The mean of four numbers is10. Three of the numbers are10,14 and8. Then find the value of the other number

Answers

Answer 1

If mean of four numbers is10. Three of the numbers are10,14 and8The value of the fourth number is 8.

To find the value of the fourth number, we can use the concept of the mean.

The mean of a set of numbers is calculated by adding up all the numbers and then dividing the sum by the total number of values.

Given that the mean of four numbers is 10 and three of the numbers are 10, 14, and 8, we can substitute these values into the mean formula and solve for the fourth number.

Let's denote the fourth number as "x".

Mean = (Sum of all numbers) / (Total number of values)

10 = (10 + 14 + 8 + x) / 4

Now, let's solve the equation for "x".

Multiply both sides of the equation by 4 to eliminate the denominator:

40 = 10 + 14 + 8 + x

Combine like terms:

40 = 32 + x

Subtract 32 from both sides:

40 - 32 = x

Simplifying:

8 = x

Learn more about value here :-

https://brainly.com/question/30145972

#SPJ11


Related Questions

titus works at a hotel. Part of his job is to keep the complimentary pitcher of water at least half full and always with ice. When he starts his shift, the water level shows 8 gallons, or 128 cups of water. As the shift progresses, he records the level of the water every 10 minutes. After 2 hours, he uses a regression calculator to compute an equation for the decrease in water. His equation is W –0.414t + 129.549, where t is the number of minutes and W is the level of water. According to the equation, after about how many minutes would the water level be less than or equal to 64 cups?

Answers

After approximately 158.38 minutes, or rounding to the nearest minute, after about 158 minutes, the water level would be less than or equal to 64 cups.

To find the number of minutes at which the water level would be less than or equal to 64 cups, we can substitute W = 64 into the equation W = -0.414t + 129.549 and solve for t.

64 = -0.414t + 129.549

Rearranging the equation, we get:

-0.414t = 64 - 129.549

-0.414t = -65.549

Dividing both sides by -0.414, we find:

t = (-65.549) / (-0.414)

t ≈ 158.38

For similar question on nearest minute.

https://brainly.com/question/29132660  

#SPJ8

50 POINTS
Find the geometric probabilty of landing in the shaded area of the picture. The small circle has a diameter of 20 in and the larger circle has a diameter of 48 in. Round to the nearest hundredth place. Show and explain all work.

Answers

The geometric probability of landing in the shaded area is 0.17. This is calculated by finding the ratio of the area of the smaller circle to the area of the larger circle.

Given, the diameter of the small circle is 20 in and the diameter of the larger circle is 48 in. In order to find the geometric probability of landing in the shaded area of the picture, we need to calculate the ratio of the area of the smaller circle to the area of the larger circle.

The area of a circle is given by the formula: [tex]$A = \pir^2$[/tex], where r is the radius of the circle. We know that the diameter of the small circle is 20 in, so the radius is 10 in. Similarly, the diameter of the large circle is 48 in, so the radius is 24 in.

Area of the smaller circle = [tex]\pi(10)^2 = 100\pi in^2[/tex]

Area of the larger circle = [tex]\pi(24)^2 = 576\pi in^2[/tex]

Area of shaded region = Area of the larger circle - Area of the smaller circle = [tex]576\pi-100\pi = 476\pi in^2[/tex]

The probability of landing in the shaded region is the ratio of the area of the smaller circle to the area of the larger circle. Hence, geometric probability = [tex]\frac{100\pi}{576\pi} = 0.17[/tex](rounded to the nearest hundredth place).

Thus, the geometric probability of landing in the shaded area of the picture is 0.17. In summary, the geometric probability of landing in the shaded area of the picture is obtained by calculating the ratio of the area of the smaller circle to the area of the larger circle.

For more questions on probability

https://brainly.com/question/23417919

#SPJ8

The number of gummy worms in a party size bag is normally distributed with an average of 230 and a standard deviation of 18 . What percent of the party size bags have between 194 and 266 gummy worms in them?

Answers

The number of gummy worms in a party size bag is normally distributed with an average of 230 and a standard deviation of 18 . The  percent of the party size bags have between 194 and 266 gummy worms is 95.44%

The question is asking for the percentage of party size bags that have between 194 and 266 gummy worms in them.

To find this percentage, we can use the normal distribution and the given average and standard deviation.

Step 1: Find the z-scores for the lower and upper values.

The lower z-score can be calculated as:
z = (x - μ) / σ
z = (194 - 230) / 18
z = -2

The upper z-score can be calculated as:
z = (x - μ) / σ
z = (266 - 230) / 18
z = 2

Step 2: Use a standard normal distribution table or calculator to find the area under the curve between these two z-scores.

The area between -2 and 2 represents the percentage of party size bags that have between 194 and 266 gummy worms in them.

Using the standard normal distribution table, we find that the area between -2 and 2 is approximately 0.9544.

Step 3: Convert the decimal to a percentage.

0.9544 * 100 = 95.44

Therefore, approximately 95.44% of the party size bags have between 194 and 266 gummy worms in them.

To know more about average refer here:

https://brainly.com/question/24057012

#SPJ11

Showing all working, determine the base 7 expansion of n = ( (2458)9.

Answers

The base 7 expansion of n = ((2458)₉ is (2151)₇.

What is the base 7 representation of ((2458)₉?

To determine the base 7 expansion of the number n = (2458)₉, we need to convert it to base 10 first and then convert it to base 7.

Let's perform the conversion step by step:

Convert from base 9 to base 10.

[tex]n = 2 * 9^3 + 4 * 9^2 + 5 * 9^1 + 8 * 9^0[/tex]

  = 2 * 729 + 4 * 81 + 5 * 9 + 8 * 1

  = 1458 + 324 + 45 + 8

  = 1835

Convert from base 10 to base 7.

To convert 1835 to base 7, we divide it repeatedly by 7 and collect the remainders.

1835 ÷ 7 = 262 remainder 1

262 ÷ 7 = 37 remainder 1

37 ÷ 7 = 5 remainder 2

5 ÷ 7 = 0 remainder 5

Reading the remainders in reverse order, we get (2151)₇ as the base 7 expansion of n.

Therefore, the base 7 expansion of n = (2458)₉ is (2151)₇.

Learn more about base 7

brainly.com/question/32488995

#SPJ11



Find the 95% confidence interval for the population mean or population proportion, and interpret the confidence interval in context.

In a poll of 720 likely voters, 358 indicate they plan to vote for Candidate A.

Answers

The 95% confidence interval for the population proportion of voters who plan to vote for Candidate A is approximately 0.4559 to 0.5385.


To find the 95% confidence interval for the population proportion, we can use the formula:

Confidence Interval = Sample Proportion ± (Z * Standard Error)

where


Z is the Z-score corresponding to the desired level of confidence,


and the Standard Error is calculated as the square root of (Sample Proportion * (1 - Sample Proportion) / Sample Size).

In this case, we have a sample size of 720 and 358 voters who plan to vote for Candidate A. Therefore, the sample proportion is 358/720 = 0.4972.

Now, we need to find the Z-score corresponding to a 95% confidence level. The Z-score for a 95% confidence level is approximately 1.96.

Substituting the values into the formula, we get:

Confidence Interval = 0.4972 ± (1.96 * √(0.4972 * (1 - 0.4972) / 720))

Calculating the expression inside the square root, we have:

√(0.4972 * (1 - 0.4972) / 720) ≈ 0.0211

Substituting this value into the confidence interval formula, we have:

Confidence Interval = 0.4972 ± (1.96 * 0.0211)

Calculating the values, we get:

Confidence Interval ≈ 0.4972 ± 0.0413

Therefore, the 95% confidence interval for the population proportion of voters who plan to vote for Candidate A is approximately 0.4559 to 0.5385.

Interpreting the confidence interval in context, we can say that we are 95% confident that the true proportion of voters who plan to vote for Candidate A in the population lies between approximately 45.59% and 53.85%


. This means that if we were to conduct multiple samples and construct confidence intervals for each sample, about 95% of those intervals would contain the true population proportion.

To know more about confidence interval refer here:

https://brainly.com/question/24131141

#SPJ11

A vase contains 16 roses, 10 carnations, and 14 daisies. Write each ratio in lowest terms using carnations to all flowers

Answers

The ratio of carnations to all flowers in the vase is 1:4.

To find the ratio of carnations to all flowers, we need to compare the number of carnations to the total number of flowers in the vase.

Count the total number of flowers in the vase.

The vase contains 16 roses, 10 carnations, and 14 daisies. Adding these numbers together, we get a total of 40 flowers.

Determine the ratio of carnations to all flowers.

Out of the total 40 flowers, we have 10 carnations. Therefore, the ratio of carnations to all flowers can be expressed as 10:40.

Simplify the ratio to its lowest terms.

To simplify the ratio, we can divide both numbers by their greatest common divisor (GCD), which in this case is 10. Dividing 10 by 10 gives 1, and dividing 40 by 10 gives 4. Hence, the simplified ratio is 1:4.

Learn more about ratio

brainly.com/question/13419413

#SPJ11

Use the substitution t=x−x0 to solve the given differential equation. (x+8) 2y'′ +(x+8)y′+y=0
y(x)=,x>−8

Answers

Without additional information or specific initial/boundary conditions, an explicit solution for [tex]\(y(t + x_0)\)[/tex] in terms of t cannot be obtained.

To solve the given differential equation using the substitution[tex]\(t = x - x_0\),[/tex] we need to find expressions for y, [tex]\(y'\)[/tex], and [tex]\(y''\)[/tex]in terms of t and its derivatives.

First, let's find the derivatives of y with respect to x. We have:

[tex]\[\frac{{dy}}{{dx}} = \frac{{dy}}{{dt}} \cdot \frac{{dt}}{{dx}} = \frac{{dy}}{{dt}}\][/tex]

To find the second derivative, we differentiate again:

[tex]\[\frac{{d^2y}}{{dx^2}} = \frac{{d}}{{dt}} \left(\frac{{dy}}{{dt}}\right) \cdot \frac{{dt}}{{dx}} = \frac{{d}}{{dt}} \left(\frac{{dy}}{{dt}}\right)\][/tex]

Now, let's substitute these expressions into the given differential equation:

[tex]\[(x + 8)^2 \cdot \frac{{d^2y}}{{dx^2}} + (x + 8) \cdot \frac{{dy}}{{dx}} + y = 0\][/tex]

Substituting the derivatives in terms of \(t\):

[tex]\[(x + 8)^2 \cdot \frac{{d}}{{dt}} \left(\frac{{dy}}{{dt}}\right) + (x + 8) \cdot \frac{{dy}}{{dt}} + y = 0\][/tex]

Now, we can replace \(x\) with \(t + x_0\) in the equation:

[tex]\[(t + x_0 + 8)^2 \cdot \frac{{d}}{{dt}} \left(\frac{{dy}}{{dt}}\right) + (t + x_0 + 8) \cdot \frac{{dy}}{{dt}} + y = 0\][/tex]

Since[tex]\(y(x) = y(t + x_0)\),[/tex] we can replace y with [tex]\(y(t + x_0)\)[/tex]in the equation:

[tex]\[(t + x_0 + 8)^2 \cdot \frac{{d}}{{dt}} \left(\frac{{d}}{{dt}} y(t + x_0)\right) + (t + x_0 + 8) \cdot \frac{{d}}{{dt}} y(t + x_0) + y(t + x_0) = 0\][/tex]

This equation can now be simplified further by expanding the derivatives and collecting terms. However, without additional information or specific initial/boundary conditions, it is not possible to obtain an explicit solution for[tex]\(y(t + x_0)\)[/tex] in terms of t.

Learn more about differential equation: https://brainly.com/question/28099315

#SPJ11

A student wants to compute 1.415 x 2.1 but cannot remember the rule she was taught about "counting decimal places," so she cannot use it. On your paper, explain in TWO DIFFERENT WAYS how the student can find the answer to 1.415 x 2.1 by first doing 1415 x 21. Do not use the rule for counting decimal places as one of your methods.

Answers

The student can find the answer to 1.415 x 2.1 by first multiplying 1415 by 21 using two different methods.

The student can use long multiplication to multiply 1415 by 21. They would write the numbers vertically and multiply digit by digit, carrying over any excess to the next column. The resulting product will be 29715.The student can use the distributive property to break down the multiplication into smaller steps. They can multiply 1415 by 20 and 1415 by 1 separately, and then add the two products together. Multiplying 1415 by 20 gives 28300, and multiplying 1415 by 1 gives 1415. Adding these two products together gives the result of 29715.

In both methods, the student obtains the product of 1415 x 21 as 29715. This product represents the result of the original multiplication 1.415 x 2.1 without directly counting the decimal places.

Learn more about long multiplication

brainly.com/question/11947322

#SPJ11



What is the determinant of the matrix?

1 3 -1 1 2 1 -2 -5 -4

F. -8

G. -4

H. 0

I. 4

Answers

The determinant of the given matrix is -4.

To find the determinant of a 3x3 matrix, we can use the formula:

det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)

Using the given matrix:

1 3 -1

1 2 1

-2 -5 -4

We can substitute the values into the determinant formula:

det(A) = 1(2(-4) - 1(-5)) - 3(1(-4) - 1(-2)) - (-1)(1(-5) - 2(-2))

= 1(-8 + 5) - 3(-4 + 2) - (-1)(-5 + 4)

= -3 + 6 - (-1)

= -3 + 6 + 1

= 4

Therefore, the determinant of the given matrix is 4.

In the process, we used the formula for calculating the determinant of a 3x3 matrix. The determinant is found by expanding the matrix along the first row (or any row or column) and evaluating the determinants of the resulting 2x2 matrices, multiplied by their corresponding elements. By performing the calculations as shown above, we obtain a determinant value of 4.

Determinants play a significant role in linear algebra, as they provide important information about the properties of matrices, including invertibility and solvability of systems of linear equations.

Learn more about matrix here:

brainly.com/question/28180105

#SPJ11

Solve the given problem related to population growth. A city had a population of 22,600 in 2007 and a population of 25,800 in 2012 . (a) Find the exponential growth function for the city. Use t=0 to represent 2007. (Round k to five decimal places.) N(t)= (b) Use the arowth function to predict the population of the city in 2022. Round to the nearest hundred.

Answers

The predicted population of the city in 2022 is approximately 34,116 (rounded to the nearest hundred).

To find the exponential growth function for the city's population, we can use the formula:

N(t) = N₀ * e^(kt)

Where N(t) represents the population at time t, N₀ is the initial population, e is the base of the natural logarithm (approximately 2.71828), and k is the growth rate.

Given that the city had a population of 22,600 in 2007 (t = 0) and a population of 25,800 in 2012 (t = 5), we can substitute these values into the formula to obtain two equations:

22,600 = N₀ * e^(k * 0)

25,800 = N₀ * e^(k * 5)

From the first equation, we can see that e^(k * 0) is equal to 1. Therefore, the equation simplifies to:

22,600 = N₀

Substituting this value into the second equation:

25,800 = 22,600 * e^(k * 5)

Dividing both sides by 22,600:

25,800 / 22,600 = e^(k * 5)

Using the natural logarithm (ln) to solve for k:

ln(25,800 / 22,600) = k * 5

Now we can calculate k:

k = ln(25,800 / 22,600) / 5

Using a calculator, we find that k ≈ 0.07031 (rounded to five decimal places).

a) The exponential growth function for the city is:

N(t) = 22,600 * e^(0.07031 * t)

b) To predict the population of the city in 2022 (t = 15), we can substitute t = 15 into the growth function:

N(15) = 22,600 * e^(0.07031 * 15)

Using a calculator, we find that N(15) ≈ 34,116.

Know more about logarithmhere:

https://brainly.com/question/30226560

#SPJ11



Simplify each radical expression. Use absolute value symbols when needed. √36 x²

Answers

To simplify the radical expression √36x², we can apply the properties of radicals. First, we simplify the square root of 36, which is 6. Then, we simplify the square root of x², which is |x|. Therefore, the simplified form of √36x² is 6|x|.

To simplify √36x², we can apply the properties of radicals.

First, we simplify the square root of 36, which is 6. This is because the square root of a perfect square, such as 36, is equal to the square root of the number itself.

Next, we simplify the square root of x². The square root of x² is equal to the absolute value of x, denoted as |x|. This is because the square root eliminates the exponent of 2, and the absolute value ensures that the result is positive regardless of the sign of x.

Therefore, the simplified form of √36x² is 6|x|. It represents the square root of 36 multiplied by the absolute value of x.

Learn more about radical expression here:

brainly.com/question/31923084

#SPJ11

E. Prove the following (quantification) argument is invalid All BITSians are intelligent. Rahul is intelligent. Therefore, Rahul is a BITSian.

Answers

Rahul is a BITSian" is false. This counterexample demonstrates that the argument is invalid because it is possible for Rahul to be intelligent without being a BITSian.

To prove that the given argument is invalid, we need to provide a counterexample that satisfies the premises but does not lead to the conclusion. In this case, we need to find a scenario where Rahul is intelligent but not a BITSian.

Counterexample

Let's consider a scenario where Rahul is a student at a different university, not BITS. In this case, the first premise "All BITSians are intelligent" is not applicable to Rahul since he is not a BITSian. However, the second premise "Rahul is intelligent" still holds true.

Therefore, we have a scenario where both premises are true, but the conclusion Rahul is not a BITSian, as claimed. Rahul can be intelligent without attending BITS, which serves as a counterexample to show the argument's fallacies.

Learn more about counterexample

https://brainly.com/question/88496

#SPJ11

Which Of The Following Statements Are Correct In The Simple CLRM Of One Variable And An Intercept Y=Β1+Β2X+U ? (Choose All Correct Answers) If We Know That Β2^<0 Then Also Β^1&Lt;0. The Sample Correlation Of X And U^ Is Always Zero. The OLS Estimators Of The Regression Coefficients Are Unbiased. The Estimator Of Β2 Is Efficient Because It Has Lower Variance

Answers

The correct statements in the simple classical linear regression model (CLRM) with one variable and an intercept (Y = β1 + β2X + U) are:

1. If we know that β2 < 0, then also β1 < 0.

2. The OLS estimators of the regression coefficients are unbiased.

Let's analyze each statement:

1. If we know that β2 < 0, then also β1 < 0.

  This statement is correct. In the simple CLRM, β1 represents the intercept, and β2 represents the slope coefficient. If the slope coefficient (β2) is negative, it implies that there is a negative relationship between X and Y. Consequently, the intercept (β1) needs to be negative to account for the starting point of the regression line.

2. The OLS estimators of the regression coefficients are unbiased.

  This statement is correct. In the ordinary least squares (OLS) estimation method used in the simple CLRM, the estimators of β1 and β2 are unbiased. This means that, on average, the OLS estimators will be equal to the true population values of the coefficients. The unbiasedness property is a desirable characteristic of the OLS estimators.

The other two statements are incorrect:

3. The sample correlation of X and U^ is always zero.

  This statement is not necessarily true. The error term (U) in the simple CLRM represents the part of the dependent variable (Y) that is not explained by the independent variable (X). The sample correlation between X and the estimated error term (U^) can be different from zero if there is a relationship between X and the unexplained variation in Y.

4. The estimator of β2 is efficient because it has lower variance.

  This statement is incorrect. The efficiency of an estimator refers to its ability to achieve the lowest possible variance among all unbiased estimators. In the simple CLRM, the OLS estimator of β2 is indeed unbiased, but it is not necessarily efficient. Other estimation methods or assumptions may yield more efficient estimators depending on the characteristics of the data and the model.

To summarize, the correct statements are:

- If we know that β2 < 0, then also β1 < 0.

- The OLS estimators of the regression coefficients are unbiased.

Learn more about variance here:brainly.com/question/9304306

#SPJ11

Perform the indicated operation and simplify: (26x+5)−(−4x2−13x+5) A) 4x2−39x B) 4x2+39x C) 4x2+39x−10 D) 4x2+13x+10 E) −4x2+13x+10

Answers

The solution for this question is [tex]A) 4�2−39�4x 2 −39x.[/tex]

To perform the indicated operation and simplify [tex]\((26x+5) - (-4x^2 - 13x + 5)\),[/tex]we distribute the negative sign to each term within the parentheses:

[tex]\((26x + 5) + 4x^2 + 13x - 5\)[/tex]

Now we can combine like terms:

[tex]\(26x + 5 + 4x^2 + 13x - 5\)[/tex]

Combine the[tex]\(x\)[/tex] terms: [tex]\(26x + 13x = 39x\)[/tex]

Combine the constant terms: [tex]\(5 - 5 = 0\)[/tex]

The simplified expression is [tex]\(4x^2 + 39x + 0\),[/tex] which can be further simplified to just [tex]\(4x^2 + 39x\).[/tex]

Therefore, the correct answer is A) [tex]\(4x^2 - 39x\).[/tex]

To know more about Equation related question visit:

https://brainly.com/question/29657983

#SPJ11

Uganda has a population of 32 million adults, of which 24
million own cellular phones. If six Ugandans adults are
randomly selected, what is the probability that exactly three own a
cellular phone?

Answers

The probability that exactly three out of six randomly selected Ugandan adults own a cellular phone is approximately 0.1318, or 13.18%.

Use the binomial probability formula to calculate the probability of exactly three out of six randomly selected Ugandan adults owning a cellular phone:

P(X = k) = [tex](nCk) \times (p^k) \times ((1-p)^{(n-k)})[/tex]

We know that;

n is the total number of trials (in this case, the number of Ugandan adults selected, which is 6)k is the number of successful trials (in this case, the number of adults owning a cellular phone, which is 3)nCk represents the combination of n items taken k at a timep is the probability of a success (in this case, the probability of an adult owning a cellular phone, which is 24 million out of 32 million)

Using the formula, we can calculate the probability as follows:

P(X = 3) = [tex](6C3) \times ((24/32)^3) \times ((1 - 24/32)^{(6-3)})[/tex]

P(X = 3) = [tex](6C3) \times (0.75^3) \times (0.25^3)[/tex]

We can use the formula to calculate the combination (6C3):

nCk = n! / (k! * (n-k)!)

(6C3) = 6! / (3! * (6-3)!)

     = (6 × 5 × 4) / (3 × 2 × 1)

     = 20

Now, substituting the values into the probability formula:

P(X = 3) = [tex]20 \times (0.75^3) \times (0.25^3)[/tex]

         = 20 × 0.421875 × 0.015625

         ≈ 0.1318359375

Therefore, the probability is approximately 0.1318, or 13.18%.

Learn more about probability https://brainly.com/question/31828911

#SPJ11



Suppose two similar rectangles have a scale factor of 3: 5 . The perimeter of the smaller rectangle is 21 millimeters. What is the perimeter of the larger rectangle? Express your answer in millimeters.

Answers

The perimeter of the larger rectangle is 35 millimeters, obtained by multiplying the perimeter of the smaller rectangle (21 millimeters) by the scale factor (5/3).

If the smaller rectangle has a perimeter of 21 millimeters and the scale factor between the smaller and larger rectangles is 3:5, then the perimeter of the larger rectangle can be found by multiplying the perimeter of the smaller rectangle by the scale factor.

The scale factor of 3:5 indicates that the corresponding sides of the smaller rectangle are multiplied by 3, while the corresponding sides of the larger rectangle are multiplied by 5.

Given that the perimeter of the smaller rectangle is 21 millimeters, we can determine the perimeter of the larger rectangle by multiplying the perimeter of the smaller rectangle by the scale factor:

Perimeter of the larger rectangle = Scale factor * Perimeter of the smaller rectangle

= 5/3 * 21

= 35 millimeters

Therefore, the perimeter of the larger rectangle is 35 millimeters, obtained by multiplying the perimeter of the smaller rectangle (21 millimeters) by the scale factor (5/3).

Learn more about perimeter visit:

brainly.com/question/7486523

#SPJ11

how
to rearrange these to get an expression of the form ax^2 + bx + c
=0

Answers

To rearrange the expression to the form [tex]ax^2 + bx + c = 0[/tex], follow these three steps:

Step 1: Collect all the terms with [tex]x^2[/tex] on one side of the equation.

Step 2: Collect all the terms with x on the other side of the equation.

Step 3: Simplify the constant terms on both sides of the equation.

When solving a quadratic equation, it is often helpful to rearrange the expression into the standard form [tex]ax^2 + bx + c = 0[/tex]. This form allows us to easily identify the coefficients a, b, and c, which are essential in finding the solutions.

Step 1: To collect all the terms with x^2 on one side, move all the other terms to the opposite side of the equation using algebraic operations. For example, if there are terms like [tex]3x^2[/tex], 2x, and 5 on the left side of the equation, you would move the 2x and 5 to the right side. After this step, you should have only the terms with x^2 remaining on the left side.

Step 2: Collect all the terms with x on the other side of the equation. Similar to Step 1, move all the terms without x to the opposite side. This will leave you with only the terms containing x on the right side of the equation.

Step 3: Simplify the constant terms on both sides of the equation. Combine any like terms and simplify the expression as much as possible. This step ensures that you have the equation in its simplest form before proceeding with further calculations.

By following these three steps, you will rearrange the given expression into the standard form [tex]ax^2 + bx + c = 0[/tex], which will make it easier to solve the quadratic equation.

Learn more about quadratic equations

brainly.com/question/29269455

#SPJ11



Write the formula to find the sum of the measures of the exterior angles.

Answers

The formula to find the sum of the measures of the exterior angles of a polygon is 360 degrees.

The sum of the measures of the exterior angles of any polygon, regardless of the number of sides it has, is always 360 degrees.

An exterior angle of a polygon is an angle formed by one side of the polygon and the extension of an adjacent side. For example, in a triangle, each exterior angle is formed by one side of the triangle and the extension of the adjacent side.

To find the sum of the measures of the exterior angles, we add up the measures of all the exterior angles of the polygon. The sum will always equal 360 degrees.

This property holds true for polygons of any shape or size. Whether it is a triangle, quadrilateral, pentagon, hexagon, or any other polygon, the sum of the measures of the exterior angles will always be 360 degrees.

Understanding this formula helps us determine the total measure of the exterior angles of a polygon, which can be useful in various geometric calculations and proofs.

Learn more about Polygon

brainly.com/question/17756657

brainly.com/question/28276384

#SPJ11

A plot has a concrete path within its borders on all sides having uniform width of 4m. The plot is rectangular with sides 20m and 15m. Charge of removing concrete is Rs. 6 per sq.m. How much is spent ​

Answers

Rs. 2,856 is spent on removing the concrete path.

We must first determine the path's area in order to determine the cost of removing the concrete.

The plot is rectangular with dimensions 20m and 15m. The concrete path runs along all sides with a uniform width of 4m. This means that the dimensions of the inner rectangle, excluding the path, are 12m (20m - 4m - 4m) and 7m (15m - 4m - 4m).

The area of the inner rectangle is given by:

Area_inner = length * width

Area_inner = 12m * 7m

Area_inner = 84 sq.m

The area of the entire plot, including the concrete path, can be calculated by adding the area of the inner rectangle and the area of the path on all four sides.

The area of the path along the length of the plot is given by:

Area_path_length = length * width_path

Area_path_length = 20m * 4m

Area_path_length = 80 sq.m

The area of the path along the width of the plot is given by:

Area_path_width = width * width_path

Area_path_width = 15m * 4m

Area_path_width = 60 sq.m

Since there are four sides, we multiply the areas of the path by 4:

Total_area_path = 4 * (Area_path_length + Area_path_width)

Total_area_path = 4 * (80 sq.m + 60 sq.m)

Total_area_path = 4 * 140 sq.m

Total_area_path = 560 sq.m

The area spent on removing the concrete is the difference between the total area of the plot and the area of the inner rectangle:

Area_spent = Total_area - Area_inner

Area_spent = 560 sq.m - 84 sq.m

Area_spent = 476 sq.m

The cost of removing concrete is given as Rs. 6 per sq.m. Therefore, the amount spent on removing the concrete path is:

Amount_spent = Area_spent * Cost_per_sqm

Amount_spent = 476 sq.m * Rs. 6/sq.m

Amount_spent = Rs. 2,856

Therefore, Rs. 2,856 is spent on removing the concrete path.

for such more question on amount spent

https://brainly.com/question/17206790

#SPJ8

Lim x →1 x²-3 +2/x-1 ​

Answers

we encounter a division by zero, which is undefined. Therefore, the limit does not exist.

To find the limit of the expression as x approaches 1, we can directly substitute the value of x into the expression, To evaluate the limit of the function as x approaches 1, we can substitute the value of x into the function and simplify it.

lim(x → 1) (x² - 3 + 2/(x - 1))

Plugging in x = 1:

= (1² - 3 + 2/(1 - 1))

= (1 - 3 + 2/0)

At this point, we encounter a division by zero, which is undefined. Therefore, the limit does not exist. The limit of the function as x approaches 1 does not exist.

In other words, the limit of f(x) as x approaches 1 is undefined.

Learn more about division here

https://brainly.com/question/2273245

#SPJ11

I f cos (2π/3+x) = 1/2, find the correct value of x
A. 2π/3
B. 4π/3
C. π/3
D. π

Answers

The correct value of x is B. 4π/3.

To find the correct value of x, we need to solve the given equation cos(2π/3 + x) = 1/2.

Step 1:

Let's apply the inverse cosine function to both sides of the equation to eliminate the cosine function. This gives us:

2π/3 + x = arccos(1/2)

Step 2:

The value of arccos(1/2) can be found using the unit circle or trigonometric identities. Since the cosine function is positive in the first and fourth quadrants, we know that arccos(1/2) has two possible values: π/3 and 5π/3.

Step 3:

Subtracting 2π/3 from both sides of the equation, we have:

x = π/3 - 2π/3 and x = 5π/3 - 2π/3.

Simplifying these expressions, we get:

x = -π/3 and x = π.

Comparing these values with the given options, we see that the correct value of x is B. 4π/3.

Learn more about value

brainly.com/question/30145972

#SPJ11

Verify that the indicated function is an explicit solution of the given differential equation. assume an appropriate interval i of definition for each solution dy/dt 20y=24, y=6/5-6/5e^-20t

Answers

The function y(t) = (6/5) - (6/5) is a valid explicit solution to the differential equation dy/dt = 20y = 24, and it satisfies the equation for the specified interval of definition.

To verify that the function y(t) = (6/5) - (6/5)[tex]e^(-20t)[/tex] is an explicit solution of the differential equation dy/dt = 20y, we need to substitute the function into the differential equation and check if it satisfies the equation.
First, let's find dy/dt using the given function:
dy/dt = d/dt [(6/5) - (6/5)[tex]e^(-20t)[/tex]]
      = 0 + (6/5)(20)[tex]e^(-20t)[/tex] [Applying the chain rule]
      = 24[tex]e^(-20t)[/tex]
Now let's substitute this expression for dy/dt back into the differential equation:
24[tex]e^(-20t)[/tex] = 20[(6/5) - (6/5)e^(-20t)]
We can simplify this equation:
24[tex]e^(-20t)[/tex] = 24 - 24[tex]e^(-20t)[/tex]
Rearranging the equation, we have:
24[tex]e^(-20t)[/tex] + 24[tex]e^(-20t)[/tex] = 24
Combining like terms, we get:
48[tex]e^(-20t)[/tex] = 24
Dividing both sides by 48, we find:
[tex]e^(-20t)[/tex] = 1/2
Taking the natural logarithm of both sides, we have:
-20t = ln(1/2)
Solving for t, we get:
t = (1/20)ln(1/2)
Therefore, the function y(t) = (6/5) - (6/5)[tex]e^(-20t)[/tex]is a valid explicit solution to the differential equation dy/dt = 20y = 24, and it satisfies the equation for the specified interval of definition.

Learn more about differential here:

https://brainly.com/question/31383100

#SPJ11

Which of the following represents the factorization of the trinomial below? x²+7x -30
OA (x-2)(x+15)
O B. (x-3)(x + 10)
C. (x − 3)(x - 10)
D. (x-2)(x - 15)​

Answers

Answer:

the correct option is (B) (x-3)(x+10).

Step-by-step explanation:

To factorize the trinomial x²+7x-30, we need to find two binomials whose product is equal to this trinomial. These binomials will have the form (x+a) and (x+b), where a and b are constants.

To find a and b, we need to look for two numbers whose product is -30 and whose sum is 7. One pair of such numbers is 10 and -3.

Therefore, we can factorize the trinomial as follows:

x²+7x-30 = (x+10)(x-3)

Suppose that 10 % of the time Tucker makes guacamole twice a month, 25 % of the time he makes guacamole once a month, and 65 % of the time
he doesn't make guacamole at all in a given month. What is the expected value for the number of times Tucker makes guacamole during a month?

Answers

The expected value for the number of times Tucker makes guacamole during a month is 0.45.

To calculate the expected value for the number of times Tucker makes guacamole during a month, we need to multiply the probability of each outcome by the number of times he makes guacamole for that outcome and then sum these values.

Let X be the random variable representing the number of times Tucker makes guacamole in a given month. Then we have:

P(X = 0) = 0.65 (probability he doesn't make guacamole at all)

P(X = 1) = 0.25 (probability he makes guacamole once a month)

P(X = 2) = 0.10 (probability he makes guacamole twice a month)

The expected value E(X) is then:

E(X) = 0P(X=0) + 1P(X=1) + 2P(X=2)

= 0.650 + 0.251 + 0.102

= 0.25 + 0.20

= 0.45

Therefore, the expected value for the number of times Tucker makes guacamole during a month is 0.45.

Learn more about  value from

https://brainly.com/question/24305645

#SPJ11

Determine the fugacity and fugacity coefficients of methane
using the Redlich-Kwong equation of state at 300 K and 10 bar.
Write all the assumptions and solutions as well

Answers

The Molar volume is 0.02287 m³mol⁻¹, the value of Fugacity coefficient is 2.170 and the Fugacity is 10.00 bar.

The Redlich-Kwong equation of state for gases is given by the formula:P = R T / (v - b) - a / √T v (v + b)

Where,R = Gas constant (8.314 J mol⁻¹K⁻¹)

T = Temperature (K)

P = Pressure (bar)

√ = Square roota and b are constants that depend on the gas

For methane, a = 3.928 kPa m6 mol⁻², and b = 0.0447 × 10-3 m3 mol⁻¹ at 300 K

We can first calculate the molar volume using the Redlich-Kwong equation:

v = 3 R T / 2P + b - √( (3 R T / 2P + b)2 - 4 (T a / P v)) / 2

P = 10 bar, T = 300 K, a = 3.928 kPa m6 mol⁻², and b = 0.0447 × 10-3 m³ mol⁻¹

At 300 K and 10 bar, the molar volume of methane is:v = 0.02287 m3 mol-1

The fugacity coefficient (φ) is given by the formula:φ = P / P*

where,P = pressure of the real gas (10 bar)

P* = saturation pressure of the gas (pure component)

The fugacity (f) is given by the formula:

f = φ P* ·At 300 K, the saturation pressure of methane is 4.61 bar (from tables).

Therefore, P* = 4.61 bar

φ = 10 bar / 4.61 bar = 2.170

The fugacity of methane at 300 K and 10 bar is:f = φ P* = 2.170 × 4.61 bar = 10.00 bar

Assumptions:The Redlich-Kwong equation of state assumes that the gas molecules occupy a finite volume and experience attractive forces. It also assumes that the gas is a pure component.

Learn more about the Redlich-Kwong equation at

https://brainly.com/question/14762165

#SPJ11

state whether the data are best described as a population or a sample. to estimate size of trout in a lake, an angler records the weight of 10 trout he catches over a weekend.

Answers

The data collected by the angler represents a sample.

We have,

In this case, the data collected by the angler represents a sample.

A sample is a subset of the population that is selected and studied to make inferences or draw conclusions about the entire population.

The angler only recorded the weight of 10 trout he caught over a weekend, which is a smaller group within the larger population of trout in the lake.

Thus,

The data collected by the angler represents a sample.

Learn more about sample data here:

https://brainly.com/question/32823975

#SPJ4

3. Apply the Gram-Schmidt orthogonalization procedure to the following sets to find orthonormal bases for R 3
(a) B 1
​ ={(1,0,1),(1,1,0),(1,1,2)} (b) B 2
​ ={(2,1,1),(1,0,1),(0,0,2)}

Answers

(a) An orthonormal basis for R^3 using the Gram-Schmidt orthogonalization procedure for set B1 is: ((1/√2, 0, 1/√2), (1/√6, 2/√6, 1/√6), (-1/√3, 2/√3, -1/√3)).

(b) An orthonormal basis for R^3 using the Gram-Schmidt orthogonalization procedure for set B2 is: ((2/√6, 1/√6, 1/√6), (1/√6, -1/√6, √2/√6), (-1/√17, 1/√17, 2/√17)).

(a) Applying the Gram-Schmidt orthogonalization procedure to set B1 = {(1,0,1),(1,1,0),(1,1,2)}:

Step 1: Normalize the first vector:

v1 = (1,0,1)

u1 = v1 / ||v1|| = (1,0,1) / √(1^2 + 0^2 + 1^2) = (1,0,1) / √2 = (√2/2, 0, √2/2)

Step 2: Compute the projection of the second vector onto the subspace spanned by u1:

v2 = (1,1,0)

proj = (v2 · u1) / (u1 · u1) * u1 = ((1,1,0) · (√2/2, 0, √2/2)) / ((√2/2, 0, √2/2) · (√2/2, 0, √2/2)) * (√2/2, 0, √2/2)

= (√2/2) / (1/2 + 1/2) * (√2/2, 0, √2/2) = (√2/2) * (√2/2, 0, √2/2) = (1/2, 0, 1/2)

Step 3: Orthogonalize v2 by subtracting the projection:

u2 = v2 - proj = (1,1,0) - (1/2, 0, 1/2) = (1/2, 1, -1/2)

Step 4: Normalize u2:

u2 = u2 / ||u2|| = (1/2, 1, -1/2) / √(1/4 + 1 + 1/4) = (1/2, 1, -1/2) / √2 = (1/√8, √2/√8, -1/√8) = (1/√8, √2/4, -1/√8)

Step 5: Compute the projection of the third vector onto the subspace spanned by u1 and u2:

v3 = (1,1,2)

proj1 = (v3 · u1) / (u1 · u1) * u1 = ((1,1,2) · (√2/2, 0, √2/2)) / ((√2/2, 0, √2/2) · (√2/2, 0, √2/2)) * (√2/2, 0, √2/2)

= (√2) / (1/2 + 1/2) * (√2/2, 0, √2/2) = (√2) * (√2/2, 0, √2/2) = (1, 0, 1)

proj2 = (v3 · u2) / (u2 · u2) * u2 = ((1,1,2) · (1/√8, √2/4, -1/√8)) / ((1/√8, √2/4, -1/√8) · (1/√8, √2/4, -1/√8))

= (√2) / (1/8 + 2/8 + 1/8) * (1/√8, √2/4, -1/√8) = (√2) * (1/√8, √2/4, -1/√8) = (1, √2/2, -1)

proj = proj1 + proj2 = (1, 0, 1) + (1, √2/2, -1) = (2, √2/2, 0)

Step 6: Orthogonalize v3 by subtracting the projection:

u3 = v3 - proj = (1,1,2) - (2, √2/2, 0) = (-1, 1 - √2/2, 2)

Step 7: Normalize u3:

u3 = u3 / ||u3|| = (-1, 1 - √2/2, 2) / √((-1)^2 + (1 - √2/2)^2 + 2^2) = (-1, 1 - √2/2, 2) / √(3 - 2√2 + 2 + 4) = (-1, 1 - √2/2, 2) / √(9 - 2√2) = (-1/√(9 - 2√2), (1 - √2/2)/√(9 - 2√2), 2/√(9 - 2√2))

Therefore, an orthonormal basis for R3 using the Gram-Schmidt orthogonalization procedure for set B1 is:

u1 = (√2/2, 0, √2/2)

u2 = (1/√8, √2/4, -1/√8)

u3 = (-1/√(9 - 2√2), (1 - √2/2)/√(9 - 2√2), 2/√(9 - 2√2))

(b) Applying the Gram-Schmidt orthogonalization procedure to set B2 = {(2,1,1),(1,0,1),(0,0,2)}:

Step 1: Normalize the first vector:

v1 = (2,1,1)

u1 = v1 / ||v1|| = (2,1,1) / √(2^2 + 1^2 + 1^2) = (2,1,1) / √6 = (2/√6, 1/√6, 1/√6)

Step 2: Compute the projection of the second vector onto the subspace spanned by u1:

v2 = (1,0,1)

proj = (v2 · u1) / (u1 · u1) * u1 = ((1,0,1) · (2/√6, 1/√6, 1/√6)) / ((2/√6, 1/√6, 1/√6) · (2/√6, 1/√6, 1/√6)) * (2/√6, 1/√6, 1/√6)

= (√6/3) / (2/3 + 1/6 + 1/6) * (2/√6, 1/√6, 1/√6) = (√6/3) * (2/√6, 1/√6, 1/√6) = (2/3, 1/3, 1/3)

Step 3: Orthogonalize v2 by subtracting the projection:

u2 = v2 - proj = (1,0,1) - (2/3, 1/3, 1/3) = (1/3, -1/3, 2/3)

Step 4: Normalize u2:

u2 = u2 / ||u2|| = (1/3, -1/3, 2/3) / √((1/3)^2 + (-1/3)^2 + (2/3)^2) = (1/3, -1/3, 2/3) / √(1/9 + 1/9 + 4/9) = (1/3, -1/3, 2/3) / √(6/9) = (1/√6, -1/√6, 2/√6) = (1/√6, -1/√6, √2/√6)

Step 5: Compute the projection of the third vector onto the subspace spanned by u1 and u2:

v3 = (0,0,2)

proj1 = (v3 · u1) / (u1 · u1) * u1 = ((0,0,2) · (2/√6, 1/√6, 1/√6)) / ((2/√6, 1/√6, 1/√6) · (2/√6, 1/√6, 1/√6)) * (2/√6, 1/√6, 1/√6)

= (2√6/3) / (2/3 + 1/6 + 1/6) * (2/√6, 1/√6, 1/√6) = (2√6/3) * (2/√6, 1/√6, 1/√6) = (4/3, 2/3, 2/3)

proj2 = (v3 · u2) / (u2 · u2) * u2 = ((0,0,2) · (1/√6, -1/√6, √2/√6)) / ((1/√6, -1/√6, √2/√6) · (1/√6, -1/√6, √2/√6))

= (2√2/3) / (1/6 + 1/6 + 2/6) * (1/√6, -1/√6, √2/√6) = (2√2/3) * (1/√6, -1/√6, √2/√6) = (√2/3, -√2/3, 2/3√2)

proj = proj1 + proj2 = (4/3, 2/3, 2/3) + (√2/3, -√2/3, 2/3√2) = (4/3 + √2/3, 2/3 - √2/3, 2/3 + 2/3√2) = ((4 + √2)/3, (2 - √2)/3, (2 + 2√2)/3)

Step 6: Orthogonalize v3 by subtracting the projection:

u3 = v3 - proj = (0,0,2) - ((4 + √2)/3, (2 - √2)/3, (2 + 2√2)/3) = (-4/3 - √2/3, -2/3 + √2/3, 2/3 - 2/3√2)

Step 7: Normalize u3:

u3 = u3 / ||u3|| = (-4/3 - √2/3, -2/3 + √2/3, 2/3 - 2/3√2) / √((-4/3 - √2/3)^2 + (-2/3 + √2/3)^2 + (2/3 - 2/3√2)^2)

= (-4/3 - √2/3, -2/3 + √2/3, 2/3 - 2/3√2) / √(16/9 + 8/9 - 8√2/9 + 8/9 + 4/9 + 8√2/9 + 4/9 - 8/9 + 8/9)

= (-4/3 - √2/3, -2/3 + √2/3, 2/3 - 2/3√2) / √(36/9 + 16/9 + 16/9)

= (-4/3 - √2/3, -2/3 + √2/3, 2/3 - 2/3√2) / √(68/9)

= (-√2/√68, √2/√68, 2√2/√68)

= (-1/√17, 1/√17, 2/√17)

Therefore, an orthonormal basis for R3 using the Gram-Schmidt orthogonalization procedure for set B2 is:

u1 = (2/√6, 1/√6, 1/√6)

u2 = (1/√6, -1/√6, √2/√6)

u3 = (-1/√17, 1/√17, 2/√17)

Learn more about orthonormal basis

https://brainly.com/question/32670388

#SPJ11

All three ratios are equivalent. This means the relationship between the le
Part B
Think about graphing the relationship between the length and the width of the TV screens. What do you predict the graph would look like?
E

Answers

Yes, there is found to be a form of a proportional relationship, due to the fat that the ratio length/width is the same for all f the above issues.

Part B: If we were to graph the relationship between the length and width of the TV screens, and since there is a proportional relationship between the two, we would expect to see a straight line passing through the origin (0, 0) on a graph.

What is a proportional relationship?

A proportional relationship is a relationship in which a constant ratio between the output variable and the input variable is present.

When the ratio length/width is said to be the same for all the question, then they are said to be proportional between them.

So:

For the first TV:

Length = 16 inches, Width = 9 inches

Ratio = Length/Width = 16/9 = 1.7778

For the second TV:

Length = 20 inches, Width = 11.25 inches

Ratio = Length/Width = 20/11.25 = 1.7778

For the third TV:

Length = 24 inches, Width = 13.50 inches

Ratio = Length/Width = 24/13.50 = 1.7778

So, the ratios of length to width for all three TVs are the same: 1.7778. Therefore, there is a proportional relationship between the length and width of the TVs.

b. The graph would show the length (in inches) on the horizontal line and the width (in inches) on the vertical line. When the length gets bigger, the width will also get bigger in a steady way, keeping the same proportion. The slope of the line shows how the length and width are related.

A similar problem on  proportional relationships, is presented at:

https://brainly.com/question/7723640

#SPJ1

Image transcription text

4. Click +RELATIONSHIP and click L 5. Should you make a

mistake, clic You should now see a graph of the po the answer

field.

Length  (inches)   Width (inches)

16                                  9

20                                    11.25

24                                 13.50

Part A

Is there a proportional relationship between the length and width of the TVs? Check the table for equivalent ratios to support your answer. Show your work.

Part B

Think about graphing the relationship between the length and the width of the TV screens. What do you predict the graph would look like?

A credit card bill for $562 was due on September 14. Purchases of $283 were made on September 19, and $12 was charged on September 28. A payment of $250 was made on September 25: The annual interest on the average daily balance is 19.5%. Find the finance charge due (in dollars) on the October 14 bill. (Use 365 for the number of days in a year. Round your answer to the nearest cent.) $10.50

Answers

To calculate the finance charge due on the October 14 bill, we need to calculate the average daily balance and then apply the annual interest rate.

First, let's calculate the average daily balance. We'll need to consider the balances on each day and the number of days between those balances.

From September 14 to September 24 (10 days), the balance is $562.

From September 25 to September 28 (4 days), the balance is $562 - $250 = $312.

From September 29 to October 14 (16 days), the balance is $312 + $283 + $12 = $607.

Next, we'll calculate the average daily balance:

Average Daily Balance = (Total Balance for the Period) / (Number of Days in the Period)

Total Balance = (10 days * $562) + (4 days * $312) + (16 days * $607) = $5,620 + $1,248 + $9,712 = $16,580

Number of Days = 10 + 4 + 16 = 30

Average Daily Balance = $16,580 / 30 ≈ $552.67

Now, we can calculate the finance charge using the average daily balance and the annual interest rate:

Finance Charge = Average Daily Balance * (Annual Interest Rate / Number of Days in a Year) * Number of Days in the Billing Cycle

Annual Interest Rate = 19.5%

Number of Days in a Year = 365

Number of Days in the Billing Cycle = 30

Finance Charge = $552.67 * (0.195 / 365) * 30 ≈ $10.50

Therefore, the finance charge due on the October 14 bill is approximately $10.50.

Learn more about finance charge-

https://brainly.com/question/30250781

#SPJ11

please help
x has to be a positive number btw

Answers

Answer:

Step-by-step explanation:

a) Consider the quadratic equation x^2-7x-18=0.

Then we have (x-9)(x+2)=0 by factoring.

Observe that x-9=0 and x+2=0.

This implies that x=0+9=9 and x=0-2=-2.

Thus x=9, -2.

Therefore, x^2-7x-18=0.

b) Note that the area of the rectangle is determined by the equation: A=L*W where L=length and W=width.

Then we have A=x(x-7)=x^2-7x.

Observe that the area of the rectangle is 18 cm^2.

This implies that 18=x^2-7x.

Thus x^2-7x-18=0.

From our answer in part (a), we can see that the values of x are 9 and -2.

But then our length and width cannot be a negative number, so we exclude the value of x, which is -2.

Therefore, the value of x is 9.

Other Questions
You use a digital ammeter to determine the current through a resistor; you determine the measurement to be 0.0070A + 0.0005A. The manufacturer of the ammeter indicates that there is an inherent uncertainty of +0.0005A in the device. Use the quadrature method to determine the overall uncertainty in your measurement. A skier of mass 110 kg travels down a frictionless ski trail with a top elevation of 100 m. Calculate the speed of the skier when he reaches the bottom of the ski trail. Assume he starts from rest.64m/s40m/s44m/s38m/sA 50 kg student bounces up from a trampoline with a speed of 3.4 m/s. Determine the work done on the student by the force of gravity when she is 5.3 m above the trampoline.701J-701J2597J-2597JA boy and a girl pull and push a crate along an icy horizontal surface, moving it 15 m at a constant speed. The boy exerts 50 N of force at an angle of 520 above the horizontal, and the girl exerts a force of 50 N at an angle of 320 above the horizontal. Calculate the total work done by the boy and girl together.1700J1500J1098J1000JAn archer is able to shoot an arrow with a mass of 0.050 kg at a speed of 120 km/h. If a baseball of mass 0.15 kg is given the same kinetic energy, determine its speed.19m/s26m/s69m/s48m/s (18.) A rotor completes 50.0 revolutions in 3.25 s. Find its angular speed (a) in rev/s. (b) in rpm. (C) in rad/s. 19. A flywheel rotates at 1050rpm. (a) How long (in s) does it take to complete ofe revolution? (b) How many revolutions does it complete in 5.00 s ? (20) A wheel rotates at 36.0rad/s. (a) How long (in s) does it take to complete ont revolution?(b) How many revolutions does it complete in 8.00 s ? 21. A shaft of radius 8.50 cm rotates 7.00rad/s. Find its angular displacement (in rad) in 1.20 s. 22. A wheel of radius 0.240 m turns at 4.00rev/s. Find its angular displacement (in rev) in 13.0 s. Q3. A pendulum of length 1.50 m swings through an arc of 5.0 . Find the length of the arc through which the pendulum swings. (44) An airplane circles an airport twice while 5.00mi from the control tower. Find the length of the arc through which the plane travels. 25. A wheel of radius 27.0 cm has an angular speed of 47.0rpm. Find the lineat speed (in m/s ) of a point on its rim. (29. A belt is placed around a pulley that is 30.0 cm in diameter and rotating at 275rpm. Find the linear speed (in m/s ) of the belt. (Assume no belt slippage on the pulley.) 27. A flywheel of radius 25.0 cm is rotating at 655rpm. (a) Express its angular speed in rad/s. (b) Find its angular displacement (in rad) in 3.00 min. (c) Find the linear distance traveled (in cm ) by a point on the rim in one complete revolution. (d) Find the linear distance traveled (in m ) by a point on the rim in 3.00 min. (e) Find the linear speed (in m/s ) of a point on the rim. 28. An airplane propeller with blades 2.00 m long is rotating at 1150rpm.(a) Express its angular speed in rad/s. (b) Find its angular displacement in 4.00 s. (C) Find the linear speed (in m/s ) of a point on the end of the blade. (d) Find the linear speed (in m/s) of a point 1.00 m from the end of the blade. 29. An automobile is traveling at 60.0 km/h. Its tires have a radius of 33.0 cm. (a) Find the angular speed of the tires (in rad/s ). (b) Find the angular displacement of the tires in 30.0 s. (c) Find the linear distance traveled by a point on the tread in 30.0 s. (d) Find the linear distance traveled by the automobile in 30.0 s. 30. Find the angular speed (in rad/s ) of the following hands on a clock. (a) Second hand (b) Minute hand (c) Hour hand 31. A bicycle wheel of diameter 30.0 in. rotates twice each second. Find the linear velocity of a point on the wheel. 32. A point on the rim of a flywheel with radius 1.50ft has a linear velocity of 30.0ft/s. Find the time for it to complete 4rad. Instructions: First, read the correlational study scenarios below. Then identify the variables that correlate with one another, noting which terms need to be operationally defined. Finally, provide operational definitions for those terms. You can be creative with your operational definitionsjust make them clear and specific.Scenario F: People who are involved in an intimate relationship may experience distinct, although related, feelings of liking for each other and love for each other. It is possible to like someone and not love them, of course, but it is also possible to love someone but not like them all that much (think of a couple that fights a great deal but cant think of life without the other person, or siblings who dont get along but feel a sense of familial love). A group of researchers wanted to examine the degree to which ones liking for his or her partner was correlated with his or her love for that partner.1.What is Variable #1 and how would you operationally define it?2.What is Variable #2 and how would you operationally define it?Scenario G: A researcher believes that the number of "daily hassles" that people experience affects the number of physical and psychological symptoms they have.1.What is Variable #1 and how would you operationally define it?2.What is Variable #2 and how would you operationally define it?Scenario H: A researcher believes that there is a relationship between minority womens experience of racism and the womens psychological distress.1.What is Variable #1 and how would you operationally define it?2.What is Variable #2 and how would you operationally define it?Scenario I: A researcher is interested in looking at the correlation between skin disease severity (psoriasis) and the fear of negative evaluation that psoriasis patients experience.1.What is Variable #1 and how would you operationally define it?2.What is Variable #2 and how would you operationally define it?Scenario J: A researcher believes that a managers sense of humor impacts the productivity of the employees he supervises.1.What is Variable #1 and how would you operationally define it?2.What is Variable #2 and how would you operationally define it? A21 and 23 For Problems A21-A23, construct a linear mapping L: VW that satisfies the given properties.A21 V = R, W = P2(R); L (1,0,0) = x, L(0, 1, 0) = 2x, L (0, 0, 1) = 1 + x + x 2A22 V = P2(R), W Range(L) = Span = 1 0 M2x2(R); Null(Z) 0 = {0} andA23 V = M2x2(R), W = R4; nullity(Z) = 2, rank(L) = 2, and L (6 ) - 1 1 0 "The Epicureans were:Group of answer choicesa. atomists.b. spiritualists.c. idealists.d. Christians." 11. When the fluid enters the lymphatic capillaries, it is called plasma. TRUE OR FALSE Question The project closure phase marks the final stage of a project. Closure or termination cansometimes occur prematurely. What is meant by premature termination of a project?State and briefly outline five reasons why projects are sometimes terminated prematurely.For projects which are NOT terminated prematurely, there are several formalities whichmust be managed or completed before the project can be declared as closed. State andbriefly discuss ten such formalities.Kindly answer each part of question(Mandatory)Thank you! Afactors of person perception? g what do you mean by person perception? What are the structural and functional Write a letter to your best friend explaining the Naturalization Process you are going through to become a citizen of the United States and WHY you are having to go through this process verses how she became a US Citizen. How would you use e-marketing for customer acquisition andretention? why are patient perspectives important? Why should doctorsunderstand patient perspectives? Discuss ways a patients cultural beliefs and ethnicity could affect the nursing care plan. If we do not assume that the histogram is bell-shaped, at least what percentage of the sample values will be between and ? Assume that there is a forward market for a commodity. The forward price of the commodity is $50. The contract expires in one year. The risk-free rate is 10 percent. Now, six months later, the spot price is $60. What is the forward contract worth(Value) at this time? Let be a solid sphere, a hollow sphere, a solid disk, and a ring, all of mass and radius .Explain please! I appreciate itA) the four objects are initially at rest at the top of an inclined plane and begin simultaneously roll down the inclined plane. Which of these objects will arrive at the bottom of the inclined plane first and last? Explain your answer.b) All four objects initially roll on a horizontal plane and arrive at the bottom of an inclined plane with the same linear velocity (see figure in Exercise 17). Which of these objects will travel the greatest and least distance on the inclined plane? Explain your answer One of hofstede's social values that was developed later is? a. collectivism. b. uncertainty avoidance. c. power distance. d. long-term orientation. e. masculinity. A PSB of rectangular section 250mm wide and 350mm deep is provided with 12 m high tension coires of Gomm diameter located at Fo from the bottom of the beam and 4 Sieged sine lar Comm woires at the top located at comm from the top of the beam. The wires are initi- ally pre stressed stretched to a stress of 900 N/mm/ Determine the loss of stress in steel coures due to elastic shortening of Concrete Take E= 20x105 N/mm. 2/ A 4 Ec= 305x10 N/mm. To survive, every animal needs a proper arrangement of food, water, cover, and space. these items make up the animal's:_________ You observe a wide qrs complex while continuously monitoring a patient in lead ii. which lead placement is referenced to evaluate the location of blockage in the bundle branch system?