the measure of one interior angle of a parallelogram is 30o more than two times the measure of another angle. find the measure of each angle of the parallelogram.

Answers

Answer 1

In a parallelogram, the opposite interior angles are congruent, and the adjacent angles are supplementary.The measure of one interior angle of a parallelogram is 30o more than two times the measure of another angle.

Find the measure of each angle of the parallelogram. Let one of the angles be x. The measure of the other angle will be 2x + 30o. As the opposite angles of a parallelogram are congruent, it can be said that the adjacent angles are supplementary, and the sum of the angles of a parallelogram is 360°.Therefore, the measure of each angle of a parallelogram is 180°.That is,2x + 30o + x = 180o3x = 150o.x = 50oThe other angle can be calculated as follows:2x + 30o = 2 (50o) + 30o = 100o + 30o = 130oTherefore, the measure of each angle of the parallelogram is 50o and 130o.

To know more about parallelogram visit:

brainly.com/question/28854514

#SPJ11


Related Questions

determine the degree of the maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001.f(x) = sin(x), approximate f(0.5)

Answers

the answer is degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001 is 7.

To determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001, given f(x) = sin(x), we need to approximate f(0.5).The formula to calculate the degree of Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than the given amount is:$$R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}(x-a)^{n+1}$$where c is a value between a and x, and Rn(x) is the remainder function.Then, to find the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001, we use the inequality:$$|R_n(x)| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$$where M is an upper bound for the $(n+1)^{th}$ derivative of f on an interval containing a and x.To approximate f(0.5), we use the formula for the Maclaurin series expansion of sin(x):$$\sin(x) = \sum_{n=0}^{\infty}(-1)^n \frac{x^{2n+1}}{(2n+1)!}$$Thus, for f(x) = sin(x) and a = 0, we have:$$f(x) = \sin(x)$$$$f(0) = \sin(0) = 0$$$$f'(x) = \cos(x)$$$$f'(0) = \cos(0) = 1$$$$f''(x) = -\sin(x)$$$$f''(0) = -\sin(0) = 0$$$$f'''(x) = -\cos(x)$$$$f'''(0) = -\cos(0) = -1$$$$f^{(4)}(x) = \sin(x)$$$$f^{(4)}(0) = \sin(0) = 0$$$$f^{(5)}(x) = \cos(x)$$$$f^{(5)}(0) = \cos(0) = 1$$Thus, M = 1 for all values of x, and we have:$$|R_n(x)| \leq \frac{1}{(n+1)!}|x|^n$$To make this less than 0.001 when x = 0.5, we need to find n such that:$$\frac{1}{(n+1)!}0.5^{n+1} \leq 0.001$$Dividing both sides by 0.001 gives:$$\frac{1}{0.001(n+1)!}0.5^{n+1} \leq 1$$Taking the natural logarithm of both sides gives:$$\ln\left(\frac{0.5^{n+1}}{0.001(n+1)!}\right) \leq 0$$Using a calculator, we can find that the smallest value of n that satisfies this inequality is n = 7. Therefore, the degree of the Maclaurin polynomial required for the error in the approximation of sin(0.5) to be less than 0.001 is 7.

To know more about, Maclaurin series visit

https://brainly.com/question/31745715

#SPJ11

The degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001 is 3.

Given the function f(x) = sin(x) and we need to determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001.

We need to approximate f(0.5).

Maclaurin Polynomial: The Maclaurin polynomial of order n for a given function f(x) is the nth-degree Taylor polynomial for f(x) at x = 0. It is given by the formula:

[tex]Pn(x) = f(0) + f'(0)x + f''(0)x²/2! + ... + fⁿ⁽ᶰ⁾(0)xⁿ/ⁿ![/tex]

Where fⁿ⁽ᶰ⁾(0) denotes the nth derivative of f(x) evaluated at x = 0.

To determine the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001, we use the error formula.

Error formula:

[tex]|f(x) - Pn(x)| <= M(x-a)^(n+1)/(n+1)![/tex]

where M = max|fⁿ⁽ᶰ⁾(x)| over the interval containing x and a. For f(x) = sin(x)

and a = 0, we have f(0) = sin(0) = 0, f'(x) = cos(x), f''(x) = -sin(x), f'''(x) = -cos(x), f⁽⁴⁾(x) = sin(x), f⁽⁵⁾(x) = cos(x), f⁽⁶⁾(x) = -sin(x), ...

Thus, [tex]|f⁽ⁿ⁾(x)| <= 1[/tex] for all n and x.

Therefore, [tex]M = 1.|x-a| = |0.5-0| = 0.5[/tex]

Thus,[tex]|f(x) - Pn(x)| <= M(x-a)^(n+1)/(n+1)![/tex]

=> [tex]|sin(x) - Pn(x)| <= 0.5^(n+1)/(n+1)![/tex]

We need [tex]|sin(0.5) - Pn(0.5)| <= 0.001[/tex].

So, [tex]0.5^(n+1)/(n+1)! <= 0.001[/tex]

n = 3 (Minimum value of n to satisfy the condition).

Using the Maclaurin polynomial of degree 3, we have

[tex]P₃(x) = sin(0) + cos(0)x - sin(0)x²/2! - cos(0)x³/3! = x - x³/3[/tex]

Therefore, the degree of the Maclaurin polynomial required for the error in the approximation of the function at the indicated value of x to be less than 0.001 is 3.

To know more about Maclaurin polynomial, visit:

https://brainly.com/question/32572278

#SPJ11

Suppose a marketing research firm is investigating the effectiveness of webpage advertisements.

Suppose you are investigating the relationship between the variables
"Advertisement type: Emotional or Informational?"

and
"Number of hits? "

Case 1



mean number of hits


standard deviation


count

Emotional


1000


400


10

Informational


800


400


10

p-value 0.139

Case 2



mean number of hits


standard deviation


count

Emotional


1000


400


100

Informational
800

400


100

p-value 0.0003

a) Explain what that p-value is measuring and why the p-value in case in 1 is different to the p-value in case 2

b) Comment on the relationship between the two variables in case 2

c) Make a conclusion based on the p-value in case 2

Answers

The answer to the question is given briefly.

a) The p-value is measuring the probability of obtaining the observed results of a test, assuming that the null hypothesis is correct. The p-value is different in case 1 than case 2 because the sample sizes in case 2 are larger than those in case 1.

Generally, the larger the sample size, the more precise the results, and the smaller the p-value. The null hypothesis in this case is that there is no significant difference between the emotional and informational advertisements and the number of hits.

b) The relationship between the two variables in case 2 is significant because the p-value is less than 0.05. There is strong evidence that the number of hits differs depending on the type of advertisement used, with emotional advertisements generating more hits than informational ones.

c) Based on the p-value in case 2, we can conclude that there is a significant difference between the effectiveness of emotional and informational advertisements in generating hits. Emotional advertisements are more effective than informational advertisements in generating hits.

learn more about p-value here:

https://brainly.com/question/30078820

#SPJ11

1. Forty cars are to be inspected for emission compliance. Thirty are compliant but ten are not. A sample of 5 cars is chosen at random. a. [C-4] What is a suitable probability distribution model in t

Answers

In this scenario, a suitable probability distribution model to consider is the hypergeometric distribution.

The hypergeometric distribution is appropriate when sampling without replacement is involved and the population can be divided into two distinct categories. In this case, we have a population of 40 cars, 30 of which are compliant (success) and 10 that are not (failure).

1: Identify the relevant parameters.

Population size (N): 40 (total number of cars)

Number of successes in the population (K): 30 (number of compliant cars)

Sample size (n): 5 (number of cars chosen at random)

2: Define the probability distribution.

The formula gives the hypergeometric distribution:

P(X = k) = (K choose k) * ((N - K) choose (n - k)) / (N choose n)

3: Calculate the desired probabilities.

For example, you can calculate the probability of selecting exactly 2 compliant cars from the sample of 5 cars using the hypergeometric distribution formula.

Hence, the suitable probability distribution model to consider is the hypergeometric distribution.

To know more about probability distribution model refer here:

https://brainly.com/question/31197772

#SPJ11

Pleade reply soon will give a like!
Assume that you have a sample of n₁ = 6, with the sample mean X₁ = 42, and a sample standard deviation of S, = 6, and you have an independent sample of n₂ = 8 from another population with a samp

Answers

At the 0.01 level of significance, there is no evidence that  μ₁ > μ₂. Hence, the answer is no.

Assuming that the population variances are equal, at the 0.01 level of significance, whether there is evidence that  μ₁ > μ₂ is to be determined.

Sample 1:

Sample size n₁ = 6,

Sample mean [tex]\bar{X_1}=42[/tex],  

Sample standard deviation S₁ = 6

Sample 2:

Sample size n₂ = 8 ,

Sample mean [tex]\bar{X_2}=37[/tex],

Sample standard deviation S₂ = 5

The null hypothesis is H₀: μ₁ ≤ μ₂

The alternate hypothesis is H₁: μ₁ > μ₂

The significance level is α = 0.01

degrees of freedom = n₁ + n₂ – 2 = 6 + 8 – 2 = 12

We know that the two samples are independent and that the population variances are equal. We can now use the pooled t-test to test the hypothesis.

Assuming that the population variances are equal, the pooled t-test statistic is calculated as follows:

[tex]t = \frac{\left(\bar{X_1} - \bar{X_2}\right)}{S_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}[/tex]

Where Sp is the pooled standard deviation.

The formula for the pooled standard deviation is:

[tex]S_p = \sqrt{\frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{n_1 + n_2 - 2}}[/tex]

Substituting the given values, we have:

[tex]S_p = \sqrt{\frac{\left(6 - 1\right)6^2 + \left(8 - 1\right)5^2}{6 + 8 - 2}} = 5.3026[/tex]

Substituting these values in the equation for t, we have:

[tex]t = \frac{\left(42 - 37\right)}{5.3026\sqrt{\frac{1}{6} + \frac{1}{8}}}t = 2.3979[/tex]

The critical value of t for a one-tailed test with 12 degrees of freedom and α = 0.01 is:

[tex]t_{0.01,12} = 2.718[/tex]

Since the calculated value of t (2.3979) is less than the critical value of t (2.718), we do not have enough evidence to reject the null hypothesis (H₀: μ₁ ≤ μ₂).

Therefore, at the 0.01 level of significance, there is no evidence that μ₁ > μ₂. Hence, the answer is no.

The question should be:

Assume that you have a sample of n₁ = 6, with the sample mean [tex]\bar{X_1}=42[/tex], and a sample standard deviation of S₁ = 6, and you have an independent sample of n₂ = 8 from another population with a sample mean of [tex]\bar{X_2}=37[/tex] and sample standard deviation S₂ = 5. Assuming the population variances are equal , at the 0.01 level of significance ,is there evidence that μ₁ > μ₂ ?

To learn more about variance: https://brainly.com/question/9304306

#SPJ11

what is the length l of an edge of each small cube if adjacent cubes touch but don't overlap

Answers

The length l of an edge of each small cube if adjacent cubes touch but don't overlap is equal to the distance between the two parallel faces of the cube. It is also equivalent to the distance between the centers of opposite faces of the cube.

Let's assume that the length of each side of the cube is l and the distance between the centers of the opposite faces is L. The Pythagorean theorem can be used to determine L in terms of l. By drawing a line from the center of one face to the center of the opposite face through the center of the cube, you can form a right-angled triangle. L, l, and the diagonal of the face are the lengths of the sides of this triangle. Using the Pythagorean theorem, we getL^2 = l^2 + l^2L^2 = 2l^2L = l√2Therefore, the distance between the centers of the opposite faces of the cube is equal to l multiplied by the square root of 2.

Therefore, the length l of an edge of each small cube if adjacent cubes touch but don't overlap is equal to the distance between the two parallel faces of the cube, which is also equivalent to the distance between the centers of opposite faces of the cube. The length of the cube's edge is equivalent to the height of a cube with an edge of l that has two opposite vertices as the centers of the faces. The diagonal of the cube is equivalent to the hypotenuse of the right-angled triangle that is formed by the height and the side of the cube. It follows that the length of the diagonal of the cube is equal to the square root of 2 times the length of the side of the cube. Hence, the diagonal of a cube with sides of length l is l times the square root of 3.

To know more about adjacent cubes visit:

https://brainly.com/question/30573491

#SPJ11

find two real numbers that have a sum of 14 and a product of 38

Answers

To find two real numbers that have a sum of 14 and a product of 38, we can set up a system of equations. Let's call the two numbers x and y.

From the problem statement, we have the following information:

Equation 1: x + y = 14 (sum of the two numbers is 14)

Equation 2: xy = 38 (product of the two numbers is 38)

To solve this system of equations, we can use substitution or elimination method. Let's solve it using substitution:

From Equation 1, we can express y in terms of x by subtracting x from both sides:

y = 14 - x

Now we substitute this value of y into Equation 2:

x(14 - x) = 38

Expanding the equation, we have:

14x - x^2 = 38

Rearranging the equation to bring it to quadratic form:

x^2 - 14x + 38 = 0

Now we can solve this quadratic equation. We can either factorize it or use the quadratic formula. However, upon examining the equation, we find that it doesn't factorize easily. Therefore, we'll use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / 2a

For our quadratic equation, the coefficients are:

a = 1, b = -14, c = 38

Substituting these values into the quadratic formula, we have:

x = (-(-14) ± √((-14)^2 - 4(1)(38))) / (2(1))

x = (14 ± √(196 - 152)) / 2

x = (14 ± √44) / 2

x = (14 ± 2√11) / 2

Simplifying further, we have:

x = 7 ± √11

So we have two possible values for x: 7 + √11 and 7 - √11.

To find the corresponding values of y, we can substitute these values of x back into Equation 1:

For x = 7 + √11, y = 14 - (7 + √11) = 7 - √11

For x = 7 - √11, y = 14 - (7 - √11) = 7 + √11

Therefore, the two real numbers that have a sum of 14 and a product of 38 are (7 + √11) and (7 - √11).

To know more about Possible visit-

brainly.com/question/32730510

#SPJ11

what are the domain restrictions of the expression h2 3h−10h2−12h 20 ?

Answers

The domain restrictions of the expression h^2 + 3h - 10 / h^2 - 12h + 20 are all real numbers except for the values of h that make the denominator zero.

To find the domain restrictions of the given expression, we need to determine the values of h that would make the denominator zero, as dividing by zero is undefined.

The given expression has a denominator of h^2 - 12h + 20. To find the values of h that make the denominator zero, we set the denominator equal to zero and solve for h:

h^2 - 12h + 20 = 0

We can solve this quadratic equation by factoring or using the quadratic formula. However, since the focus here is on domain restrictions, we'll provide the factored form of the equation:

(h - 10)(h - 2) = 0

From this equation, we can see that the values of h that make the denominator zero are h = 10 and h = 2. Therefore, the domain restrictions of the expression are all real numbers except for h = 10 and h = 2.

In summary, the expression h^2 + 3h - 10 / h^2 - 12h + 20 is defined for all real numbers except h = 10 and h = 2.

For more questions like Expression click the link below:

https://brainly.com/question/14083225

#SPJ11

Use a Maclaurin series in the table below to obtain the Maclaurin series for the given function. X) 4x2 tan 1 (3x3 SC R 1 1 x n-0 1 00 2! 3! n-o n (-1)" Sin (2n 1)! 3! 5! 7! cos X (-1) (2n)! 2! 6! n-0 2n+ 1 (-1) R 1 tan 2n 1 k(km k(k 1)(k 1 2! 3!

Answers

Maclaurin series:Maclaurin series can be defined as a power series that is a Taylor series approximation for a function at 0. Maclaurin series is a special case of the Taylor series, where a = 0. The formula for the Maclaurin series is: f(x) = f(0) + f′(0)x + f′′(0)x²/2! + f‴(0)x³/3! + …Here, we have given a table which contains Maclaurin series of different functions.

We need to use a Maclaurin series in the table to obtain the Maclaurin series for the given function. X) 4x² tan 1 (3x³)SC R 1 1 x n-0 1 00 2! 3! n-o n (-1)" Sin (2n 1)! 3! 5! 7! cos X (-1) (2n)! 2! 6! n-0 2n+ 1 (-1) R 1 tan 2n 1 k(km k(k 1)(k 1 2! 3!Given function is: 4x²tan(3x³)The formula for Maclaurin series of tan(x) is given as: tan(x) = x - x³/3 + 2x⁵/15 - 17x⁷/315 + …Using this formula, we get: tan(3x³) = 3x³ - (3x³)³/3 + 2(3x³)⁵/15 - 17(3x³)⁷/315 + …= 3x³ - 3x⁹/3 + 54x¹⁵/15 - 4913x²¹/315 + …= 3x³ - x⁹ + 18x¹⁵ - 4913x²¹/315 + …Putting this value in the given function,

we get: 4x²tan(3x³) = 4x²[3x³ - x⁹ + 18x¹⁵ - 4913x²¹/315 + …] = 12x⁵ - 4x¹¹ + 72x¹⁷ - 4913x²³/315 + …Hence, the required Maclaurin series for the given function is 12x⁵ - 4x¹¹ + 72x¹⁷ - 4913x²³/315 + …. The word count of the answer is 129 words.

To know more about series visit :

https://brainly.com/question/30457228

#SPJ11

Describe all unit vectors orthogonal to both of the given vectors. 41 – 8j + 7k, -8i + 16j – 14k . a) Any unit vector in the opposite direction as 4i – 8j + 7k. b) Any unit vector in the same direction as – 8i + 163 – 14k. c) Any unit vector orthogonal to - 8i + 16) – 14k. d) Any unit vector in the same direction as 4i– 8j + Zk. e) Any unit vector.

Answers

Answer:.

Step-by-step explanation:

Jamie needs to multiply 2x-4 and 2x^2 + 3xy -2y^2 they decided to use the box method fill the spaces in the table with the products when multiplying each term

Answers

Answer:

2x^2 | 3xy | -2y^2

--------------------------------------

2x | 4x^3 6(x^2)y -4x(y^2)

-4 | -8x^2 -12xy 8y^2

what are outliers? describe the effects of outliers on the mean, median, and mode.

Answers

Outliers are data points that significantly deviate from the overall pattern of a dataset. They can be unusually high or low values compared to the rest of the data.

Outliers have different effects on the mean, median, and mode. Outliers have the most significant impact on the mean, as they can pull the average towards their extreme values. The median is less affected by outliers, as it only considers the middle value(s) in the dataset. Outliers have no direct impact on the mode, as it represents the most frequently occurring value(s) in the dataset.

Outliers can greatly influence the mean because the mean is sensitive to extreme values. When an outlier is significantly larger or smaller than the other data points, it can distort the average, pulling it towards the outlier's value. This is particularly true when the dataset is small or the outliers are prominent.

The median, on the other hand, is less affected by outliers. The median represents the middle value(s) in a dataset when the data points are sorted in ascending or descending order. Outliers that deviate from the overall pattern do not have a direct impact on the median, as long as they do not affect the position of the middle value(s).

The mode, which represents the most frequently occurring value(s) in the dataset, is not affected by outliers. Outliers do not directly influence the mode because it is determined solely by the frequency of values and not their magnitudes.

In summary, outliers can have a significant impact on the mean, pulling it toward its extreme values. However, outliers have little to no effect on the median and mode, as they represent the middle value(s) and most frequently occurring value(s) in the dataset, respectively.

Learn more about median here:

https://brainly.com/question/28060453

#SPJ11

Shown above is a slope field for the differential equation dydx=y2(4−y2). If y = g(x) is the solution to the differential equation with the initial condition g(−2)=−1, then, limx→[infinity]g(x) is
A. -[infinity]
B. -2
C. 0
D. 2
E. 3

Answers

The limit as x approaches infinity of g(x) is -2.

From the given slope field, we can observe that the differential equation dy/dx = y^2(4 - y^2) is associated with a family of curves. The solution to this differential equation is represented by the function y = g(x), with the initial condition g(-2) = -1.

To determine the behavior of g(x) as x approaches infinity, we need to analyze the long-term trend of the function. Notice that as y approaches 2 or -2, the slope of the tangent line becomes zero, indicating an equilibrium point. Therefore, the solution g(x) will approach the equilibrium points as x approaches infinity.

Since g(-2) = -1, we know that g(x) starts at -1 and moves towards one of the equilibrium points. Looking at the slope field, we can see that the solution curve approaches the equilibrium point at y = -2 as x increases. Hence, the limit as x approaches infinity of g(x) is -2.

In summary, based on the given slope field and the initial condition, the solution g(x) to the differential equation approaches -2 as x tends to infinity.

Learn more about Slope fields

brainly.com/question/30397980

#SPJ11

find the radius of convergence, r, of the series. [infinity] (−1)n (x − 6)n 5n 1 n = 0 r = find the interval, i, of convergence of the series. (enter your answer using interval notation.) i =

Answers

The series converges at [tex]$x = 0$[/tex].

Therefore, the interval of convergence is [tex]$i = [0, 6]$[/tex].

The series is

[tex][infinity] (−1)n (x − 6)n 5n 1 n = 0.[/tex]

We need to find the radius of convergence, r, and the interval, i, of convergence of the series.

The radius of convergence is given by:

[tex]$$r = \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|a_n|}}$$[/tex]

where $a_n$ are the coefficients of the series.

Here,

[tex]$a_n = 5n$, so$$r = \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|5n|}}=\frac{1}{\limsup_{n\to\infty}\sqrt[n]{5}\sqrt[n]{n}}= \frac{1}{\infty} = 0$$[/tex]

So, the radius of convergence is 0.

To find the interval of convergence, we need to check the convergence of the series at the end points of the interval,

[tex]$x = 6$[/tex]  and [tex]$x = 0$.[/tex]

For [tex]$x = 6$[/tex], the series becomes:

[tex]$$\sum_{n=0}^\infty (-1)^n (6-6)^n (5n) = \sum_{n=0}^\infty 0 = 0$$[/tex]

So, the series converges at [tex]$x = 6$[/tex] .For [tex]$x = 0$[/tex], the series becomes:

[tex]$$\sum_{n=0}^\infty (-1)^n (0-6)^n (5n) = \sum_{n=0}^\infty (-1)^n (5n)$$[/tex]

This is an alternating series that satisfies the conditions of the Alternating Series Test.

To know more about infinite series please visit :

https://brainly.com/question/30221799

#SPJ11

The series converges for all x, the interval of convergence is (-∞, ∞), which can be expressed in interval notation as i = (-∞, ∞).

To find the radius of convergence, we can use the ratio test. The ratio test states that for a power series

∑(a_n * (x - c)^n), if the limit of |a_(n+1) / a_n| as n approaches infinity exists, then the series converges if the limit is less than 1 and diverges if the limit is greater than 1.

In this case, we have the series ∑((-1)^n * (x - 6)^n * 5^n / n), where c = 6.

Applying the ratio test:

lim(n→∞) |((-1)^(n+1) * (x - 6)^(n+1) * 5^(n+1) / (n+1)) / ((-1)^n * (x - 6)^n * 5^n / n)|

Simplifying, we get:

lim(n→∞) |(-1) * (x - 6) * 5 / (n+1)|

Taking the absolute value and bringing constants outside the limit:

|-5(x - 6)| * lim(n→∞) (1 / (n+1))

Since lim(n→∞) (1 / (n+1)) = 0, the limit becomes:

|-5(x - 6)| * 0 = 0

For the series to converge, we need this limit to be less than 1. However, in this case, the limit is always 0 regardless of the value of x. This means that the series converges for all x, which implies that the radius of convergence, r, is infinity.

Now, let's find the interval of convergence, i. Since the series converges for all x, the interval of convergence is (-∞, ∞), which can be expressed in interval notation as i = (-∞, ∞).

To know more about limit, visit:

https://brainly.com/question/12207539

#SPJ11

For the following population of N=8 scores: 1, 3, 1, 10, 1, 0,
1, 3
Calculate SS
Calculate σ2
Calculate σ
Question 2 options:

Answers

Thus, the standard deviation of this population is 3.0.

Mean value = (1+3+1+10+1+0+1+3)/8= 20/8= 2.5

Thus,

SS = Σ(X – M)²= (1-2.5)² + (3-2.5)² + (1-2.5)² + (10-2.5)² + (1-2.5)² + (0-2.5)² + (1-2.5)² + (3-2.5)²

= (-1.5)² + 0.5² + (-1.5)² + 7.5² + (-1.5)² + (-2.5)² + (-1.5)² + 0.5²

= 2.25 + 0.25 + 2.25 + 56.25 + 2.25 + 6.25 + 2.25 + 0.25

= 72.0

Now, to calculate σ² (variance), we can use the following formula:

σ² = SS / N= 72.0 / 8= 9.0

Therefore, we get the variance of this population as 9.0.

To calculate σ (standard deviation), we can use the following formula:σ = √(σ²)= √(9.0)= 3.0

Thus, the standard deviation of this population is 3.0.

Hence, the SS (sum of squares), variance (σ²), and standard deviation (σ) of the given population N=8 scores: 1, 3, 1, 10, 1, 0, 1, 3 are 72.0, 9.0, and 3.0 respectively.

To know more about mean value visit:

brainly.com/question/14882017

#SPJ11

Assume that random guesses are made on a 5 multiple choice ACT
test, so there is n=5 trials, with the probability of correct given
by p=0.20 use binomial probability
A) Find the probability that the n

Answers

The probability that the n = 5 guesses are all incorrect using binomial probability is 0.32768. Given that random guesses are made on a 5 multiple choice ACT test, there are n = 5 trials, with the probability of correct given by p = 0.20.

We have to find the probability that the n = 5 guesses are all incorrect using binomial probability. The binomial probability is used to find the probability of the x number of successes in n independent trials.

The formula for binomial probability is :P(x) = ([tex]nCx[/tex]) * [tex]p^x[/tex]* [tex]q^(n-x)[/tex] where [tex]nCx = n! / (x! * (n-x)!)[/tex] and q = 1 - p.

To find the probability that the n = 5 guesses are all incorrect, we need to find the probability that the x = 0 guesses are correct. So, we have: x = 0, n = 5, p = 0.20,

q = 1 - p

= 0.80P(x = 0)

= 5C₀ * 0.20⁰ * 0.80⁵

= 1 * 1 * 0.32768

= 0.32768

Therefore, the probability that the n = 5 guesses are all incorrect using binomial probability is 0.32768.

Answer: The probability that the n = 5 guesses are all incorrect using binomial probability is 0.32768.

To know more about probability, refer

https://brainly.com/question/24756209

#SPJ11

11 A cone is made from a sector of a circle of radius 14 cm and angle of 90°. What is the area of the curved surface of the cone? (WAEC)

Answers

The area of the curved surface of the cone is approximately [tex]876.12 cm^2.[/tex]

To find the area of the curved surface of the cone, we need to calculate the circumference of the base and the slant height of the cone.

The radius of the sector is given as 14 cm, and the angle of the sector is 90°.  

Since the angle is 90°, it forms a quarter of a circle.

The circumference of the base of the cone is equal to the circumference of a circle with radius 14 cm, which can be calculated using the formula:

C = 2πr = 2π(14) = 28π cm.

Next, we need to find the slant height of the cone.

The slant height can be calculated using the Pythagorean theorem. We have a right triangle with the radius as the base (14 cm), the height as the radius of the sector (14 cm), and the slant height as the hypotenuse. Using the Pythagorean theorem, we can solve for the slant height (l):

l^2 = r^2 + h^2

l^2 = 14^2 + 14^2

l^2 = 196 + 196

l^2 = 392

l ≈ 19.8 cm.

Now we have the circumference of the base (28π cm) and the slant height (19.8 cm).

The curved surface area of the cone can be calculated using the formula:

Curved Surface Area = πrl ,

where r is the radius of the base and l is the slant height.

Curved Surface Area = π(14)(19.8)

Curved Surface Area ≈ 876.12 cm^2.

For similar question on curved surface.

https://brainly.com/question/29407659  

#SPJ8

I need these high school statistics questions to be solved. It
would be great if you write the steps on paper, too.
38. It is estimated that 13% of people in Scotland have red hair. Find the mean and standard deviation of the number of red-headed Scots in a randomly selected group of 120. A. 0.13; 120 B. 15.6; 0.01

Answers

The mean and standard deviation of the number of red-headed Scots in a randomly selected group of 120 is 15.6 and 3.7358 respectively.

Mean or expected value

μ = np = 120 × 0.13 = 15.6

The variance of the binomial distribution is σ² = npq

where q = 1 - p and n = 120

Therefore, σ² = 120 × 0.13 × 0.87 = 13.9626

The standard deviation of the binomial distribution is:

σ = √13.9626 = 3.7358

Hence, the mean and standard deviation of the number of red-headed Scots in a randomly selected group of 120 is 15.6 and 3.7358 respectively.

Option B. 15.6; 0.01 is incorrect because the correct standard deviation is 3.7358, not 0.01.

To know more about binomial distribution visit:

https://brainly.in/question/54158784

#SPJ11

Which of the following represents the volume of the solid formed by revolving the region bounded by the graphs of y x3, y-1, and x 3, about the line x-3? 27 27 On ONone of these 7. USE THE METHOD OF DISCS/SLICING/WASHERS TO FIND THE VOLUME OF A SOLID OF REVOLUTION: Which of the following statements is true? The volume of the solid formed by rotating the region bounded by the graph of y x,x -3, y 0 around the y-axis is 3 I. x2dx I only OII only OIII only OI and III

Answers

The given graphs of the region bounded by the lines y = x³, y = -1 and x = 3 are shown below:  Region Bounded by y=x³, y=-1 and x=3. This is a solid formed by revolving the region bounded by the graphs of y = x³, y = -1, and x = 3, about the line x = -3, as shown below: Region Bounded by y=x³, y=-1 and x=3 Rotated about x=-3

The given graphs of the region bounded by the lines y = x³, y = -1 and x = 3 are shown below:

Region Bounded by y=x³, y=-1 and x=3

This is a solid formed by revolving the region bounded by the graphs of y = x³, y = -1, and x = 3, about the line x = -3, as shown below:

Region Bounded by y=x³, y=-1 and x=3 Rotated about x=-3

Thus, the method of cylindrical shells can be used to find the volume of the solid formed. Here, the shell has a thickness of dx, and the radius is x + 3. The height of the shell is given by the difference between the functions y = x³ and y = -1, which is y = x³ + 1.

Thus, the volume of the solid is given by the integral:

V = ∫[x=0 to x=3] 2π(x + 3) (x³ + 1) dxV = 2π ∫[x=0 to x=3] (x⁴ + x³ + 3x² + 3x + 3) dxV = 2π [x⁵/5 + x⁴/4 + x³ + 3x²/2 + 3x]₀³= 2π [(3⁵/5 + 3⁴/4 + 3³ + 3(3)²/2 + 3(3)] - [0]≈ 298.45

Thus, the volume of the solid formed by revolving the region bounded by the graphs of y = x³, y = -1, and x = 3, about the line x = -3, is approximately 298.45 cubic units. Therefore, The volume of the solid formed by revolving the region bounded by the graphs of y = x³, y = -1, and x = 3, about the line x = -3, is approximately 298.45 cubic units. "For the second question, the statement that is true is III only. The volume of the solid formed by rotating the region bounded by the graph of y = x, x = -3, and y = 0 around the y-axis is given by the integral of the cross-sectional area with respect to y. As the axis of revolution is the y-axis, the integral limits are y = 0 to y = 3. The radius of the cross-section is given by the distance of the line x = -3 to the line x = y. Thus, the radius is given by r = y + 3. The area of the cross-section is given by A = πr² = π(y + 3)².

The volume of the solid is given by the integral:

V = ∫[y=0 to y=3] π(y + 3)² dy= π ∫[y=0 to y=3] (y² + 6y + 9) dyV = π [(3²/3) + (6(3)²/2) + (9(3))] - [0]V = π [9 + 27 + 27]V = 63π≈ 197.92

Thus, the volume of the solid formed by rotating the region bounded by the graph of y = x, x = -3, and y = 0 around the y-axis is approximately 197.92 cubic units. Therefore, statement III only is true.

To know more about integral visit: https://brainly.com/question/31059545

#SPJ11

The width of bolts of fabric is normally distributed with mean 952 mm (millimeters) and standard deviation 10 mm. (a) What is the probability that a randomly chosen bolt has a width between 944 and 957 mm? (Round your answer to four decimal places.) (b) What is the appropriate value for C such that a randomly chosen bolt has a width less than C with probability 0.8508? (Round your answer to two decimal places.) C =?

Answers

(a) The probability that a randomly chosen bolt has a width between 944 and 957 mm is 0.3830.

(b) The appropriate value for C such that a randomly chosen bolt has a width less than C with probability 0.8508 is 967.28 mm.

(a) To find the probability that a randomly chosen bolt has a width between 944 and 957 mm, we need to calculate the area under the normal distribution curve between these two values.

We can standardize the values by subtracting the mean and dividing by the standard deviation, which gives us z-scores.

For the lower bound, (944 - 952) / 10 = -0.8, and for the upper bound, (957 - 952) / 10 = 0.5. Using a standard normal distribution table or a calculator, we can find the probabilities associated with these z-scores.

The probability for a z-score of -0.8 is 0.2119, and for a z-score of 0.5, it is 0.6915. To find the probability between these two values, we subtract the lower probability from the higher probability: 0.6915 - 0.2119 = 0.4796.

Rounding the answer to four decimal places, the probability that a randomly chosen bolt has a width between 944 and 957 mm is 0.3830.

(b) To find the appropriate value for C such that a randomly chosen bolt has a width less than C with probability 0.8508, we need to find the z-score associated with this probability.

Using a standard normal distribution table or a calculator, we find that the z-score for a cumulative probability of 0.8508 is approximately 1.0364.

We can then solve for C using the formula for z-score: z = (C - mean) / standard deviation. Rearranging the formula, we have C = (z * standard deviation) + mean. Plugging in the values, C = (1.0364 * 10) + 952 = 967.28 mm.

Rounding the answer to two decimal places, the appropriate value for C such that a randomly chosen bolt has a width less than C with probability 0.8508 is 967.28 mm.

Learn more about standard normal distribution

brainly.com/question/31327019

#SPJ11

find the taylor series representation of f(x) = cos x centered at x = pi/2

Answers

The Taylor series representation of f(x) = cos x centered at x = pi/2 is - (x - pi/2) + (1/6)(x - pi/2)^3 + .The Taylor series representation of f(x) = cos x centered at x = pi/2 is - (x - pi/2) + (1/6)(x - pi/2)^3 + ...

To find the Taylor series representation of f(x) = cos x centered at x = pi/2, we will follow these steps: Step 1: Find the value of f(x) and its derivatives at x = pi/2Step 2: Write out the general form of the Taylor series Step 3: Substitute the values of the function and its derivatives into the general form of the Taylor series Step 4: Simplify the resulting series by combining like terms.

Let's begin with step 1:Find the value of f(x) and its derivatives at x = pi/2f(x) = cos x f(pi/2) = cos(pi/2) = 0f '(x) = -sin x f '(pi/2) = -sin(pi/2) = -1f ''(x) = -cos x f ''(pi/2) = -cos(pi/2) = 0f '''(x) = sin x f '''(pi/2) = sin(pi/2) = 1f ''''(x) = cos x f ''''(pi/2) = cos(pi/2) = 0

Step 2: Write out the general form of the Taylor series . The general form of the Taylor series centered at x = pi/2 is:f(x) = f(pi/2) + f '(pi/2)(x - pi/2) + (f ''(pi/2)/2!)(x - pi/2)^2 + (f '''(pi/2)/3!)(x - pi/2)^3 + (f ''''(pi/2)/4!)(x - pi/2)^4 + ...

Step 3: Substitute the values of the function and its derivatives into the general form of the Taylor seriesf(x) = 0 + (-1)(x - pi/2) + (0/2!)(x - pi/2)^2 + (1/3!)(x - pi/2)^3 + (0/4!)(x - pi/2)^4 + ...f(x) = - (x - pi/2) + (1/6)(x - pi/2)^3 + ...

Step 4: Simplify the resulting series by combining like terms .

Therefore, the Taylor series representation of f(x) = cos x centered at x = pi/2 is - (x - pi/2) + (1/6)(x - pi/2)^3 + .The Taylor series representation of f(x) = cos x centered at x = pi/2 is - (x - pi/2) + (1/6)(x - pi/2)^3 + ...

To know more about Series  visit :

https://brainly.com/question/12707471

#SPJ11

Erythromycin is a drug that has been proposed to possibly lower the risk of premature delivery. A related area of interest is its association with the incidence of side effects during pregnancy. Assume that 30% of all pregnant women complain of nausea between the 24th and 28th week of pregnancy. Furthermore, suppose that of 178 women who are taking erythromycin regularly during this period, 67 complain of nausea. Find the p-value for testing the hypothesis that incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman.
(b) At the 1% significance level, what is the conclusion of the above hypothesis test?
(A) We cannot conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is less than .02 (B) We conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is less than 0.01 (C) We conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is greater than or equal to .02 (D) We cannot conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is less than 0.01 (E) We cannot conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is greater or equal to 0.01 (F) We conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is greater than or equal to 0.01 (G) We conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is less than .02 (H) We cannot conclude that the incidence rate of nausea for the erythromycin group is greater than
for a typical pregnant woman since the p-value is greater or equal to .02

Answers

The answer is (D) We cannot conclude that the incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman since the p-value is less than 0.01.

The incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman.This is a one-sided hypothesis test, because we are interested in whether erythromycin use leads to more nausea, not whether it leads to more or less nausea. For this one-sided hypothesis test, we use the one-sided p-value, which is the probability that the observed outcome would have been at least as extreme as the observed outcome, if the null hypothesis is true.

We are trying to find the p-value for testing the hypothesis that incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman.The null hypothesis and the alternative hypothesis areH0: p ≤ 0.3HA: p > 0.3Where p is the proportion of pregnant women on erythromycin who complain of nausea. Here, the null hypothesis is that erythromycin does not increase the likelihood of nausea, and the alternative hypothesis is that erythromycin increases the likelihood of nausea.

We can find the p-value for this test as follows:We will use the normal approximation to the binomial distribution, since the sample size is large and np and n(1-p) are both greater than or equal to 5, where n is the sample size and p is the probability of success. Here, n = 178 and p = 67/178 = 0.377. Therefore, np = 67 and n(1-p) = 111.We find the test statistic, which is the z-score of the sample proportion.z = (p - P) / sqrt(P(1 - P) / n)where P = 0.3 is the hypothesized proportion of pregnant women who complain of nausea without erythromycin use. We havez = (0.377 - 0.3) / sqrt(0.3 * 0.7 / 178) = 2.149We find the one-sided p-value as P(Z > 2.149) = 0.0155.

Therefore, the answer is (A) We cannot conclude that the incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman since the p-value is less than .02At the 1% significance level, the conclusion of the above hypothesis test is that we cannot reject the null hypothesis that erythromycin use does not increase the likelihood of nausea, since the p-value is greater than 0.01. Therefore, the answer is (D) We cannot conclude that the incidence rate of nausea for the erythromycin group is greater than for a typical pregnant woman since the p-value is less than 0.01.

Learn more about erythromycin here:

https://brainly.com/question/31845707

#SPJ11

Which point below is the reflection of the point (7, -12) along the x-axis?
O (-12,7)
O (7,12)
O (-7,12)
O (12,-7)

Please help. no links. will be labeled as brainlest .

5pts

Answers

The answer is (-7, 12).

The reflection of a point along the x-axis involves changing the sign of the y-coordinate while keeping the x-coordinate the same.

Given the point (7, -12), the reflection along the x-axis will result in a point with the same x-coordinate but with the y-coordinate negated.

Therefore, the reflection of the point (7, -12) along the x-axis is (-7, 12).

Let B be the solid whose base is the circle x^(2)+y^(2)=42 and whose vertical cross sections perpendicular to the x-axis are equilateral triangles. Compute the volume of B.

Answers

To find the volume of the solid B, we need to integrate the areas of the cross sections perpendicular to the x-axis over the interval of x-values that define the base circle.

The equation of the base circle is x^2 + y^2 = 42. This is a circle with radius sqrt(42).

Each cross section perpendicular to the x-axis is an equilateral triangle. The height of each triangle is equal to the radius of the circle, which is sqrt(42), and the length of each side is also equal to the radius.

The area of an equilateral triangle is given by the formula A = (sqrt(3)/4) * s^2, where s is the length of a side. In this case, s = sqrt(42).

Now we can set up the integral to calculate the volume:

V = ∫[a, b] A(x) dx

where A(x) is the area of the cross section at a given x-value.

Since the base circle is symmetric about the y-axis, we can integrate from -sqrt(42) to sqrt(42) to cover the entire base circle.

V = ∫[-sqrt(42), sqrt(42)] (sqrt(3)/4) * (sqrt(42))^2 dx

Simplifying the expression:

V = (sqrt(3)/4) * 42 * ∫[-sqrt(42), sqrt(42)] dx

V = (sqrt(3)/4) * 42 * [x]∣[-sqrt(42), sqrt(42)]

V = (sqrt(3)/4) * 42 * (sqrt(42) - (-sqrt(42)))

V = (sqrt(3)/4) * 42 * 2sqrt(42)

V = (sqrt(3)/2) * 42 * sqrt(42)

V = (21sqrt(3)) * sqrt(42)

V = 21sqrt(126)

Finally, we can simplify the expression for the volume:

V = 21 * sqrt(9 * 14)

V = 63sqrt(14)

Therefore, the volume of the solid B is 63sqrt(14) cubic units.

To know more about volume visit-

brainly.com/question/32353664

#SPJ11

the domain is a group of people. person x is related to person y under relation m if x and y have the same biological mother. is m an equivalence relation?

Answers

In order for M to be considered an equivalence relation, it must satisfy three conditions: reflexivity, symmetry, and transitivity.

Reflexivity is when each element is related to itself, symmetry is when two elements are related to each other if they share the same relationship, and transitivity is when the relationship between two elements is transferred to a third element if it also shares the same relationship.

For M to be an equivalence relation:Reflexivity: Since the biological mother of a person is the same as the biological mother of that person, every person is related to itself under relation M. Symmetry: If person X has the same biological mother as person Y, then person Y also has the same biological mother as person X.

This implies that if X is related to Y under relation M, then Y is related to X under relation M.Transitivity: If person X has the same biological mother as person Y and person Y has the same biological mother as person Z, then person X and person Z have the same biological mother. This implies that if X is related to Y under relation M and Y is related to Z under relation M, then X is related to Z under relation M.Since M satisfies all three conditions for equivalence relation, we can say that M is an equivalence relation.

To Know more about symmetry visit:

brainly.com/question/1597409

#SPJ11

Problem # 3: (15pts) Consider two events X and Y with probabilities, P(X) = 7/15, P(XY)=1/3, and P(X/Y) = 2/3. Calculate P(Y), P(Y/X), and P(Y/X). State with reasons whether the events X and Y are dep

Answers

P(Y/X) = 5/7.

To calculate P(Y), we can use the formula for the total probability:

P(Y) = P(Y/X) * P(X) + P(Y/¬X) * P(¬X)

Since we don't have the value of P(Y/¬X), we cannot calculate P(Y) based on the given information.

To calculate P(Y/X), we can use the formula for conditional probability:

P(Y/X) = P(XY) / P(X)

Substituting the given values, we have:

P(Y/X) = (1/3) / (7/15) = (1/3) * (15/7) = 5/7

To calculate P(Y/X), we can use the formula for conditional probability:

P(Y/X) = P(XY) / P(X)

Substituting the given values, we have:

P(Y/X) = (1/3) / (7/15) = (1/3) * (15/7) = 5/7

Therefore, P(Y/X) = 5/7.

Based on the calculated probabilities, we cannot determine whether the events X and Y are dependent or independent without further information.

Learn more about   probability:  from

https://brainly.com/question/25839839

#SPJ11

Question 4 (1 point) In how many ways can 4 girls and 3 boys be arranged in a row, such that all 3 boys are not sitting together?

Answers

To calculate the number of ways the 4 girls and 3 boys can be arranged in a row such that all 3 boys are not sitting together, we need to subtract the number of arrangements where the boys are sitting together from the total number of arrangements.

Total number of arrangements:

Since we have 7 individuals (4 girls and 3 boys), the total number of arrangements without any restrictions is 7!.

Number of arrangements where the boys are sitting together:

If we consider the 3 boys as a single entity, we have 5 entities to arrange (4 girls + 1 group of boys). The number of arrangements with the boys sitting together is 5!.

To find the number of arrangements where the boys are not sitting together, we subtract the number of arrangements where the boys are sitting together from the total number of arrangements:

Number of arrangements = Total number of arrangements - Number of arrangements where boys are sitting together

= 7! - 5!

Now let's calculate the values:

Total number of arrangements = 7!

= 7 x 6 x 5 x 4 x 3 x 2 x 1

= 5040

Number of arrangements where boys are sitting together = 5!

= 5 x 4 x 3 x 2 x 1

= 120

Number of arrangements where boys are not sitting together.

= 5040 - 120

= 4920

There are 4920 ways to arrange 4 girls and 3 boys in a row such that all 3 boys are not sitting together.

To know more about arranged, visit

https://brainly.com/question/30838941

#SPJ11

A reinforced concrete section beam section size b*h=250mm*500mm concrete adopts C25 reinforced adopts HRB335 bending moment design value M= 125Kn-m try to calculate the tensile reinforcement section area as and draw. the reinforcement diagram

Answers

The tensile reinforcement section area can be calculated using the formula (M * [tex]10^6[/tex]) / (0.87 * fy * d).Tensile reinforcement section area: 276.34 mm².

What is the tensile reinforcement area?

To calculate the tensile reinforcement section area for the given reinforced concrete beam, we can use the following steps:

Determine the maximum allowable stress for the steel reinforcement based on the grade of steel (HRB335). The allowable stress for HRB335 is typically around 335 MPa.Calculate the required tensile reinforcement area using the formula:

As = (M * [tex]10^6[/tex]) / (0.87 * fy * d)

Where:

M is the bending moment (125 kN-m in this case).

fy is the yield strength of the steel reinforcement (typically 335 MPa).

d is the effective depth of the beam, which can be taken as the total depth of the beam minus the cover.

Determine the effective depth of the beam. In this case, the total depth of the beam is 500 mm, and considering a typical cover of 25 mm on each side, the effective depth would be 500 mm - 2 * 25 mm = 450 mm.Substitute the values into the formula to calculate the required tensile reinforcement area.

Using these steps, the tensile reinforcement section area can be determined, and a reinforcement diagram can be drawn accordingly. However, since I can't draw diagrams directly, I can provide the calculated value for the tensile reinforcement section area, which you can use to create the diagram.

Learn more about reinforcement

brainly.com/question/5162646

#SPJ11

what are the dimensions of the lightest open-top right circular cylindrical can that will hold a volume of 125 cm3?

Answers

The given volume is 125 cm³. Let the and the radius of the right circular cylindrical can be h and r cm respectively.

Then, the volume of the can is given by the formula V=πr²hWhere π = 3.14So, 125 = 3.14 × r² × h ----(1)The weight of the can is directly proportional to the surface area of the material. Since the cylindrical can is an open-top can, it will have a single sheet of metal as its surface. Hence, the weight of the can depends on the surface area of the sheet metal. The surface area of the sheet metal is given by S = 2πrh + πr²Since we need to find the dimensions of the lightest open-top right circular cylindrical can, we need to minimize the surface area of the sheet metal.

To know more about circular visit:

brainly.com/question/13731627

#SPJ11

tacked People gain weight when they take in more energy from food than they expend. James Levine and his collaborators at the Mayo Clinic investigated the link between obesity and energy spent on daily activity. They chose 20 healthy volunteers who didn't exercise. They deliberately chose 10 who are lean and 10 who are mildly obese but still healthy. Then they attached sensors that monitored the subjects' every move for 10 days. The table presents data on the time (in minutes per day) that the subjects spent standing or walking, sitting, and lying down. Time (minutes per day) spent in three different postures by lean and obese subjects Group Subject Stand/Walk Sit Lie Lean 1 511.100 370.300 555.500 607.925 374.512 450.650 319.212 582.138 537.362 584.644 357.144 489.269 578.869 348.994 514.081 543.388 385.312 506.500 677.188 268.188 467.700 555.656 322.219 567.006 374.831 537.031 531.431 504.700 528.838 396.962 260.244 646.281 $21.044 MacBook Pro Lean Lean Lean Lean Lean Lean Lean Lean Lean Obese 2 3 4 5 6 7 9 10 11 Question 2 of 43 > Obese Obese 11 12 13 14 15 Stacked 16 17. 18 19 Attempt 6 260.244 646.281 521.044 464.756 456.644 514.931 Obese 367.138 578.662 563.300 Obese 413.667 463.333 $32.208 Obese 347.375 567.556 504.931 Obese 416.531 567.556 448.856 Obese 358.650 621.262 460.550 Obese 267.344 646.181 509.981 Obese 410,631 572.769 448.706 Obese 20 426.356 591.369 412.919 To access the complete data set, click to download the data in your preferred format. CSV Excel JMP Mac-Text Minitab14-18 Minitab18+ PC-Text R SPSS TI Crunchlt! Studies have shown that mildly obese people spend less time standing and walking (on the average) than lean people. Is there a significant difference between the mean times the two groups spend lying down? Use the four-step process to answer this question from the given data. Find the standard error. Give your answer to four decimal places. SE= incorrect Find the test statistic 1. Give your answer to four decimal places. Incorrect Use the software of your choice to find the P-value. 0.001 < P < 0.1. 0.10 < P < 0.50 P<0.001

Answers

There is no significant difference between the mean times that lean and mildly obese people spend lying down.

Therefore, the standard error (SE) = 38.9122 (rounded to four decimal places)

To determine whether there is a significant difference between the mean times the two groups spend lying down, we need to perform a two-sample t-test using the given data.

Using the four-step process, we will solve this problem.

Step 1: State the hypotheses.

H0: μ1 = μ2 (There is no significant difference in the mean times that lean and mildly obese people spend lying down)

Ha: μ1 ≠ μ2 (There is a significant difference in the mean times that lean and mildly obese people spend lying down)

Step 2: Set the level of significance.

α = 0.05

Step 3: Compute the test statistic.

Using the given data, we get the following information:

Mean of group 1 (lean) = 523.1236

Mean of group 2 (mildly obese) = 504.8571

Standard deviation of group 1 (lean) = 98.7361

Standard deviation of group 2 (mildly obese) = 73.3043

Sample size of group 1 (lean) = 10

Sample size of group 2 (mildly obese) = 10

To find the standard error, we can use the formula:

SE = √[(s12/n1) + (s22/n2)]

where s1 and s2 are the sample standard deviations,

n1 and n2 are the sample sizes, and

the square root (√) means to take the square root of the sum of the two variances.

Dividing the formula into parts, we have:

SE = √[(s12/n1)] + [(s22/n2)]

SE = √[(98.73612/10)] + [(73.30432/10)]

SE = √[9751.952/10] + [5374.364/10]

SE = √[975.1952] + [537.4364]

SE = √1512.6316SE = 38.9122

Rounded to four decimal places, the standard error is 38.9122.

To compute the test statistic, we can use the formula:

t = (x1 - x2) / SE

where x1 and x2 are the sample means and

SE is the standard error.

Substituting the values we have:

x1 = 523.1236x2 = 504.8571

SE = 38.9122t

= (523.1236 - 504.8571) / 38.9122t

= 0.4439

Rounded to four decimal places, the test statistic is 0.4439.

Step 4: Determine the p-value.

We can use statistical software of our choice to find the p-value.

Since the alternative hypothesis is two-tailed, we look for the area in both tails of the t-distribution that is beyond our test statistic.

t(9) = 2.262 (this is the value to be used to determine the p-value when α = 0.05 and degrees of freedom = 18)

Using statistical software, we find that the p-value is 0.6647.

Since 0.6647 > 0.05, we fail to reject the null hypothesis.

This means that there is no significant difference between the mean times that lean and mildly obese people spend lying down.

Therefore, the answer is: SE = 38.9122 (rounded to four decimal places)

For such more questions on standard error

https://brainly.com/question/14467769

#SPJ8

Assume the random variable x is normally distributed with mean μ=84 and standard deviation σ=4. Find the indicated probability.​P(x<76)
​P(x<76)=

Answers

From the standard normal distribution table, the area to the left of z = -2.00 is 0.0228.So, P(x < 76) = 0.0228

Given that the random variable x is normally distributed with the mean μ = 84 and standard deviation σ = 4.

We have to find the probability P(x < 76). Formula used: The standard normal distribution is a normal distribution of z-scores.  It has a mean of 0 and a standard deviation of 1.  The z-score of any value in a data set is the number of standard deviations a data point is from the mean. It can be found using the formula: Z = (x-μ) / σ Where, Z is the standard score x is the raw score μ is the population meanσ is the population standard deviation To find the probability P(x < 76), we have to transform the given value into the standard normal distribution as follows: Z = (x-μ) / σ= (76-84) / 4= -2.00

Now, we have the z-score -2.00 and we have to find the probability P(x < 76) from the normal distribution table. The standard normal distribution table shows the area to the left of a given z-score. Therefore, P(x < 76) is the area to the left of z = -2.00

To Know more about standard normal distribution visit:

https://brainly.com/question/15103234

#SPJ11

Other Questions
PLEASE HELP! WILL MEDAL! 1. Write the balanced equation for the reaction between zinc and acetic acid? 2. Classify the reaction between zinc and acetic acid and explain, in general terms, what happens during this type of reaction? 3. Give an example of a type of element and a type of compound that are likely to participate in this type of reaction? Milky Way galaxy has a halo filled with dark matter. The total mass of the dark matterhalo is about 1012 MSun, or 21042 kg. To simplify things, lets assume this dark matter halois spherical with a radius of about 100,000 light years, and that it is uniformly filled withwhatever is responsible for dark matter. The following calculations will help you to com-pare different dark matter hypotheses to see if they are reasonable. You will need to usethe formula for the volume of a sphere and the definition of density as mass per volume.A. Consider the hypothesis that black holes with a mass of the sun are responsible fordark matter. If this is true, what is the volume of space in our galaxy within which wewould expect to find one such black hole?B. Take the cubed root of this volume, which gives you an estimate of approximately howclose we would expect such a black hole to be to our own solar system on average.Given that the closest black holes that we know of are several thousand light yearsaway, does this dark matter hypothesis seem possible?C. What if the dark matter were due to planet-sized black holes, about 10 Earth masseseach? Following the same steps as in part A and B to estimate about how close wewould expect such a black hole to be to Earth. If Planet X is found to be a black holeabout 600 AU from the Sun, would this support this theory explaining dark matter Consider the area of your garden. If you wantto plant 8 items in your garden, and each item requires 2 sq. ft.of space, will you have enough space in your garden for the 8vegetable plants? Show all an authentic brazilian restaurant opens next to the asu campus; fro asu students unfamiliar with this cuisine, thai restaurant represents an example of which health agencies is a governmental health organization? The following is an extract from the financial statements of Sondeza (Pty) Ltd for the year ended 31 December 2021 2021 R Net profit for the period 110 775 Capital and reserves 738 500 Trade and other payables 271 500Current assets 910 000 Non-current assets 1 200 000 The return on equity for 2021 was determined to be______A. 10%B. 15%C. 9%D. 5,25% Suppose that the world economy consists of Country A and Country B, both of which are of similar size. Both countries produce Good 1 and Good 2. Suppose Country A and Country B open for trade and the world price for Good 1 is $25. This results in Country A exporting 800 units of Good 1 to Country B. Which of the following must be true? Country B has an absolute advantage in Good 1 Country A has an absolute advantage in Good 1 Country A has a comparative advantage in Good 2 None of the above what is the explicit rule for the geometric sequence? 9,6,4,83, enter your answer in the box. PizzaRush Inc, which is located in the general Los Angeles rares very well with competition in allening test vivery. Many students at the rates and community to womens orders made in the web at Puzush.com. The owner, a software engineering of UPPR, plan to purchase and install the porti in terms to increased The provides a link between the web orderplacement software and on-Stars for sale-grated directions to Los Angeles en There is fuder traditionen and more income for PauzaRush Each system costs 14.600, has a 5-year useful life, and may be salvaged for an estimated $300 Total operating cost for all systems is as for the first year, increasing by 350 per year her The owner will not make any money inversion he does not receive 10% or more in return Performans worth evaluation for the owner befowing question The owner conservatively estimates increased income of $1 200 per year for all five systems. It is project financially viable at the MARR? Explain the answer. Draw the cash flow now diagram for this problem. Investigate and critique the role of ward committees in municipal performance management. Why do Earth, Mars, and Venus lack any hydrogen and helium in their atmospheres?a. They spin too quickly on their axes.b. Their gravitational pull is too weak.c. Their gravitational pull is too strong.d. Their masses are too large. Write a paragraph that discusses three root causes of academicdishonesty, and explain what the solution would be for each. a. Determine the value of c b. What proportion of actual tracking weights exceeds the target weight? c. What proportion of actual tracking weights are within .25 g of the target weight? Extracts from Zee's quarterly income state- ments and balance sheets for the four quar- ters of year 1 are as follows: Q1 Q2 $ $ Millions Millions Q3 Q4 $ $ Millions Millions Sales 1,000 1,020 1,030 1,040 PPE 1,000 1,000 1,500 1,500 Total assets 5,000 5,100 5,600 5,700 Required a. Calculate the sales/PPE ratio for quarters 1-4. b. Calculate the sales/total assets ratio for quarters 1-4. c. Comment on the above ratios. Listen Buyers of products and/or services are always found in the purchasing department. True False why did merchants use letters of credit and bills of exchange? A stock price (which pays no dividends) is $50 and the strike price of a two year European put option is $54. The risk-free rate is 3% (continuously compounded). Which of the following is a lower bound for the option such that there are arbitrage opportunities if the price is below the lower bound and no arbitrage opportunities if it is above the lower bound? 9. A stock price (which pays no dividends) is $50 and the strike price of a two year European put option is $54. The risk-free rate is 3% (continuously compounded). Which of the following is a lower bound for the option such that there are arbitrage opportunities if the price is below the lower bound and no arbitrage opportunities if it is above the lower bound? 10. The current price of a non-dividend-paying stock is $40. Over the next year it is expected to rise to $42 or fall to $37. An investor buys put options with a strike price of $41. What is the value of each option? The risk-free interest rate is 2% per annum with continuous compounding. HIPAA requires: Group of answer choices A) The non-transmittal of individual health information over the internet B)The non-disclosure of personal health information by health care workers without proper consent C)That individuals carry their insurance cards with them D)The protection of personal health information by health care workers and patients E)None of the listed Rialto Company collected $5,000 on account. What impact will this transaction have on the firm's current ratio? Multiple Choice No impact Decrease it Increase it Not enough information is provided to answer the question The Green Company processes unprocessed goat milk up to the split-off point where two products, condensed goat milk and skim goat milk result. The following information was collected for the month of October:Direct Materials processed: 102,500 gallons (after shrinkage)Production: Condensed goat milk 45,000 gallonsSkim goat milk 57,500 gallonsSales: Condensed goat milk $3.50 per gallonSkim goat milk $3.00 per gallonThe costs of purchasing the of unprocessed goat milk and processing it up to the split-off point to yield a total of 102,500 gallons of saleable product was $189,480. There were no inventory balances of either product. Condensed goat milk may be processed further to yield 44,500 gallons (the remainder is shrinkage) of a medicinal milk product, Xyla, for an additional processing cost of $6 per usable gallon. Xyla can be sold for $22 per gallon.Skim goat milk can be processed further to yield 56,200 gallons of skim goat ice cream, for an additional processing cost per usable gallon of $6. The product can be sold for $14 per gallon.There are no beginning and ending inventory balances.How much (if any) extra income would Green earn if it produced and sold all of the Xyla from the condensed goat milk? Allocate joint processing costs based upon relative sales value on the split-off. (Extra income means income in excess of what Green would have earned from selling condensed goat milk.) (Round intermediary percentages to the nearest hundredth.)