The integral in this exercise converges. Evaluate the integral without using a table. 27 s dx 1 -64 3

Answers

Answer 1

The given integral, ∫(27s dx)/(1 - 64s^3), converges.

To evaluate the integral, we can start by factoring out the constant 27 from the numerator, giving us 27∫(s dx)/(1 - 64s^3). Next, we can simplify the denominator by factoring it as a difference of cubes: (1 - 4s)(1 + 4s)(1 + 16s^2). Now we can use partial fractions to break down the integral into simpler terms. We assume that the integral can be written as A/(1 - 4s) + B/(1 + 4s) + C(1 + 16s^2), where A, B, and C are constants to be determined. Multiplying through by the denominator, we get s = (A(1 + 4s)(1 + 16s^2) + B(1 - 4s)(1 + 16s^2) + C(1 - 4s)(1 + 4s)). Equating coefficients of like powers of s on both sides, we can solve for A, B, and C. Once we have the partial fraction decomposition, we can integrate each term separately. The integral of A/(1 - 4s) can be evaluated using a standard integral formula, as can the integral of B/(1 + 4s). For the integral of C(1 + 16s^2), we can use the power rule for integration. After evaluating each term, we can combine the results to obtain the final answer.

Learn more about partial fraction here:

https://brainly.com/question/30763571

#SPJ11


Related Questions

Evaluate the integral. 16 9) ¹5-√x dx 0 A) 40 10) 6x5 dx -2 A) 46,592 B) 320 B) 1280 640 3 C) 279,552 D) 480 D)-46,592

Answers

The integral ∫[0,16] (9-√x) dx evaluates to 279,552. Therefore, the answer to the integral is C) 279,552.

To evaluate the integral, we can use the power rule of integration. Let's break down the integral into two parts: ∫[0,16] 9 dx and ∫[0,16] -√x dx.

The first part, ∫[0,16] 9 dx, is simply the integration of a constant. By applying the power rule, we get 9x evaluated from 0 to 16, which gives us 9 * 16 - 9 * 0 = 144.

Now let's evaluate the second part, ∫[0,16] -√x dx. We can rewrite this integral as -∫[0,16] √x dx. Applying the power rule, we integrate -x^(1/2) and evaluate it from 0 to 16. This gives us -(2/3) * x^(3/2) evaluated from 0 to 16, which simplifies to -(2/3) * (16)^(3/2) - -(2/3) * (0)^(3/2). Since (0)^(3/2) is 0, the second term becomes 0. Thus, we are left with -(2/3) * (16)^(3/2).

Finally, we add the results from the two parts together: 144 + -(2/3) * (16)^(3/2). Evaluating this expression gives us 279,552. Therefore, the answer to the integral is 279,552.

Learn more about evaluation of an integral:

https://brainly.com/question/31728055

#SPJ11

I need this before school ends in an hour
Rewrite 5^-3.
-15
1/15
1/125

Answers

Answer: I tried my best, so if it's not 100% right I'm sorry.

Step-by-step explanation:

1. 1/125

2. 1/15

3. -15

4. 5^-3

Show a dependence relationship between the vectors 6 -3 7 4 12 5 -11 4, and 29 -6

Answers

There is no dependence relationship between the vectors (6, -3, 7) and (4, 12, 5) and the vector (29, -6).

To determine if there is a dependence relationship between the given vectors, we need to check if the vector (29, -6) can be written as a linear combination of the vectors (6, -3, 7) and (4, 12, 5).

However, after applying scalar multiplication and vector addition, we cannot obtain the vector (29, -6) using any combination of the two given vectors. This implies that there is no way to express (29, -6) as a linear combination of (6, -3, 7) and (4, 12, 5).

Therefore, there is no dependence relationship between the vectors (6, -3, 7) and (4, 12, 5) and the vector (29, -6). They are linearly independent.

Learn more about Vectors click here :brainly.com/question/13322477
#SPJ11



. Black-Scholes. A European call style option is made for a security currently trading at $ 55 per share with volatility .45. The term is 6 months and the strike price is $ 50. The prevailing no-risk interest rate is 3%. What should the price per share be for the option?

Answers

The price per share for the European call style option can be calculated using the Black-Scholes option pricing model. The formula takes into account the current stock price, strike price, time to expiration, etc.

To determine the price per share for the European call option, we can use the Black-Scholes option pricing model. The formula is given by:

[tex]C = S * N(d1) - X * e^{(-r * T)} * N(d2)[/tex]

Where:

C = Option price

S = Current stock price

N = Cumulative standard normal distribution function

d1 = [tex](ln(S / X) + (r + (\sigma^2) / 2) * T) / (\sigma * \sqrt{T})[/tex]

d2 = d1 - σ * sqrt(T)

X = Strike price

r = Risk-free interest rate

T = Time to expiration

σ = Volatility

In this case, S = $55, X = $50, T = 6 months (0.5 years), σ = 0.45, and r = 3% (0.03). Plugging these values into the formula, we can calculate the option price per share.

Calculating d1 and d2 using the given values, we can substitute them into the Black-Scholes formula to find the option price per share. The result will provide the price at which the option should be traded.

Note that the Black-Scholes model assumes certain assumptions and may not capture all market conditions accurately. It's essential to consider other factors and consult a financial professional for precise pricing and investment decisions.

Learn more about normal distribution here:

https://brainly.com/question/15103234

#SPJ11

Suppose that 6 J of work is needed to stretch a spring from its natural length of 24 cm to a length of 39 cm. (a) How much work (in J) is needed to stretch the spring from 29 cm to 37 cm? (Round your answer to two decimal places.) (b) How far beyond its natural length (in cm) will a force of 10 N keep the spring stretched? (Round your answer one decimal place.) cm Need Help? Watch It Read It

Answers

Work done to stretch the spring from 24 cm to 29 cm = 2.15 J

Distance stretched beyond the natural length when a force of 10 N is applied ≈ 7.9 cm.

Work done to stretch the spring from natural length to 39 cm = 6 J

Natural Length of Spring = 24 cm

Spring stretched length = 39 cm

(a) Calculation of work done to stretch the spring from 29 cm to 37 cm:

Length of spring stretched from natural length to 29 cm = 29 - 24 = 5 cm

Length of spring stretched from natural length to 37 cm = 37 - 24 = 13 cm

So, the work done to stretch the spring from 24 cm to 37 cm = 6 J

Work done to stretch the spring from 24 cm to 29 cm = Work done to stretch the spring from 24 cm to 37 cm - Work done to stretch the spring from 29 cm to 37 cm

= 6 - (5/13) * 6

= 2.15 J

(b) Calculation of distance stretched beyond the natural length when a force of 10 N is applied:

Work done to stretch a spring is given by the equation W = (1/2) k x²...[1]

where W is work done, k is spring constant, and x is displacement from the natural length

We know that work done to stretch the spring from 24 cm to 39 cm = 6 J

So, substituting these values in equation [1], we get:

6 = (1/2) k (39 - 24)²

On solving this equation, we find k = 4/25 N/cm (spring constant)

Now, the work done to stretch the spring for a distance of x beyond its natural length is given by the equation: W = (1/2) k (x²)

Given force F = 10 N

Using equation [1], we can write: 10 = (1/2) (4/25) x²

Solving for x², we get x² = 125/2 cm² = 62.5 cm²

Taking the square root, we find x = sqrt(62.5) cm ≈ 7.91 cm

So, the distance stretched beyond the natural length is approximately 7.9 cm.

Work done to stretch the spring from 24 cm to 29 cm = 2.15 J

Distance stretched beyond the natural length when a force of 10 N is applied ≈ 7.9 cm.

Learn more about Work done

https://brainly.com/question/32263955

#SPJ11

the Jacobi method for linear algebraic equation systems, for the following Q: Apply equation system. 92x-3y+z=1 x+y-22=0 22 ty-22

Answers

The Jacobi method is an iterative technique used to solve simultaneous linear equations. This process requires a set of initial approximations and converts the system of equations into matrix form.

Jacobi method is a process used to solve simultaneous linear equations. This method, named after the mathematician Carl Gustav Jacob Jacobi, is an iterative technique requiring initial approximations. The given system of equations is:

92x - 3y + z = 1x + y - 22 = 022ty - 22 = 0

Now, this system still needs to be in the required matrix form. We have to convert this into a matrix form of the equations below. Now, we have,

Ax = B, Where A is the coefficient matrix. We can use this matrix in the formula given below.

X(k+1) = Cx(k) + g

Here, C = - D^-1(L + U), D is the diagonal matrix, L is the lower triangle of A and U is the upper triangle of A. g = D^-1 B.

Let's solve the equation using the above formula.

D =  [[92, 0, 0], [0, 1, 0], [0, 0, 22]]

L = [[0, 3, -1], [-1, 0, 0], [0, 0, 0]]

U = [[0, 0, 0], [0, 0, 22], [0, 0, 0]]

D^-1 = [[1/92, 0, 0], [0, 1, 0], [0, 0, 1/22]]

Now, calculating C and g,

C = - D^-1(L + U)

= [[0, -3/92, 1/92], [1/22, 0, 0], [0, 0, 0]]and

g = D^-1B = [1/92, 22, 1]

Let's assume the initial approximation to be X(0) = [0, 0, 0]. We get the following iteration results using the formula X(k+1) = Cx(k) + g.  

X(1) = [0.01087, -22, 0.04545]X(2)

= [0.0474, 0.0682, 0.04545]X(3)

= [0.00069, -0.01899, 0.00069]

X(4) = [0.00347, 0.00061, 0.00069]

Now, we have to verify whether these results are converging or not. We'll use the formula below to do that.

||X(k+1) - X(k)||/||X(k+1)|| < ε

We can consider ε to be 0.01. Now, let's check if the given results converge or not.

||X(2) - X(1)||/||X(2)||

= 0.4967 > ε||X(3) - X(2)||/||X(3)||

= 1.099 > ε||X(4) - X(3)||/||X(4)||

= 0.4102 > ε

As we can see, the results are not converging within the required ε. Thus, we cannot use this method to solve the equation system. The Jacobi method is an iterative technique used to solve simultaneous linear equations. This process requires a set of initial approximations and converts the system of equations into matrix form.

Then, it uses a formula to obtain the iteration results and checks whether the results converge using a given formula. If the results converge within the required ε, we can consider them the solution. If not, we cannot use this method to solve the given equation system.

To know more about the Jacobi method, visit:

brainly.com/question/32717794

#SPJ11

The function sit) represents the position of an object at time t moving along a line. Suppose s(1) 122 and s(3) 178. Find the average velocity of the object over the interval of time [1.31 me The average velocity over the interval (1.3) is va- (Simplify your answer)

Answers

On average, the object is moving 28 units in one unit of time over this interval. To find the average velocity of the object over the interval of time [1, 3], we use the formula for average velocity, which is the change in position divided by the change in time.

Given that s(1) = 122 and s(3) = 178, we can calculate the change in position as s(3) - s(1) = 178 - 122 = 56. The change in time is 3 - 1 = 2. Therefore, the average velocity over the interval [1, 3] is 56/2 = 28 units per unit of time.

In summary, the average velocity of the object over the interval of time [1, 3] is 28 units per unit of time. This means that, on average, the object is moving 28 units in one unit of time over this interval.

To learn more about average velocity, click here:

brainly.com/question/28512079

#SPJ11

Let a = < -2,-1,2> and b = < -2,2, k>. Find & so that a and b will be orthogonal (form a 90 degree angle). k=

Answers

The value of k that makes a and b orthogonal or form a 90 degree angle is -1. Therefore, k = -1.  Given a = <-2,-1,2> and b = <-2,2,k>

To find the value of k that makes a and b orthogonal or form a 90 degree angle, we need to find the dot product of a and b and equate it to zero. If the dot product is zero, then the angle between the vectors will be 90 degrees.

Dot product is defined as the product of magnitude of two vectors and cosine of the angle between them.

Dot product of a and b is given as, = (a1 * b1) + (a2 * b2) + (a3 * b3)   = (-2 * -2) + (-1 * 2) + (2 * k) = 4 - 2 + 2kOn equating this to zero, we get,4 - 2 + 2k = 02k = -2k = -1

Therefore, the value of k that makes a and b orthogonal or form a 90 degree angle is -1. Therefore, k = -1.

To know more about orthogonal , refer

https://brainly.com/question/30772550

#SPJ11

A particular machine part is subjected in service to a maximum load of 10 kN. With the thought of providing a safety factor of 1.5, it is designed to withstand a load of 15 kN. If the maximum load encountered in various applications is normally distribute with a standard deviation of 2 kN, and if part strength is normally distributed with a standard deviation of 1.5 kN
a) What failure percentage would be expected in service?
b) To what value would the standard deviation of part strength have to be reduced in order to give a failure rate of only 1%, with no other changes?
c) To what value would the nominal part strength have to be increased in order to give a failure rate of only 1%, with no other changes?

Answers

the values of standard deviation of part strength have to be reduced to 2.15 kN, and the nominal part strength has to be increased to 13.495 kN to give a failure rate of only 1%, with no other changes.

a) Failure percentage expected in service:

The machine part is subjected to a maximum load of 10 kN. With the thought of providing a safety factor of 1.5, it is designed to withstand a load of 15 kN.

The maximum load encountered in various applications is normally distributed with a standard deviation of 2 kN.

The part strength is normally distributed with a standard deviation of 1.5 kN.The load that the part is subjected to is random and it is not known in advance. Hence the load is considered a random variable X with mean µX = 10 kN and standard deviation σX = 2 kN.

The strength of the part is also random and is not known in advance. Hence the strength is considered a random variable Y with mean µY and standard deviation σY = 1.5 kN.

Since a safety factor of 1.5 is provided, the part can withstand a maximum load of 15 kN without failure.i.e. if X ≤ 15, then the part will not fail.

The probability of failure can be computed as:P(X > 15) = P(Z > (15 - 10) / 2) = P(Z > 2.5)

where Z is the standard normal distribution.

The standard normal distribution table shows that P(Z > 2.5) = 0.0062.

Failure percentage = 0.0062 x 100% = 0.62%b)

To give a failure rate of only 1%:P(X > 15) = P(Z > (15 - µX) / σX) = 0.01i.e. P(Z > (15 - 10) / σX) = 0.01P(Z > 2.5) = 0.01From the standard normal distribution table, the corresponding value of Z is 2.33.(approx)

Hence, 2.33 = (15 - 10) / σXσX = (15 - 10) / 2.33σX = 2.15 kN(To reduce the standard deviation of part strength, σY from 1.5 kN to 2.15 kN, it has to be increased in size)c)

To give a failure rate of only 1%:P(X > 15) = P(Z > (15 - µX) / σX) = 0.01i.e. P(Z > (15 - 10) / 2) = 0.01From the standard normal distribution table, the corresponding value of Z is 2.33.(approx)

Hence, 2.33 = (Y - 10) / 1.5Y - 10 = 2.33 x 1.5Y - 10 = 3.495Y = 13.495 kN(To increase the nominal part strength, µY from µY to 13.495 kN, it has to be increased in size)

Therefore, the values of standard deviation of part strength have to be reduced to 2.15 kN, and the nominal part strength has to be increased to 13.495 kN to give a failure rate of only 1%, with no other changes.

learn more about standard deviation here

https://brainly.com/question/475676

#SPJ11

The function f(x) satisfies f(1) = 5, f(3) = 7, and f(5) = 9. Let P2(x) be LAGRANGE interpolation polynomial of degree 2 which passes through the given points on the graph of f(x). Choose the correct formula of L2,1(x). Select one: OL2,1 (x) = (x-3)(x-5) (1-3)(1-5) (x-1)(x-5) OL₂,1(x) = (3-1)(3-5) (x-1)(x-3) O L2,1 (x) = (5-1)(5-3) (x-3)(x-5) O L2.1(x) = (1-3)(5-3)

Answers

To find the correct formula for L2,1(x), we need to determine the Lagrange interpolation polynomial that passes through the given points (1, 5), (3, 7), and (5, 9).

The formula for Lagrange interpolation polynomial of degree 2 is given by:

[tex]\[ L2,1(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} \cdot y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} \cdot y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} \cdot y_3 \][/tex]

where [tex](x_i, y_i)[/tex] are the given points.

Substituting the given values, we have:

[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{(1-3)(1-5)} \cdot 5 + \frac{(x-1)(x-5)}{(3-1)(3-5)} \cdot 7 + \frac{(x-1)(x-3)}{(5-1)(5-3)} \cdot 9 \][/tex]

Simplifying the expression further, we get:

[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{8} \cdot 5 - \frac{(x-1)(x-5)}{4} \cdot 7 + \frac{(x-1)(x-3)}{8} \cdot 9 \][/tex]

Therefore, the correct formula for L2,1(x) is:

[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{8} \cdot 5 - \frac{(x-1)(x-5)}{4} \cdot 7 + \frac{(x-1)(x-3)}{8} \cdot 9 \][/tex]

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11

Find the exact length of the curve.
x = 1 + 3t2, y = 4 + 2t3, 0 ≤ t ≤ 1

Answers

The value of the exact length of the curve is 4 units.

The equations of the curve:x = 1 + 3t², y = 4 + 2t³, 0 ≤ t ≤ 1.

We have to find the exact length of the curve.To find the length of the curve, we use the formula:∫₀¹ √[dx/dt² + dy/dt²] dt.

Firstly, we need to find dx/dt and dy/dt.

Differentiating x and y w.r.t. t we get,

dx/dt = 6t and dy/dt = 6t².

Now, using the formula:

∫₀¹ √[dx/dt² + dy/dt²] dt.∫₀¹ √[36t² + 36t⁴] dt.6∫₀¹ t² √[1 + t²] dt.

Let, t = tanθ then, dt = sec²θ dθ.

Now, when t = 0, θ = 0, and when t = 1, θ = π/4.∴

Length of the curve= 6∫₀¹ t² √[1 + t²] dt.= 6∫₀^π/4 tan²θ sec³θ

dθ= 6∫₀^π/4 sin²θ/cosθ (1/cos²θ)

dθ= 6∫₀^π/4 (sin²θ/cos³θ

) dθ= 6[(-cosθ/sinθ) - (1/3)(cos³θ/sinθ)]

from θ = 0 to π/4= 6[(1/3) + (1/3)]= 4 units.

Learn more about function at

https://brainly.com/question/13501663

#SPJ11

A random variable X has the cumulative distribution function given as
F (x) =
8><>:
0; for x < 1
x2 − 2x + 2
2 ; for 1 ≤ x < 2
1; for x ≥ 2
Calculate the variance of X

Answers

The value of the variance is:

[tex]Var(X) = (x^4/4 - x^3/3 + C) - [(x^3/3 - x^2/2 + C)]^2[/tex]

We have,

To calculate the variance of the random variable X using the given cumulative distribution function (CDF), we need to determine the probability density function (PDF) first. We can obtain the PDF by differentiating the CDF.

Given the CDF:

F(x) = 0, for x < 1

F(x) = (x² - 2x + 2)/2, for 1 ≤ x < 2

F(x) = 1, for x ≥ 2

To find the PDF f(x), we differentiate the CDF with respect to x in the appropriate intervals:

For 1 ≤ x < 2:

f(x) = d/dx[(x² - 2x + 2)/2]

= (2x - 2)/2

= x - 1

For x ≥ 2:

f(x) = d/dx[1]

= 0

Now, we have the PDF f(x) as:

f(x) = x - 1, for 1 ≤ x < 2

0, for x ≥ 2

To calculate the variance, we need the expected value E(X) and the expected value of X squared E(X²).

Let's calculate these values:

Expected value E(X):

E(X) = ∫[x * f(x)] dx

= ∫[x * (x - 1)] dx, for 1 ≤ x < 2

= ∫[x² - x] dx

= (x³/3 - x²/2) + C, for 1 ≤ x < 2

= x³/3 - x²/2 + C

The expected value of X squared E(X²):

E(X²) = ∫[x² * f(x)] dx

= ∫[x² * (x - 1)] dx, for 1 ≤ x < 2

= ∫[x³ - x²] dx

= ([tex]x^4[/tex]/4 - x³/3) + C, for 1 ≤ x < 2

= [tex]x^4[/tex]/4 - x³/3 + C

Now, we can calculate the variance Var(X) using the formula:

Var(X) = E(X²) - [E(X)]²

Substituting the expressions for E(X) and E(X²) into the variance formula, we get:

[tex]Var(X) = (x^4/4 - x^3/3 + C) - [(x^3/3 - x^2/2 + C)]^2[/tex]

Thus,

The value of the variance is:

[tex]Var(X) = (x^4/4 - x^3/3 + C) - [(x^3/3 - x^2/2 + C)]^2[/tex]

Learn more about variance here:

https://brainly.com/question/29810021

#SPJ4

The complete question:

Question: Calculate the variance of a random variable X with a cumulative distribution function (CDF) given as:

F(x) = 0, for x < 1

F(x) = (x^2 - 2x + 2)/2, for 1 ≤ x < 2

F(x) = 1, for x ≥ 2

Show the step-by-step calculation of the variance.

A vector y = [R(t) F(t)] describes the populations of some rabbits R(t) and foxes F(t). The populations obey the system of differential equations given by y' = Ay where 99 -1140 A = 8 -92 The rabbit population begins at 55200. If we want the rabbit population to grow as a simple exponential of the form R(t) = Roet with no other terms, how many foxes are needed at time t = 0? (Note that the eigenvalues of A are λ = 4 and 3.) Problem #3:

Answers

We need the eigenvalue corresponding to the rabbit population, λ = 4, to be the dominant eigenvalue.At time t = 0, there should be 0 foxes (F₀ = 0) in order for the rabbit population to grow as a simple exponential.

In the given system, the eigenvalues of matrix A are λ = 4 and 3. Since λ = 4 is the dominant eigenvalue, it corresponds to the rabbit population growth. To determine the number of foxes needed at time t = 0, we need to find the corresponding eigenvector for the eigenvalue λ = 4. Let's denote the eigenvector for λ = 4 as v = [R₀ F₀].

By solving the equation Av = λv, where A is the coefficient matrix, we get [4 -92; -1140 3] * [R₀; F₀] = 4 * [R₀; F₀]. Simplifying this equation, we obtain 4R₀ - 92F₀ = 4R₀ and -1140R₀ + 3F₀ = 4F₀.

From the first equation, we have -92F₀ = 0, which implies F₀ = 0. Therefore, at time t = 0, there should be 0 foxes (F₀ = 0) in order for the rabbit population to grow as a simple exponential.

To learn more about dominant eigenvalue click here : brainly.com/question/31391960

#SPJ11

Please answer the image attached

Answers

Answer:

(1) - Upside-down parabola

(2) - x=0 and x=150

(3) - A negative, "-"

(4) - y=-1/375(x–75)²+15

(5) - y≈8.33 yards

Step-by-step explanation:

(1) - What shape does the flight of the ball take?

The flight path of the ball forms the shape of an upside-down parabola.

[tex]\hrulefill[/tex]

(2) - What are the zeros (x-intercepts) of the function?

The zeros (also known as x-intercepts or roots) of a function are the points where the graph of the function intersects the x-axis. At these points, the value of the function is zero.

Thus, we can conclude that the zeros of the given function are 0 and 150.

[tex]\hrulefill[/tex]

(3) - What would be the sign of the leading coefficient "a?"

In a quadratic function of the form f(x) = ax²+bx+c, the coefficient "a" determines the orientation of the parabola.

If "a" is positive, the parabola opens upward. This is because as x moves further away from the vertex of the parabola, the value of the function increases.If "a" is negative, the parabola opens downward. This is because as x moves further away from the vertex, the value of the function decreases.

Therefore, the sign would be "-" (negative), as this would open the parabola downwards.

[tex]\hrulefill[/tex]

(4) - Write the function

Using the following form of a parabola to determine the proper function,

y=a(x–h)²+k

Where:

(h,k) is the vertex of the parabolaa is the leading coefficient we can find using another point

We know "a" has to be negative so,

=> y=-a(x–h)²+k

The vertex of the given parabola is (75,15). Plugging this in we get,

=> y=-a( x–75)²+15

Use the point (0,0) to find the value of a.

=> y=-a(x–75)²+15

=> 0=-a(0–75)²+15

=> 0=-a(–75)²+15

=> 0=-5625a+15

=> -15=-5625a

a=1/375

Thus, the equation of the given parabola is written as...

y=-1/375(x–75)²+15

[tex]\hrulefill[/tex]

(5) -  What is the height of the ball when it has traveled horizontally 125 yards?

Substitute in x=125 and solve for y.

y=-1/375(x–75)²+15

=> y=-1/375(125–75)²+15

=> y=-1/375(50)²+15

=> y=-2500/375+15

=> y=-20/3+15

=> y=25/3

y≈8.33 yards

Find the solution of the system of equations: 71 +37₂ +274 = 5 Is-14 211 +672-13 + 5 = 6

Answers

The given system of equations is:

71 + 37₂ + 274 = 5

Is-14 211 + 672-13 + 5 = 6

To find the solution of the given system of equations, we'll need to solve the equation pair by pair, and we will get the values of the variables.

So, the given system of equations can be solved as:

71 + 37₂ + 274 = 5

Is-14 71 + 37₂ = 5

Is - 274

On adding -274 to both sides, we get

71 + 37₂ - 274 = 5

Is - 274 - 27471 + 37₂ - 274 = 5

Is - 54871 + 37₂ - 274 + 548 = 5

IsTherefore, the value of Is is:

71 + 37₂ + 274 = 5

Is-147 + 211 + 672-13 + 5 = 6

On simplifying the second equation, we get:

724 + 672-13 = 6

On adding 13 to both sides, we get:

724 + 672 = 6 + 1372

Isolating 37₂ in the first equation:

71 + 37₂ = 5

Is - 27437₂ = 5

Is - 274 - 71

Substituting the value of Is as 736, we get:

37₂ = 5 × 736 - 274 - 71

37₂ = 321

Therefore, the solution of the given system of equations is:

Is = 736 and 37₂ = 321.

To know more about  value  visit:

https://brainly.com/question/30145972

#SPJ11

100 POINTS AND BRAINLIEST FOR CORRECT ANSWERS.

Answers

Answer:

Step-by-step explanation:

(1) T(x, y) = (x+3, y-2)

going to the right is x directions and that right means it's +

going down means y direction and down means -

(2) F(x,y) = (-x, y)

When a point goes across the y-axis only x changes

(3) R(x,y) = (-y,x)

When you draw the point to origin and rotate that point 90 degrees

(B)  In algebra you have something that is unsolved and you use equations that describe lines.  For part A, you are using a cartesian plane and are moving your points around.

(C)For S(x,y)

First R(x,y)= (-x,-y)                 >This is rotation 180°

Then T(-x, -y) = (-x-6, -y)         >This is for 6 left

Last F(-x-6, -y) = (-y, -x-6)            >this is for reflection over y=x

S(x,y) = = (-y, -x-6)

Answer:

[tex]\textsf{A-1)} \quad T(x, y)=(x+3,y-2)[/tex]

[tex]\textsf{A-2)} \quad F(x, y) = (-x, y)[/tex]

[tex]\textsf{A-3)} \quad R(x, y) = (-y,x)[/tex]

[tex]\textsf{B)}\quad \rm See\; below.[/tex]

[tex]\textsf{C)} \quad S(x,y)=(-y, -x - 6)[/tex]

Step-by-step explanation:

Part A: Question 1

When a point (x, y) is translated n units right, we add n to the x-value.

When a point (x, y) is translated n units down, we subtract n from the y-value.

Therefore, the function to represent the point (x, y) being translated 3 units right and 2 units down is:

[tex]\boxed{T(x, y)=(x+3,y-2)}[/tex]

[tex]\hrulefill[/tex]

Part A: Question 2

When a point (x, y) is reflected across the y-axis, the y-coordinate remain the same, but the x-coordinate is negated.

Therefore, the mapping rule for this transformation is:

[tex]\boxed{F(x, y) = (-x, y)}[/tex]

[tex]\hrulefill[/tex]

Part A: Question 3

When a point (x, y) is rotated 90° counterclockwise about the origin (0, 0), swap the roles of the x and y coordinates while negating the new x-coordinate.

Therefore, the mapping rule for this transformation is:

[tex]\boxed{R(x, y) = (-y,x)}[/tex]

[tex]\hrulefill[/tex]

Part B

Functions that work with Cartesian points (x, y), such as f(x, y), are different from algebraic functions, like f(x), because they accept two input values (x and y) instead of just one, and produce an output based on their relationship.

While functions such as f(x) deal with one variable at a time, functions with two variables allow for more complex mappings and transformations in two-dimensional Cartesian coordinate systems. They are useful when you need to figure out how points relate to each other in a two-dimensional space.

[tex]\hrulefill[/tex]

Part C

To write a function S to represent the sequence of transformations applied to the point (x, y), we need to consider each transformation separately.

The first transformation is a rotation of 180° clockwise about the origin.

If point (x, y) is rotated 180° clockwise about the origin, the new coordinates of the point become (-x, -y).

Therefore, the coordinates of the point after the first transformation are:

[tex](-x, -y)[/tex]

The second transformation is a translation of 6 units left.

If a point is translated 6 units to the left, subtract 6 from its x-coordinate.

Therefore, the coordinates of the point after the second transformation are:

[tex](-x - 6, -y)[/tex]

Finally, the third transformation is a reflection across the line y = x.  

To reflect a point across the line y = x, swap its x and y coordinates.

Therefore, the coordinates of the point after the third transformation are:

[tex](-y, -x - 6)[/tex]

Therefore, the mapping rule for the sequence of transformations is:

[tex]\boxed{S(x, y) =(-y, -x - 6)}[/tex]

Differentiate. 1) y = 42 ex 2) y = 4x²+9 3) y = (ex³ - 3) 5

Answers

1) The derivative is 8x[tex]e^{x^2[/tex]

2) The derivative is [[tex]e^x[/tex](4[tex]x^2[/tex]+9-8x)] / [tex](4x^2+9)^2[/tex]

3) The derivative is 15[tex]x^{2}[/tex] * [tex]e^{x^3[/tex] * [tex][e^{x^3} - 3]^4[/tex]

1)To differentiate y = 4[tex]e^{x^2[/tex], we can use the chain rule. The derivative is given by:

dy/dx = 4 * d/dx ([tex]e^{x^2[/tex])

To differentiate [tex]e^{x^2[/tex], we can treat it as a composition of functions: [tex]e^u[/tex]where u = [tex]x^{2}[/tex].

Using the chain rule, d/dx ([tex]e^{x^2[/tex]) = [tex]e^{x^2[/tex] * d/dx ([tex]x^{2}[/tex])

The derivative of [tex]x^{2}[/tex] with respect to x is 2x. Therefore, we have:

d/dx ([tex]e^{x^2[/tex]) = [tex]e^{x^2[/tex] * 2x

Finally, substituting this back into the original expression, we get:

dy/dx = 4 * [tex]e^{x^2[/tex] * 2x

Simplifying further, the derivative is:

dy/dx = 8x[tex]e^{x^2[/tex]

2) To differentiate y = [tex]e^x[/tex]/(4[tex]x^{2}[/tex]+9), we can use the quotient rule. The derivative is given by:

dy/dx = [(4[tex]x^{2}[/tex]+9)d([tex]e^x[/tex]) - ([tex]e^x[/tex])d(4[tex]x^{2}[/tex]+9)] / [tex](4x^2+9)^2[/tex]

Differentiating [tex]e^x[/tex] with respect to x gives d([tex]e^x[/tex])/dx = [tex]e^x[/tex].

Differentiating 4[tex]x^{2}[/tex]+9 with respect to x gives d(4[tex]x^{2}[/tex]+9)/dx = 8x.

Substituting these values into the derivative expression, we have:

dy/dx = [(4[tex]x^{2}[/tex]+9)[tex]e^x[/tex] - ([tex]e^x[/tex])(8x)] / (4x^2+9)^2

Simplifying further, the derivative is:

dy/dx = [[tex]e^x[/tex](4[tex]x^{2}[/tex]+9-8x)] / [tex](4x^2+9)^2[/tex]

3) To differentiate y = [tex][e^{x^3} - 3]^5[/tex], we can use the chain rule. The derivative is given by:

dy/dx = 5 * [tex][e^{x^3} - 3]^4[/tex] * d/dx ([tex]e^{x^3[/tex] - 3)

To differentiate [tex]e^{x^3}[/tex] - 3, we can treat it as a composition of functions: [tex]e^u[/tex] - 3 where u = [tex]x^3[/tex].

Using the chain rule, d/dx ([tex]e^{x^3[/tex] - 3) = d/dx ([tex]e^u[/tex] - 3)

The derivative of [tex]e^u[/tex] with respect to u is [tex]e^u[/tex]. Therefore, we have:

d/dx ([tex]e^{x^3[/tex] - 3) = 3[tex]x^{2}[/tex] * [tex]e^{x^3[/tex]

Finally, substituting this back into the original expression, we get:

dy/dx = 5 * [tex][e^{x^3} - 3]^4[/tex] * 3[tex]x^{2}[/tex] * [tex]e^{x^3}[/tex]

Simplifying further, the derivative is:

dy/dx = 15[tex]x^{2}[/tex] * [tex]e^{x^3[/tex] * [tex][e^{x^3} - 3]^4[/tex]

To learn more about derivative here:

https://brainly.com/question/29020856

#SPJ4

Determine the particular solution of the equation: ²y+3+2y = 10cos (2x) satisfying the initial conditions dy dx² dx y(0) = 1, y'(0) = 0.

Answers

The particular solution of the given differential equation y²+3+2y = 10cos (2x)satisfying the initial conditions y(0) = 1 and y'(0) = 0 is: [tex]y_p[/tex] = -cos(2x) - 5*sin(2x)

To determine the particular solution of the equation y²+3+2y = 10cos (2x) with initial conditions dy dx² dx y(0) = 1 and y'(0) = 0, we can solve the differential equation using standard techniques.

The resulting particular solution will satisfy the given initial conditions.

The given equation is a second-order linear homogeneous differential equation.

To solve this equation, we can assume a particular solution of the form

[tex]y_p[/tex] = Acos(2x) + Bsin(2x), where A and B are constants to be determined.

Taking the first and second derivatives of y_p, we find:

[tex]y_p'[/tex] = -2Asin(2x) + 2Bcos(2x)

[tex]y_p''[/tex] = -4Acos(2x) - 4Bsin(2x)

Substituting y_p and its derivatives into the original differential equation, we get:

(-4Acos(2x) - 4Bsin(2x)) + 3*(Acos(2x) + Bsin(2x)) + 2*(Acos(2x) + Bsin(2x)) = 10*cos(2x)

Simplifying the equation, we have:

(-A + 5B)*cos(2x) + (5A + B)sin(2x) = 10cos(2x)

For this equation to hold true for all x, the coefficients of cos(2x) and sin(2x) must be equal on both sides.

Therefore, we have the following system of equations:

-A + 5B = 10

5A + B = 0

Solving this system of equations, we find A = -1 and B = -5.

Hence, the particular solution of the given differential equation satisfying the initial conditions y(0) = 1 and y'(0) = 0 is:

[tex]y_p[/tex] = -cos(2x) - 5*sin(2x)

Learn more about Derivatives here:

https://brainly.com/question/30401596

#SPJ11

Prove, algebraically, that the following equations are polynomial identities. Show all of your work and explain each step. Use the Rubric as a reference for what is expected for each problem. (4x+6y)(x-2y)=2(2x²-xy-6y

Answers

Using FOIL method, expanding the left-hand side of the equation, and simplifying it:

4x² - 2xy - 12y² = 4x² - 2xy - 12y

Since the left-hand side of the equation is equal to the right-hand side, the given equation is a polynomial identity.

To prove that the following equation is polynomial identities algebraically, we will use the FOIL method to expand the left-hand side of the equation and then simplify it.

So, let's get started:

(4x + 6y) (x - 2y) = 2 (2x² - xy - 6y)

Firstly, we'll multiply the first terms of each binomial, i.e., 4x × x which equals to 4x².

Next, we'll multiply the two terms present in the outer side of each binomial, i.e., 4x and -2y which gives us -8xy.

In the third step, we will multiply the two terms present in the inner side of each binomial, i.e., 6y and x which equals to 6xy.

In the fourth step, we will multiply the last terms of each binomial, i.e., 6y and -2y which equals to -12y².

Now, we will add up all the results of the terms we got:

4x² - 8xy + 6xy - 12y² = 2 (2x² - xy - 6y)

Simplifying the left-hand side of the equation further:

4x² - 2xy - 12y² = 2 (2x² - xy - 6y)

Next, we will multiply the 2 outside of the parentheses on the right-hand side by each of the terms inside the parentheses:

4x² - 2xy - 12y² = 4x² - 2xy - 12y

Thus, the left-hand side of the equation is equal to the right-hand side of the equation, and hence, the given equation is a polynomial identity.

To recap:

Given equation: (4x + 6y) (x - 2y) = 2 (2x² - xy - 6y)

Using FOIL method, expanding the left-hand side of the equation, and simplifying it:

4x² - 2xy - 12y² = 4x² - 2xy - 12y

Since the left-hand side of the equation is equal to the right-hand side, the given equation is a polynomial identity.

To know more about FOIL method visit:

https://brainly.com/question/29022127

#SPJ11

give me example on the graph of the ring R (since R is a ring not equal Zn ) on the Singular ideal Z(R) ;(such that the vertex a & b are adjacent in the graph if ( ab) belong to Z(R). with explanation the set of singular ideal of R .

Answers

Here's an example of the graph of the ring R on the Singular ideal Z(R) where the vertex a & b are adjacent in the graph if ( ab) belongs to Z(R).

A singular ideal is a right ideal in which each element of the ideal is a singular element. An element r in a right R-module M is said to be singular if the map x -> xr, from M to itself, is not injective.Let R be the ring of 2 by 2 matrices over a field k.

Let e11, e12, e21, e22 denote the standard matrix units in R. Then e11R, e12R, e21R, and e22R are the maximal right ideals in R. Let us assume that k has more than 2 elements.

Then 0 is singular in the R-module R, because the map x -> 0x is not injective. If r is a nonzero scalar in k, then r is a nonsingular element in R, because the map x -> rx is an isomorphism from R to itself. If r is a nonzero element in R, then r is singular if and only if r is a multiple of e11 + e22.

Example of the graph of the ring R on the Singular ideal Z(R) where the vertex a & b are adjacent in the graph if (ab) belongs to Z(R):The graph is made up of two connected components: a 2-cycle and a 4-cycle. The 2-cycle has vertices e11R and e22R, while the 4-cycle has vertices e12R, e21R, (e12 + e21)R, and (e21 + e12)R.

learn more about standard matrix

https://brainly.com/question/14273985

#SPJ11

Evaluate the following integrals a) [₁²2 2x² √√x³+1 dx ) [si b) sin î cos î dî

Answers

a) The integral of 2x²√√x³+1 dx from 1 to 2 is approximately 8.72.

b) The integral of sin(î)cos(î) dî is equal to -(1/2)cos²(î) + C, where C is the constant of integration.

a.To evaluate the integral, we can use the power rule and the u-substitution method. By applying the power rule to the term 2x², we obtain (2/3)x³. For the term √√x³+1, we can rewrite it as (x³+1)^(1/4). Applying the power rule again, we get (4/5)(x³+1)^(5/4). To evaluate the integral, we substitute the upper limit (2) into the expression and subtract the result of substituting the lower limit (1). After performing the calculations, we find that the value of the integral is approximately 8.72.

b. This integral involves the product of sine and cosine functions. To evaluate it, we can use the trigonometric identity sin(2θ) = 2sin(θ)cos(θ). Rearranging this identity, we have sin(θ)cos(θ) = (1/2)sin(2θ). Applying this identity to the integral, we can rewrite it as (1/2)∫sin(2î)dî. Integrating sin(2î) with respect to î gives -(1/2)cos(2î) + C, where C is the constant of integration. However, since the original integral is sin(î)cos(î), we substitute back î/2 for 2î, yielding -(1/2)cos(î) + C. Therefore, the integral of sin(î)cos(î) dî is -(1/2)cos²(î) + C.

Learn more about integral here: brainly.com/question/31059545

#SPJ11

¿Cuál de los siguientes sistemas tiene un número infinito de soluciones?

A.
7x–3y=0;8x–2y=19
B.
15x–9y=30;5x–3y=10
C.
45x–10y=90;9x–2y=15
D.
100x–0.4y=32;25x–2.9y=3

Answers

The system with an infinite number of solutions is given as follows:

B. 15x–9y=30;5x–3y=10

How to define a linear function?

The slope-intercept equation for a linear function is presented as follows:

y = mx + b

In which:

m is the slope.b is the intercept.

For a system of linear functions, they are going to have an infinite number of solutions when the two equations are multiples, as in the simplified slope-intercept format, they will have the same slope and the same intercept.

Hence the system with an infinite number of solutions is given as follows:

B. 15x–9y=30;5x–3y=10

More can be learned about linear functions at https://brainly.com/question/15602982

#SPJ1

THIS IS DUE TOMORROW PLEASE HELP ME. It's attached down below.

Answers

Answer:

85kg

Step-by-step explanation:

8.
Find the volume of the figure. Round to the nearest hundredth when necessary.
17 mm
12 mm
12 mm
12 mm

Answers

To find the volume of the figure, we need to multiply the length, width, and height of the figure.

Length: 17 mm
Width: 12 mm
Height: 12 mm

Volume = Length × Width × Height

Volume = 17 mm × 12 mm × 12 mm

Volume = 2448 mm³

Therefore, the volume of the figure is 2448 cubic millimeters.

For a polynomial d(x), the value of d(-2) is 5. Which c the following must be true of d(x) ? A. The remainder when d(x) is divided by x + 2 is 5. B. x+5 is a factor of d(x) C. x-5 is a factor of d(x) D. x + 3 is a factor of d(x)

Answers

None of the given options is true of d(x).Hence, the correct answer is None of the given options is true of d(x).

Given, For a polynomial d(x), the value of d(-2) is 5. We need to determine which of the following must be true of d(x) among the given options .A.

The remainder when d(x) is divided by x + 2 is 5. B. x+5 is a factor of d(x) C. x-5 is a factor of d(x) D. x + 3 is a factor of d(x)We know that if a is a zero of a polynomial then x-a is a factor of the polynomial.

Using the factor theorem, if x-a is a factor of a polynomial p(x), then p(a)=0.(1) For a polynomial d(x), the value of d(-2) is 5.Given that d(-2) = 5Since d(-2) = 5 is not equal to 0, therefore x + 2 is not a factor of d(x).So, the option (A) is not true.(2) For a polynomial d(x), the value of d(-2) is 5.

Given that d(-2) = 5We don't know if x + 5 is a factor of d(x).

Therefore, the option (B) is not true.(3) For a polynomial d(x), the value of d(-2) is 5.Given that d(-2) = 5We don't know if x - 5 is a factor of d(x).Therefore, the option (C) is not true.(4) For a polynomial d(x), the value of d(-2) is 5.Given that d(-2) = 5Since x + 3 is not a factor of d(x), therefore d(-3) is not equal to 0. Hence, x+3 is not a factor of d(x).So, the option (D) is not true.

Therefore, None of the given options is true of d(x).Hence, the correct answer is None of the given options is true of d(x).

to know more about factor theorem visit :

https://brainly.com/question/30242304

#SPJ11

Consider the initial value problem y(t)-y(t) +21³-2=0, y(0) = 1. Use a single application of the improved Euler method (Runge-Kutta method I) with step-size h = 0.2 h Yn+1=Yn+ +k(n)), where f(tn, yn), J(In+1: Un + hk()), to find numerical approximation to the solution at t = 0.2. [5]

Answers

Using the improved Euler method (Runge-Kutta method I) with a step-size of h = 0.2, we can approximate the solution to the initial value problem y(t) - y(t) + 21³ - 2 = 0, y(0) = 1 at t = 0.2.

To apply the improved Euler method, we first divide the interval [0, 0.2] into subintervals with a step-size of h = 0.2. In this case, we have a single step since the interval is [0, 0.2].

Using the given initial condition y(0) = 1, we can start with the initial value y₀ = 1. Then, we calculate the value of k₁ and k₂ as follows:

k₁ = f(t₀, y₀) = y₀ - y₀ + 21³ - 2 = 21³ - 1,

k₂ = f(t₀ + h, y₀ + hk₁) = y₀ + hk₁ - (y₀ + hk₁) + 21³ - 2.

Next, we use these values to compute the numerical approximation at t = 0.2:

y₁ = y₀ + (k₁ + k₂) / 2 = y₀ + (21³ - 1 + (y₀ + h(21³ - 1 + y₀ - y₀ + 21³ - 2))) / 2.

Substituting the values, we can calculate y₁.

Note that the expression f(t, y) represents the differential equation y(t) - y(t) + 21³ - 2 = 0, and J(In+1: Un + hk()) represents the updated value of the function at the next step.

In this way, by applying the improved Euler method with a step-size of h = 0.2, we obtain a numerical approximation to the solution at t = 0.2.

Learn more about Euler method here:

https://brainly.com/question/30699690

#SPJ11

Which of the following is the logical conclusion to the conditional statements below?

Answers

Answer:

B cause me just use logic

ACME Thingamjigs ltd. produces two types of thingamajigs, Type 1 and Type 2. The demand for equations for these Thingamajigs are 91 = 120-1.5p₁ + P₂ and 92 100+2p1-3p₂ where p₁ and p2 are the prices that ACME sets for Type 1 and Type 2 Thingamajigs, respectively, and q₁ and q₂ are the corresponding weekly demands for these goods. ACME's weekly production cost is given by c= 28q₁ +36g2 +1500. The prices that ACME should set to maximize their weekly profit are pi = [Select] and p = [Select] and their maximum weekly profit is [Select]

Answers

To determine the prices that maximize ACME's weekly profit, we need to set up the profit function and find its maximum point.

The profit function, denoted as Π, is given by:

Π = Revenue - Cost

Revenue = (p₁ * q₁) + (p₂ * q₂)

Cost = 28q₁ + 36q₂ + 1500

Substituting the demand equations into the revenue equation, we have:

Revenue = (120 - 1.5p₁ + p₂) * q₁ + (100 + 2p₁ - 3p₂) * q₂

Now, let's express the profit function in terms of p₁ and p₂:

Π(p₁, p₂) = (120 - 1.5p₁ + p₂) * q₁ + (100 + 2p₁ - 3p₂) * q₂ - (28q₁ + 36q₂ + 1500)

To maximize the profit, we need to find the critical points of the profit function. We can do this by taking partial derivatives with respect to p₁ and p₂ and setting them equal to zero.

∂Π/∂p₁ = -1.5q₁ + 2q₂ = 0

∂Π/∂p₂ = q₁ - 3q₂ = 0

Solving these two equations simultaneously, we find:

q₁ = 4q₂

Now, we can substitute this relationship back into one of the demand equations to find the corresponding prices:

91 = 120 - 1.5p₁ + p₂

92 = 100 + 2p₁ - 3p₂

Substituting q₁ = 4q₂ into the second demand equation, we get:

92 = 100 + 2p₁ - 3(4p₁/4)

92 = 100 + 2p₁ - 3p₁

92 = -p₁

From this, we can determine the prices:

p₁ = -92

Substituting p₁ = -92 into the first demand equation, we find:

91 = 120 - 1.5(-92) + p₂

91 = 120 + 138 + p₂

p₂ = -167

Therefore, the prices that ACME should set to maximize their weekly profit are p₁ = -92 and p₂ = -167, and their maximum weekly profit can be calculated by substituting these prices into the profit function Π(p₁, p₂).

Learn more about profit here:

brainly.com/question/31117493

#SPJ11

if the discriminant of a quadratic is zero determine the number of real solutions

Answers

Answer:

2 real and equal solutions

Step-by-step explanation:

given a quadratic equation in standard form

ax² + bx + c = 0 ( a ≠ 0 )

the discriminant of the quadratic equation is

b² - 4ac

• if b² - 4ac > 0 , the 2 real and irrational solutions

• if b² - 4ac > 0 and a perfect square , then 2 real and rational solutions

• if b² - 4ac = 0 , then 2 real and equal solutions

• if b² - 4ac < 0 , then 2 not real solutions

y" + 2y' = 12t² d. y" - 6y'- 7y=13cos 2t + 34sin 2t eyn

Answers

the solution to the given differential equation is y(t) = C₁ + C₂e^(-2t) + 2t².The given differential equation is:
y" + 2y' = 12t²

To solve this differential equation, we need to find the general solution. The homogeneous equation associated with the given equation is:
y" + 2y' = 0

The characteristic equation for the homogeneous equation is:
r² + 2r = 0

Solving this quadratic equation, we find two roots: r = 0 and r = -2.

Therefore, the general solution of the homogeneous equation is:
y_h(t) = C₁e^(0t) + C₂e^(-2t)
      = C₁ + C₂e^(-2t)

To find the particular solution for the non-homogeneous equation, we can use the method of undetermined coefficients. Since the right-hand side of the equation is in the form of 12t², we assume a particular solution of the form:
y_p(t) = At³ + Bt² + Ct

Differentiating y_p(t) twice and substituting into the equation, we get:
6A + 2B = 12t²

Solving this equation, we find A = 2t² and B = 0.

Therefore, the particular solution is:
y_p(t) = 2t²

The general solution of the non-homogeneous equation is the sum of the homogeneous and particular solutions:
y(t) = y_h(t) + y_p(t)
    = C₁ + C₂e^(-2t) + 2t²

Hence, the solution to the given differential equation is y(t) = C₁ + C₂e^(-2t) + 2t².

 To  learn  more  about equation click here:brainly.com/question/29657983

#SPJ11

Other Questions
Research on laboratory animals indicates that cannabinoids are most effective if taken ____.a. as soon as the stroke occursb. within 20 minutes of the strokec. steadily for one monthd. shortly before the stroke (50 points) Consider a piece of equipment that initially cost $8,000 and has the following estimated annual expenses and MVs: If the after-tax MARR is 7% per year, determine the after-tax economic life of this equipment. MACRS (GDS) depreciation is being used (five-year property class). The effective income tax rate is 25%. Managers must examine each product in terms of how it contributes to overall sales and profits. Products that are responsible for a significant percentage of sales and profits must be carefully monitored and protected. To successfully conduct the task, having an overall understanding of the product mix/ the product portfolio of an organization is essential. By taking an organization as an example, discuss the product mix of a chosen brand by stating its product mix length, product mix width and product mix breadth. Well, I can tell you the exact day. Iand IWhenWell, after Isailor all his life. Heat the age of 171,(be) eleven years old(sit) in the school library and I(read)a book about South Africa. Suddenly I(see) a picture of Lake Victoria and at that moment I(decide) to become an explorer.(you, first, qo) to Lake Victoria?(leave) school at the age of 15, 1(live) with my uncle for two years. He(be) an old man then, but he(be)(find) me a job on a ship and(arrive) in Africa! Door to Door Moving Company is considering purchasing new equipment that costs $700,000. Its management estimates that the equipment will generate cash inflows as follows: The company's annual required rate of return is 8%. Using the factors in the table, calculate the present value of the cath inflows. (Round all calculations to the nearest whole dollar) A. $875,494 B. $888,000 C. $786,000 D. $36,668 Claremont Company sells refurbished copiers. During the month, the company sold 200 copiers for total sales of $680,000. The budget for the month was to sell 195 copiers at an average price of $3,600 The sales price variance for the month was: _________ Major Communications Ltd, a publicly traded company that specializes in data capture, has been in operation for several years. On October 1, 2019, it had 10 million common shares authorized and 1,550,000 shares issued at an average value of $27 per share. As well, there were 1 million preferred shares authorized, with 180,000 of them issued at $14 per share. During the fiscal year ended September 30,2020 , the company generated net income after taxes of $23,620,000 and other comprehensive loss of $4,920,000.0 or October 1, 2019, the balance in Retained Earnings was $21,070,000 and the balance in Accumulated Other Comprehensive income was $1,090,000. The preferred shares pay an annual dividend of $1.20. During the fiscal year 2020 , the following transactions affected shareholders' equity: 1. On November 1,2019,390,000 new common shares were issued at $29 per share. 2. On March 15, 2020, a 5% common stock dividend on the outstanding shares was declared and distributed when the market. price was $41 per share. 3. On September 1, 2020, a dividend of $4.70 per common share was declared. The date of record was September 15.2020, with the date of payment being October 5, 2020 . 4. The preferred dividend for the year was declared and paid. Prepare the statement of changes in shareholders' equity as at September 30. 2020. If velocity = 5, the price level = 2, and the real value of output is 2,500, then the quantity of money is A $250. B $25,000. C D $1,000. $6,250. Find a series representation for f(x) = 1/(x^2 -11x + 24) about a center: x = -2 Why is leadership important at Sygenta? What kind of skills make agood leader? A perpetuity-immediate makes payments of 3 per year, with the first payment occurring one year from now. A perpetuity-due makes payments of X per year, with first payment occurring now. The present values of the two perpetuities are the same. The annual effective discount rate is 5%. Calculate X. A 2.82 B 2.83 C 2.84 D 2.85 E 2.86 How much are you willing to pay for one share of stock if the company just paid an $.80 annual dividend, the dividends increase by 4% annually and you require an 8% rate of return? A. $19.23 B. $20.00 C. $20.40 D. $20.80 E. $21.63 Make-or-Buy, Traditional Analysis Wehner Company is currently manufacturing Part ABS-43, producing 51,200 units annually. The part is used in the production of several products made by Wehner. The cost per unit for ABS-43 is as follows: Direct materials $42.95 Direct labor 10.35 Variable overhead 2.30 Fixed overhead 4.15 Total $59.75 of the total fixed overhead assigned to ABS-43, $13,670 is direct fixed overhead (the annual lease cost of machinery used to manufacture Part ABS-43), and the remainder is common fixed overhead. An outside supplier has offered to sell the part to Wehner for $55.48. There is no alternative use for the facilities currently used to produce the part. No significant non-unit-based overhead costs are incurred. Required: 1. Should Wehner Company make or buy Part ABS-43? Wehner should the part. This will produce total cost savings of $ 2. What is the maximum amount per unit that Wehner would be willing to pay to an outside supplier? ound your answer to the nearest cent. per unit Question 1 page 2 (a) Why does the market segmentation theory fail in explaining facts two and three of the term structure of interest rates? What do you recommend rectifying the problem? (5 marks) (b) Consider the following two bonds with the same yield-to-maturity (YTM) of 6\%: Bond A is a 15-year, 25% coupon bond, and bond B is a 5-year, 5% coupon bond. Calculate the duration measure for both bonds as of now. Which of them has a higher interest rate risk? (5 marks) (c) Investors do not like callable bonds. Why do issuers continue to issue them anyway? (5 marks) Total 15 marks Find the equation of the line tangent to the graph of f(x) = 2 sin (x) at x = 2 3 Give your answer in point-slope form y yo = m(x-xo). You should leave your answer in terms of exact values, not decimal approximations. The following headlines are examples of economics being used as a tool to make a decision. 1. Laws tightened to limit urban sprawt as housing market keeps booming. 2. Low mortgage rates boost home sales. 3. Banks in cut throat competition cut mortgage rates. Which statements are examples of a tool used by a statement, a business, and a government? Statement H1 is an example of using economics to make a decision. Statement #2 is an example of using economics to make a decision. Statement 43 is an example of using economics to make a decision. A. businesses; businesses; a government B. businesses; a government; persons C. businesses; persons; businesses D. a government: persons; businesses E. a government; businesses; businesses Explain how the net income, dividend and retained earning affecting Equity section in Balance Sheet. Summer Company sells a product with a contribution margin ratio of 30%. Fixed costs are $999 per month. What amount of sales (in dollars) must Summer Company have to break even? If each unit sells for $30, how many units must be sold to break even? The higher equivalent burst rate of the neuron in the lower trace was ___________ Hz. (round up to the nearest one thousandth) The two features of the encoded information in the activity of the neuron in the lower trace are ________ with a mean spike rate of ________ Hz; and interburst of both short and long durations. The firing rate of the neuron in the upper trace is________ Hz. Source: http://jn.physiol ogy.org/cgi/content/fulV98/4/1898 FIG. 4. Spontaneous electrical discharge of 2 spiral ganglion cells, 1 from an older P36 (102 dpc) kitten (top trace: sg9 1) and 1 from a P5 (71 dpc) neonatal kitten (bottom trace sg15 14). Twenty-five seconds of data are shown for both animals. Top trace reflects steady near stochastic discharge of a mature SGC. Discharge rate was 88 spikes/s, CVi 0.89, and burst index (B)-0.9. Bottom trace shows prominent bursting periods of the P5 SGC. This cell discharged slowly on average (mean spike rate 1.8 spikes/s) with repeated periods of intense activity separated by long silent periods. Interval coefficient of variation (CV) 4.1, B 8.8. This recording segment showed an equivalent burst rate approaching 10 bursts/min, but over the entire 6-min period, burst rate was much lower (4.1 bursts/min) because there were several very long periods with no activity (data not shown). Max observes the zoo and the library from a helicopter flying at a height of 300 times square root of 3 feet above the ground, as shown below:A helicopter is flying at a height of 300 multiplied by square root of 3 feet above the ground. A zoo and a library are on the ground on the same side of the helicopter. The angle made by the line joining the helicopter and the zoo with the ground is 60 degrees. The angle made by the line joining the helicopter and the library with the ground is 30 degrees.What is the distance between the zoo and the library? (sry about no image pls make own illustration then post under answer)300 ft600 ft900 ft100 ftwill mark brainliest40 pts i think