g

Molar mass of Fe2O3 = 159.7 g/mol

Number of moles of Fe2O3 = mass/molar mass = 11.3/159.7 = 0.0708 mol

Mass of CO = 15.7 g

Molar mass of CO = 28.0 g/mol

Number of moles of CO = mass/molar mass = 15.7/28.0 = 0.5607 mol

Using the balanced chemical equation, the stoichiometric ratio of Fe2O3 to CO is 1:3.

Therefore, the amount of CO required to react with 0.0708 mol of Fe2O3 is:

0.0708 mol Fe2O3 x (3 mol CO / 1 mol Fe2O3) = 0.2124 mol CO

The amount of CO actually used is 0.5607 mol, which is greater than the amount required to react with Fe2O3.

This means that CO is in excess and Fe2O3 is the limiting reactant.

Therefore, Fe2O3 is the limiting reactant.

Learn more about limiting reactant at: https://brainly.com/question/14222359

#SPJ11

left- and right-handed mirror image molecules are known as

Answers

Left- and right-handed mirror image molecules are known as stereoisomers. Stereoisomers have the same molecular formula and the same connectivity of atoms, but the arrangement of the atoms in space is different. Stereoisomers are formed due to the presence of a chiral center in the molecule

A molecule is said to be chiral if it has a non-superimposable mirror image. Chiral molecules cannot be superimposed on their mirror image. This means that the left- and right-handed mirror images of a chiral molecule are not identical and are not superimposable on each other. Chiral molecules are very important in the field of biology and pharmacology because they interact differently with other chiral molecules in biological systems and can have different biological activities or therapeutic effects.Most biological molecules, such as amino acids, sugars, and DNA, are chiral. Amino acids and sugars are chiral because of the presence of an asymmetric carbon atom in their structures. DNA is chiral because of the helical structure of its double-stranded form. The handedness of chiral molecules can have significant implications for their biological activity, as the interaction between two chiral molecules can depend on their relative handedness.The study of stereoisomers is important in the field of organic chemistry and biochemistry. Understanding the stereochemistry of molecules is essential for understanding their properties and behavior. Stereoisomers can have different physical properties, such as melting point and solubility, and different biological activities, such as receptor binding and enzyme catalysis.

To know more about Chiral molecules visit :

brainly.com/question/29538057

#SPJ11

Gravity is also affected by mass. ____which is the amount of matter in an object?

Answers

Mass is the amount of matter in an object.

Mass is a fundamental property of matter and is often described as the measure of an object's inertia or resistance to changes in motion. Mass is a scalar quantity and is typically measured in units such as kilograms (kg) or grams (g). The mass of an object is independent of its location and is constant, regardless of the gravitational field it is in. In other words, an object's mass remains the same whether it is on Earth, in space, or on another planet. Gravity, on the other hand, is the force of attraction between objects with mass. The strength of the gravitational force depends on the masses of the objects involved and the distance between them. In this sense, gravity is affected by mass since the magnitude of the gravitational force increases with the mass of the objects. In summary, mass is the measure of the amount of matter in an object, while gravity is the force of attraction between objects that is influenced by their masses.

for more questions on Mass
https://brainly.com/question/24191825
#SPJ8

the specific heat of a certain type of cooking oil is 1.75 j/(g⋅°c).1.75 j/(g⋅°c). how much heat energy is needed to raise the temperature of 2.78 kg2.78 kg of this oil from 23 °c23 °c to 191 °c?

Answers

The amount of heat energy needed to raise the temperature of 2.78 kg of a certain type of cooking oil from 23 °c to 191 °c can be calculated as follows:

Given values;mass of the cooking oil, m = 2.78 kgSpecific heat of the cooking oil, c = 1.75 J/(g ⋅ °C)Initial temperature, T1 = 23 °CFinal temperature, T2 = 191 °CThe amount of heat energy required to raise the temperature of the given mass of the cooking oil can be calculated using the formula below:Q = mcΔTWhere,Q = amount of heat energy required to raise the temperature of the cooking oilm = mass of the cooking oilc = specific heat of the cooking oilΔT = Change in temperature= Final temperature - Initial temperature= T2 - T1.

Substituting the given values into the formula above, we have:ΔT = T2 - T1= 191 °C - 23 °C= 168 °C (change in temperature)mass of cooking oil, m = 2.78 kgSpecific heat, c = 1.75 J/(g ⋅ °C)Amount of heat energy required to raise the temperature of the cooking oil, Q = mcΔT= 2.78 × 10^3 g × 1.75 J/(g ⋅ °C) × 168 °C= 819,240 J ≈ 819 kJ (rounded to three significant figures)Therefore, the amount of heat energy needed to raise the temperature of 2.78 kg of this oil from 23 °c to 191 °c is approximately 819 kJ.

To know more about temperature visit:-

https://brainly.com/question/7510619

#SPJ11

suppose that the volume of a particular sample of cl2 gas is 8.40 l at 885 torr and 24 ∘c. how many grams of cl2 are in the sample?

Answers

There are 30.4 grams of Cl2 in the sample. The ideal gas law is stated as PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the universal gas constant, and T is the temperature.

The ideal gas law can be rearranged to determine the number of moles of gas present, which can then be used to calculate the mass of gas present since the molar mass of Cl2 is known. The number of moles of gas present can be determined using the equation n = (PV)/(RT).

Firstly, the given pressure, volume, and temperature of the sample must be converted to SI units, which are the units used in the ideal gas law. 1 torr is equal to 1/760 atm, so 885 torr is equivalent to 1.16 atm. 24°C is equal to 297 K, which can be obtained by adding 273 to the temperature in Celsius.

To know more about temperature visit:-

https://brainly.com/question/7510619

#SPJ11

what volume of a 0.2089 m ki solution contains enough ki to react exactly with the cuno32

Answers

The given solution is a 0.2089 M KI solution and it is required to find the volume of this solution that contains enough KI to react exactly with Cu(NO3)2.

In order to solve the problem, we can use the following balanced chemical equation:2KI + Cu(NO3)2 → CuI2 + 2KNO3From the equation, we can see that 2 moles of KI react with 1 mole of Cu(NO3)2. Therefore, the number of moles of Cu(NO3)2 required will be equal to half the number of moles of KI. We can calculate the number of moles of KI required by using the following formula:moles = Molarity × Volume (in liters)⇒ Volume (in liters) = moles / Molarity Given that the molarity of KI solution is 0.2089 M,

we can find the number of moles of KI required using the balanced chemical equation and stoichiometry:1 mole of Cu(NO3)2 reacts with 2 moles of KI0.154 moles of Cu(NO3)2 will react with = 0.154 × 2 = 0.308 moles of KI Volume of KI solution required = moles / Molarity = 0.308 / 0.2089 = 1.475 liters Therefore, the volume of the 0.2089 M KI solution that contains enough KI to react exactly with Cu(NO3)2 is 1.475 liters.

To know more about chemical equation refer to:

https://brainly.com/question/29886207

#SPJ11

which aqueous solution has the lower freezing point, 0.60 m cacl2 or 0.60 m glucose?

Answers

The aqueous solution that has the lower freezing point is 0.60 m glucose.

What is freezing point depression?

Freezing point depression is the reduction in the temperature at which a liquid freezes caused by dissolved particles. The freezing point depression (ΔTf) of a solution is proportional to the molality (m) of the solute, which is the number of moles of solute per kilogram of solvent.

Freezing point depression is a colligative property, which means it depends only on the number of solute particles in the solution, not on their nature. The van't Hoff factor (i) is used to account for the dissociation of solutes in the solution. The van't Hoff factor of glucose is 1, whereas the van't Hoff factor of CaCl2 is 3.

To calculate the freezing point depression, we use the formula:

ΔTf = i * Kf * m

To calculate the freezing point depression, we use the formula:

ΔTf = i * Kf * m

The freezing point depression constant of water is 1.86 °C/m.

Thus, for the given molality of the solutions, the freezing point depression is

:ΔTfcacl2 = 3 * 1.86 °C/m * 0.60 m = 3.348 °CΔTfglucose = 1 * 1.86 °C/m * 0.60 m = 1.116 °C

Therefore, 0.60 m glucose has a lower freezing point depression than 0.60 m CaCl2.

learn more about freezing point depression here

https://brainly.com/question/31357864

#SPJ11

Write equations that show the processes that describe the first second, and third ionization energies for a gaseous aluminum atom. Express your answers as chemical equations separated by commas. Identify all of the phases in your answer.

Answers

Ionization energy is the amount of energy necessary to remove an electron from a neutral atom. There are multiple ionization energies for each element because each ionization energy involves removing an electron from a progressively more positively charged ion.

Here are the equations that describe the first three ionization energies for a gaseous aluminum atom, along with the phases:1st ionization energy:Al(g) → Al+(g) + e-2nd ionization energy:Al+(g) → Al2+(g) + e-3rd ionization energy:Al2+(g) → Al3+(g) + e-Note that each equation has a phase label for each species involved. The first ionization energy equation shows that one electron is removed from a gaseous aluminum atom (Al(g)) to form a gaseous aluminum cation (Al+(g)) and an electron (e-) in the gas phase.The second ionization energy equation shows that one electron is removed from a gaseous aluminum cation (Al+(g)) to form a gaseous aluminum di-cation (Al2+(g)) and an electron (e-) in the gas phase.The third ionization energy equation shows that one electron is removed from a gaseous aluminum di-cation (Al2+(g)) to form a gaseous aluminum tri-cation (Al3+(g)) and an electron (e-) in the gas phase.

For more information on Ionization energy visit:

brainly.com/question/28385102

#SPJ11

Q7: Please show your complete solution and explanation. Thank
you!
7. The difference in entropy of water at 200 °C and 0 °C is 0.5567 cal deg-¹g-¹. Determine the energy necessary to heat 2 moles of water from 0 °C to 200 °C.

Answers

The energy required to heat 2 moles of water from 0 °C to 200 °C is approximately 0.004079 cal/mol. This can be calculated using the change in entropy and the molar heat capacity of water.

To determine the energy necessary to heat 2 moles of water from 0 °C to 200 °C, we need to calculate the change in entropy and use it to find the energy change.

Given:

Difference in entropy (ΔS) = 0.5567 cal deg⁻¹g⁻¹

Number of moles of water (n) = 2

The change in entropy (ΔS) can be expressed as:

[tex]\begin{equation}\Delta S = nC \ln \left(\frac{T_f}{T_i}\right)[/tex]

where:

C is the molar heat capacity of water

[tex]T_f[/tex] is the final temperature in Kelvin

[tex]T_i[/tex] is the initial temperature in Kelvin

We can rearrange the equation to solve for the energy change (ΔE):

[tex]\[\Delta E = \frac{\Delta S}{T_i}\][/tex]

To use the equation, we need to convert the temperature to Kelvin. Therefore:

[tex]T_i[/tex] = 0 °C + 273.15 = 273.15 K

[tex]T_f[/tex] = 200 °C + 273.15 = 473.15 K

Now we can substitute the values into the equation:

[tex]\begin{equation}\Delta E = \frac{(0.5567\text{ cal deg}^{-1}\text{ g}^{-1})(2\text{ mol})}{273.15\text{ K}}[/tex]

Calculating the energy change:

ΔE = 0.004079 cal/mol

Therefore, the energy necessary to heat 2 moles of water from 0 °C to 200 °C is approximately 0.004079 cal/mol.

To know more about the molar heat capacity refer here :

https://brainly.com/question/28302906#

#SPJ11

How long does it take a 720 Watt electric drill to transform
45,000 J of energy?
Please answer with proper notation thank you.

Answers

It takes approximately 62.5 seconds for a 720 Watt electric drill to transform 45,000 J of energy.

To determine the time it takes for a 720 Watt electric drill to transform 45,000 J of energy, we can use the formula:

[tex]\begin{equation}t = \frac{E}{P}[/tex]

Given:

Energy (E) = 45,000 J

Power (P) = 720 W

Substituting these values into the formula, we have:

[tex]\begin{equation}t = \frac{45,000 \text{ J}}{720 \text{ W}}[/tex]

Calculating this division gives us:

t ≈ 62.5 seconds

Therefore, it takes approximately 62.5 seconds (or 62.5 s) for a 720 Watt electric drill to transform 45,000 J of energy.

To know more about the electric drill refer here :

https://brainly.com/question/29411351#

#SPJ11

do co2 and o2 bind at the same time? do they both cause the same conformational change?

Answers

The binding of O2 and CO2 does not cause the same conformational changes in hemoglobin; thus, they do not bind at the same time.

No, CO2 and O2 do not bind at the same time, and they do not cause the same conformational change. Hemoglobin binds to both oxygen and carbon dioxide, but it does not happen simultaneously. The affinity of hemoglobin for CO2 is about 20 times higher than for oxygen, and CO2 primarily binds to the globin part of the protein rather than the heme group.Carbon dioxide (CO2) is carried from tissues to the lungs by binding to amino groups of the globin molecule of hemoglobin, which changes the conformation of the protein. In the lungs, CO2 is released from hemoglobin, and the protein returns to its original conformation.Oxygen, on the other hand, binds to the iron atom of heme in the hemoglobin molecule, which causes a conformational change in the protein and helps in the transportation of oxygen from the lungs to the tissues. The binding of O2 and CO2 does not cause the same conformational changes in hemoglobin; thus, they do not bind at the same time.

To know more about hemoglobin visit:

https://brainly.com/question/31239540

#SPJ11

how many amps are required to produce 29.4 g of copper metal from a solution of aqueous copper(ii)chloride in 5.01 hours?

Answers

To determine the number of amps required to produce 29.4 g of copper metal from a solution of aqueous copper(II) chloride in 5.01 hours, we can use Faraday's law of electrolysis.

Faraday's law of electrolysis states that the amount of substance that is produced or consumed by an electrolysis reaction is proportional to the amount of electric charge that is passed through the circuit. Here, we can use the following formula for Faraday's law of electrolysis:

Q = It

Where: Q = Quantity of electricity (coulombs), I = Current (amperes), t = Time (seconds)

Let's first convert the given time from hours to seconds:

5.01 hours × 3600 seconds/hour = 18,036 seconds

Now, let's calculate the quantity of electricity required to produce 29.4 g of copper metal using the following equation:

Cu2+(aq) + 2e− → Cu(s)

The atomic weight of copper is 63.55 g/mol. Thus, the number of moles of copper produced will be:

29.4 g / 63.55 g/mol = 0.4626 mol

The number of electrons transferred (2) for each mole of copper is given in the balanced equation. Thus, the total charge required can be calculated as follows:

Charge = 0.4626 mol × 2 × 96,485 C/mol = 89,437 C

Now, we can use Faraday's law of electrolysis to determine the current required:

I = Q/t = 89,437 C / 18,036 s ≈ 4.96 A

Therefore, approximately 4.96 amps are required to produce 29.4 g of copper metal from a solution of aqueous copper(II) chloride in 5.01 hours.

To know more about Faraday's law visit:

https://brainly.com/question/1640558

#SPJ11

To produce 29.4 g of copper metal from a solution of aqueous copper(II) chloride in 5.01 hours, approximately 4.96 amperes are required.

First, we need to determine the number of moles of copper metal produced from the given mass of 29.4 g. We can use the molar mass of copper (Cu), which is approximately 63.55 g/mol.

Number of moles of copper = mass of copper / molar mass of copper

= 29.4 g / 63.55 g/mol

= 0.462 moles

Now, we need to convert the number of moles of copper to the number of moles of electrons transferred. During the electrolysis of copper(II) chloride, each copper(II) ion (Cu²⁺) accepts two electrons to form copper metal (Cu).

Number of moles of electrons transferred = 0.462 moles x 2

= 0.924 moles

Next, we convert the number of moles of electrons to the amount of electric charge in coulombs using Faraday's constant:

Amount of electric charge (in coulombs) = moles of electrons transferred x Faraday's constant

= 0.924 moles x 96,485 C/mol

= 89,148.54 C

Finally, we can calculate the current (in amperes) required to produce the given amount of copper metal in the given time:

Current (in amperes) = Amount of electric charge (in coulombs) / time (in seconds)

= 89,148.54 C / (5.01 hours x 3600 s/hour)

≈ 4.96 A

Learn more about copper here:

https://brainly.com/question/30458067

#SPJ11

for each pair of substances listed here, choose the compound predicted to have the higher standard entropy at 25°c. the same molar amount is used in the comparison.

Answers

Pair 1: CH₃SH is predicted to have higher standard entropy, Pair 2: NH₃ is predicted to have higher standard entropy, Pair 3: SO₂ is predicted to have higher standard entropy, Pair 4: H₂O is predicted to have higher standard entropy, Pair 5: HCl is predicted to have higher standard entropy, Pair 6: CO₂ is predicted to have higher standard entropy, Pair 7:  C₆H₁₄ is predicted to have higher standard entropy

Given, pairs of substances with the molar amount used in the comparison are shown below: Pair 1: CH₃OH or CH₃SH, Pair 2: NH₃ or N₂H4 , Pair 3: SO₂ or SO₃, Pair 4: H₂S or H₂O, Pair 5: HCl or HBr, Pair 6: CO or CO₂, Pair 7: C₆H₁₄ or  C₆H₁₂. The standard entropy of a substance is determined by the motion of the atoms or molecules in that substance. The more ways the particles in a substance can move, the more disorder (or entropy) the substance has. The standard entropy values at 25°C (298 K) for the above-listed pairs of substances are listed above.

The reason why the first compound in each pair has higher entropy than the second compound in the pair are listed below:

1. In CH₃SH, there are more atoms that can move about freely compared to CH₃OH.

2. NH₃ has more ways the molecules can move compared to N₂H₄.

3. In SO₂, the vibrational degrees of freedom are more compared to SO₃.4. In H₂O, the rotational and translational degrees of freedom are more compared to H₂S.

5. In HCl, the vibrational degrees of freedom are more compared to HBr.

6. In CO₂, there are more degrees of freedom for the vibrations of the atoms compared to CO.

7. In C₆H₁₄, the rotational and translational degrees of freedom are more compared to C₆H₁₂.Therefore, the standard entropy values of the compounds in each pair are as listed above.

To know more about entropy, refer

https://brainly.com/question/30481619

#SPJ11

Which of the following equations represents an acid-base neutralization reaction?
Group of answer choices
H2SO4 + Zn → ZnSO4 + H2
Ba(OH)2 + Na2SO4 → BaSO4 + 2NaOH
HCl + KOH → KCl + H2O
NaNO3 + KOH → KNO3 + NaOH

Answers

The equation HCl + KOH → KCl + H2O represents an acid-base neutralization reaction. Therefore, the equation that represents an acid-base neutralization reaction is HCl + KOH → KCl + H2O.

An acid-base neutralization reaction is defined as a type of chemical reaction in which an acid reacts with a base to produce salt and water. Here, the acid donates H+ ions and the base donates OH- ions. The net result is the neutralization of both acid and base.

HCl + NaOH → NaCl + H2O (hydrochloric acid and sodium hydroxide reacts to form sodium chloride and water).The above equation represents an acid-base neutralization reaction. Similarly, one of the equations provided in the question represents an acid-base neutralization reaction and it is: HCl + KOH → KCl + H2OThe remaining equations are:H2SO4 + Zn → ZnSO4 + H2 (single replacement reaction).Ba(OH)2 + Na2SO4 → BaSO4 + 2NaOH (double displacement reaction).NaNO3 + KOH → KNO3 + NaOH (double displacement reaction).

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

how many g of sulfur are needed to react completely with 246 g of mercury to make hgs?

Answers

To find the amount of sulfur needed to react completely with 246 g of mercury to make Hg S, we will have to write the balanced chemical equation first and then calculate the molar amount of the reactants and products involved are Balanced chemical equation

Hg + S → HgS(1)From the balanced equation, we can see that 1 mole of mercury reacts with 1 mole of sulfur to produce 1 mole of mercury sulfide (Hg S).Molar mass of mercury (Hg) = 200.592 g/mol Molar mass of sulfur (S) = 32.06 g/mol Molar mass of mercury sulfide (HgS) = 232.66 g/mol Given, mass of mercury = 246 g According to the balanced chemical equation  the amount of sulfur required to react with 246 g of mercury completely is equal to the amount of mercury present. So ,Amount of mercury (Hg) present = 246 g Moles of mercury (Hg) present = Mass/Molar mass= 246/200.592= 1.226 mol From the balanced chemical equation, we can say that 1 mole of mercury reacts with 1 mole of sulfur to produce 1 mole of mercury sulfide (HgS).

Moles of sulfur required = Moles of mercury = 1.226 mol Molar mass of sulfur (S) = 32.06 g/mol Mass of sulfur required to react with 246 g of mercury completely= Moles of sulfur x Molar mass of sulfur= 1.226 mol x 32.06 g/mol= 39.28 g To find the amount of sulfur required to react with 246 g of mercury completely to make Hg S, we used the balanced chemical equation (1) which states that 1 mole of mercury reacts with 1 mole of sulfur to produce 1 mole of mercury sulfide (HgS).We calculated the number of moles of mercury (Hg) present in 246 g of mercury using the formula, Moles = Mass/Molar mass and got 1.226 mol. Then we equated this value to the number of moles of sulfur required to react completely with mercury to make Hg S. Moles of sulfur required = Moles of mercury = 1.226 mol. We then found the mass of sulfur required to react with 246 g of mercury completely using the formula, Mass = Moles x Molar mass. The molar mass of sulfur is 32.06 g/mol. Therefore, Mass of sulfur required = 1.226 mol x 32.06 g/mol = 39.28 g.

To know more about equation  Visit;

https://brainly.com/question/32279646

#SPJ11

nf3nf3 draw the molecule by placing atoms on the grid and connecting them with bonds. include all lone pairs of electrons.

Answers

The nitrogen trifluoride (NF3) molecule can be represented by the following diagram: Nitrogen trifluoride (NF3) molecule is formed by combining one nitrogen atom with three fluorine atoms.

In order to draw the molecule of NF3, you can follow the following steps:Step 1: Draw the nitrogen atom in the center of the grid. Include five electrons to represent its valence shell.Step 2: Draw three fluorine atoms around the nitrogen atom. Include seven electrons in each of the fluorine atoms.Step 3: Connect each of the three fluorine atoms with a single bond to the nitrogen atom.

This means that each of the fluorine atoms shares one electron with the nitrogen atom.Step 4: Place lone pairs of electrons around the nitrogen atom to complete its octet. In order to complete its octet, nitrogen requires three more electrons. Hence, you can place three lone pairs of electrons around the nitrogen atom.Each of the lone pairs of electrons should be represented by two dots. Therefore, the final structure of the NF3 molecule will look like this:  Thus, the diagram for the nitrogen trifluoride (NF3) molecule has been shown and the correct explanation has been provided.

To know more about atoms visit:

https://brainly.com/question/1566330

#SPJ11

The mechanism for the reaction described by

NO2(g) + CO(g) ---> CO2(g) + NO (g)

is suggested to be

(1) 2NO2(g) --->(k1) NO3(g) + NO (g)

(2) NO3(g) +CO(g) --->(k2) NO2(g) + CO2(g)

Assuming that [NO3] is governed by steady-state conditions, derive the rate law for the production of CO2(g) and enter it in the space below.

Rate of CO2(g) production = ???

Answers

The rate law for the production of CO2(g) is given by Rate of CO₂(g) production = k2 [NO₂] [CO].

The mechanism of the reaction can be given by,

Step 1: NO₂  ---> k1 NO(g) + NO₃(g)

Step 2: NO₃(g) + CO(g)  ---> k2 NO₂(g) + CO₂(g)

Overall reaction: NO₂(g) + CO(g)  ---> CO₂(g) + NO(g)

From the mechanism, we can see that the production of NO₂ and CO₂ is the rate-determining step.

Therefore, rate of CO₂ production = k2 [NO₂][CO] (Rate-determining step). As the NO₃ concentration is governed by steady-state conditions, we can say that the rate of formation of NO₃ is equal to the rate of consumption of NO₃. That is, Rd(NO₃) = k1[NO₂] [O₂] = k2[NO₃] [CO]Rd(NO₃) = k2[NO₃] [CO]. So, the rate law for the production of CO₂(g) can be given as the Rate of CO₂(g) production = k2 [NO₂] [CO].

Learn more about rate law here:

https://brainly.com/question/4222261

#SPJ11

Other Questions
Please give a brief 1-2 sentence only of the answer.two reasons why the russo-japanese war may have contributed to the popularity of naturalism?theoretical tenets of naturalism forwarded by Tayama Katai?title and central idea of the speech Soseki gave at the Gakushu in peer school? what is the reaction of jack's tribe to ralph's talk of rescue in the game of roulette a player can place a $7 bet on the number and have a probability of winning. If the metal ball lands on 7, the player gets to keep the 57 paid to play the game and the plever i a public key encryption algorithm.contract: the contract that Bob wrote privatekey_bob: Bob's private key publickey_bob: Bob's public keyoutput 1 md5(contract)output_2 - privatekey_bob (output_1)Bob sends the contract, output 2, and publickey_bob to AliceWhat security functions were provided by this approach?A. AuthenticationB. IntegrityC. onfidentiality In general, when dealing with the bond market, do bondholders fare better when the yield to maturity increases or when it decreases? More specifically, bondholders fare worse when the yield to maturity. A). decreases, since this represents an increase in the price of the bond and a decrease in potential capital losses. B). increases, since this represents a decrease in the bond maturity and a decrease in potential capital losses. C). decreases, since this represents an increase in the coupon payment and an increase in potential capital gains. D). increases, since this represents a decrease in the price of the bond and an increase in potential capital losses. Suppose you purchase a $1,000 face value, 6-year, 5- percent coupon bond for $950 and hold it for three years. During that time, the interest rate falls to 2%. Calculate your annual holding period return. Several years have passed, and you have been asked to review the current tracking and projection model to determine if it is still appropriate for the pension plan. For the most part, the model has generally been reliable. However, there have been some issues related to the alignment of the initial assumptions setting with the emerging experience. Additionally, some other items were brought to your attention: The timing of the data feed related to the future asset return and discount rate assumptions from the third-party vendor has proven to be unreliable at times. The CFO has commented as such when monthly reports were delayed as a result.o Also due to technical issues, the feed that was intended to be automatic has at times needed to be imported manually, which has consumed significant resources. Intramonth benchmarking has generally been reliable, however, there were several instances when experience deviated from benchmarks and significant true-ups were required. Forecasted contributions have generally created an accurate picture of future expectations on a deterministic basis. However, the CFO has asked if stochastic projections are possible, to be able to visualize a funnel of doubt based on 1000 different scenarios. Potential issues with the tracker given that liability cash flows are only updated annually.In light of these observations, your manager has asked you to produce two internal documents for your findings:1. In the first document, your manager would like a detailed analysis of the challenges surrounding the model, including the appropriateness of the assumptions. In an informal response, recommend ways that these can be tested and be sure to address the following: General recommendations for improvements based on the experience listed above and consider any other potential feedback that could be solicited from others, both internal and external. Model revisions necessary to implement recommendations.2. In the second document, your manager would like a maintenance document that can be used as a guide going forward. Outline potential procedures in a formal document and be sure to include the following: Data and systems required to monitor future experience. Processes to implement future revisions to the model.QW Which of the following is the lowest risk entry to international markets that Toyota employed?Group of answer choicesexportingforeign direct investmentlicensingalliances Consider the following information: Demand rate (D) = 1,500 units per hour Lead time (T) = 8 hours Container capacity (C) = 230 units Safety factor (x) = 15% a. The number of kanban production cards is number.) (Enter your response rounded up to the next whole PLEASE HELP QUICK You have learned about Fact or Opinion. Now it is time for you to apply what you have learned. Follow the directions below to complete this assessment.Look at your fastwrite and see where your questions are.Decide on specific information you need to find.Use the tips given in the lesson to search the Internet for non-print (and possibly print) resources to use. Also search other print resources you find.Copy and paste the note taking charts below into your word processing program.As you read through print and non-print resources, fill in the information on the charts and take notes.Then, underline which you think is rightis it a strong or a weak argument?Keep these points in mind:FactA fact can be proven to be true. OpinionAn opinion is a belief or feeling.Authors sometimes use tone to influence readers and form their conclusions. An author's tone is his attitude toward his readers and subject.StrongA strong argument is one that is supported by research, and directly relates to the topic or question.WeakA weak argument is one that is not supported by research, or is supported by research but does not directly relate to the topic or question.As you read through print and non-print resources, fill in the information on the chart below.Title of Print Source:Author:Name of Publication:Date of Publication:Did you find this online or in print?FactFacts OpinionOpinionsIs this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument?Link of Non-print Source:Author:Date Accessed:FactFacts OpinionOpinionsIs this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument?Is this a strong or weak argument? bilateral and unilateral contracts are best described by which of the following statements?A. The number of parties obligated to perform.B. The number of promises each party is obligated to perform.C. The number of lenders involved.D. The number of signatures required on the contract. What is the total voltage of a parallel circuit with resistances of 3.1002, 4.2302 and 3.1502 and a current of 80 amperes? when you are persuading or delivering bad news to your audience, the indirect paragraph plan is most effective. 1a. If 0.619 g of magnesium hydroxide reacts with 0.940 g of sulfuric acid, what is the mass of magnesium sulfate produced? Mg(OH)2(s)+H2SO4(l)MgSO4(s)+H2O(l) Writing about ( the affect using of cell phone while operating amotor vechicle on breaking distance)This section is used to put the problem intocontext/perspective. Perform a brief literature s Will a precipitate form if 500. mL of 0.050 M AgC2H3O2 is mixed with 300. mL of 0.010M K2SO4? Ksp(Ag2SO4)=1.2105 The electric field strength 1.7 cm from the surface of a 10-cm-diameter metal ball is 6.0104 N/C . What is the charge (in nC) on the ball? In the drawing, water flows from a wide section of a pipe to a narrow section. In which part of the pipe is the volume flow rate the greatest? (1 point) a. The wide section. b. The narrow section. c. The volume flow rate is the same in both sections of the pipe. Consider a simple linear regression model Y = Bo + BX + u As sample size increases, the standard error for the regression coefficient decreases. True O False why is fluorescence more sensitive than uv-vis absorption spectroscopy