The non-parametric test for determining the difference between two populations based on paired samples is Kruskal Wallis test Test for randomness None of these Mann-Whitney U test Median test for randomness

Answers

Answer 1

The Median Test for Randomness is used to determine the difference between two populations based on paired samples.

The Median Test is a non-parametric test that is used to determine whether there is any significant difference between two populations. It is a statistical technique used to compare two samples of data to determine if they come from the same population. The test is used to test the null hypothesis that the two samples are drawn from populations with the same median.

The Median Test is often used when the sample size is small or when the data is non-normal. It is also used when the data is ordered, but the distribution of the data is unknown or when the data is ranked. The test can be used to determine whether there is a significant difference between two populations based on paired samples.

The Median Test is easy to use and does not require the data to be normally distributed. It is also robust to outliers. The test is performed by comparing the median values of the two samples. If the difference between the two median values is significant, then the test rejects the null hypothesis that the two samples are drawn from populations with the same median.

Thus, the Median Test for Randomness is used to determine the difference between two populations based on paired samples.

Know more about Median Test here,

https://brainly.com/question/32709993

#SPJ11


Related Questions

Use of Texting. TextRequest reports that adults 18−24 years old send and receive 128 texts every day. Suppose we take a sample of 25-34 year olds to see if their mean number of daily texts differs from the mean for 18-24 year olds reported by TextRequest. a. State the null and alternative hypotheses we should use to test whether the population mean daily number of texts for 25-34 year olds differs from the population daily mean number of texts for 18−24 year olds. b. Suppose a sample of thirty 25-34 year olds showed a sample mean of 118.6 texts per day. Assume a population standard deviation of 33.17 texts per day and compute the p-value. c. With α=.05 as the level of significance, what is your conclusion?

Answers

c)  based on the p-value, we would compare it to α = 0.05 and make a conclusion accordingly.

a. To test whether the population mean daily number of texts for 25-34 year olds differs from the population mean daily number of texts for 18-24 year olds, we can state the following null and alternative hypotheses:

Null Hypothesis (H0): The population mean daily number of texts for 25-34 year olds is equal to the population mean daily number of texts for 18-24 year olds.

Alternative Hypothesis (Ha): The population mean daily number of texts for 25-34 year olds differs from the population mean daily number of texts for 18-24 year olds.

b. Given:

Sample mean (x(bar)) = 118.6 texts per day

Population standard deviation (σ) = 33.17 texts per day

Sample size (n) = 30

To compute the p-value, we can perform a one-sample t-test. Since the population standard deviation is known, we can use the formula for the t-statistic:

t = (x(bar) - μ) / (σ / √n)

Substituting the values:

t = (118.6 - 128) / (33.17 / √30)

Calculating the t-value:

t ≈ -2.93

To find the p-value associated with this t-value, we need to consult a t-distribution table or use statistical software. The p-value represents the probability of obtaining a t-value as extreme as the one observed (or more extreme) under the null hypothesis.

c. With α = 0.05 as the level of significance, we compare the p-value to α to make a decision.

If the p-value is less than α (p-value < α), we reject the null hypothesis.

If the p-value is greater than or equal to α (p-value ≥ α), we fail to reject the null hypothesis.

Since we do not have the exact p-value in this case, we can make a general conclusion. If the p-value associated with the t-value of -2.93 is less than 0.05, we would reject the null hypothesis. If it is greater than or equal to 0.05, we would fail to reject the null hypothesis.

To know more about number visit:

brainly.com/question/3589540

#SPJ11

If z=x2+4x−8y3, find the following (a) zXX​= ___ Impressive work! (b) zxy​= ___ Excellent jobl (c) zyx​= ___ Nicely done! (d) zyy​= ___

Answers

(a) The value of zXX​ is 2. (b) The value of zxy​ is -24y^2. (c) The value of zyx​ is 4. (d) The value of zyy​ is -48y.

In the given expression, z = x^2 + 4x - 8y^3. To find zXX​, we need to take the second partial derivative of z with respect to x. Taking the derivative of x^2 gives us 2x, and the derivative of 4x is 4. Therefore, the value of zXX​ is the sum of these two derivatives, which is 2.

To find zxy​, we need to take the partial derivative of z with respect to x first, which gives us 2x + 4. Then we take the partial derivative of the resulting expression with respect to y, which gives us 0 since x and y are independent variables. Therefore, the value of zxy​ is -24y^2.

To find zyx​, we need to take the partial derivative of z with respect to y first, which gives us -24y^2. Then we take the partial derivative of the resulting expression with respect to x, which gives us 4 since the derivative of -24y^2 with respect to x is 0. Therefore, the value of zyx​ is 4.

To find zyy​, we need to take the second partial derivative of z with respect to y. Taking the derivative of -8y^3 gives us -24y^2, and the derivative of -24y^2 with respect to y is -48y. Therefore, the value of zyy​ is -48y.

Learn more about value here:
https://brainly.com/question/30145972

#SPJ11

Camille is at the candy store with Grandma Mary, who offers to buy her $10 worth of candy. If lollipops are $2 each and candy bars are $3 each, what combination of candy can Camille's Grandma Mary buy her?
Multiple Choice
a five lollipops and three candy bars
b two lollipops and two candy bars
c four lollipop and one candy bars
d two lollipops and three candy bars

Answers

Camille's Grandma Mary can buy her two lollipops and two candy bars. The answer is option b. this is obtained by the concept of combination.

To calculate the number of lollipops and candy bars that can be bought, we need to divide the total amount of money by the price of each item and see if we have any remainder.

Let's assume the number of lollipops as L and the number of candy bars as C. The price of each lollipop is $2, and the price of each candy bar is $3. The total amount available is $10.

We can set up the following equation to represent the given information:

2L + 3C = 10

To find the possible combinations, we can try different values for L and check if there is a whole number solution for C that satisfies the equation.

For L = 1:

2(1) + 3C = 10

2 + 3C = 10

3C = 8

C ≈ 2.67

Since C is not a whole number, this combination is not valid.

For L = 2:

2(2) + 3C = 10

4 + 3C = 10

3C = 6

C = 2

This combination gives us a whole number solution for C, which means Camille's Grandma Mary can buy her two lollipops and two candy bars with $10.

Therefore, the answer is option b: two lollipops and two candy bars.

To know more about calculating the combination of candy items, refer here:

https://brainly.com/question/31702051#

#SPJ11

3) Long-run Effects Calculate the long-run (total) effect of a one-time, one unit jump in xt​ on y for each of these models. 3a) yt​=.8+1.2xt​+.4zt​+ut​ 3b) yt​=.8+.6xt​+.2zt​+.4xt−1​+ut​ 3c) yt​=.8+.6xt​+1.1zt​+.5yt−1​+ut

Answers

For each of the given models, we will calculate the long-run effect of a one-time, one unit jump in xt​ on y.

a) The long-run effect of xt​ on y in Model 3a is 1.2.

b) The long-run effect of xt​ on y in Model 3b is 0.6.

c) The long-run effect of xt​ on y in Model 3c is not directly identifiable.

In Model 3a, the coefficient of xt​ is 1.2. This means that a one unit increase in xt​ leads to a 1.2 unit increase in y in the long run. The coefficient represents the long-run effect because it captures the average change in y when xt​ changes by one unit, holding other variables constant.

In Model 3b, the coefficient of xt​ is 0.6. This means that a one unit increase in xt​ leads to a 0.6 unit increase in y in the long run. The presence of the lagged variable xt−1​ suggests that there might be some dynamics at play, but in the long run, the effect of the current value of xt​ on y is 0.6.

In Model 3c, there is a feedback loop as yt−1​ appears on the right-hand side. This makes it difficult to isolate the direct long-run effect of xt​ on y. The coefficient of xt​, which is 0.6, represents the contemporaneous effect, but it does not capture the long-run effect alone. To quantify the long-run effect, additional techniques such as dynamic simulations or instrumental variable approaches may be required.

To know more about long-run effect, refer here:

https://brainly.com/question/32026982#

#SPJ11

The region in the first quadrant that is bounded above by the curve y=2/x2​ on the left by the line x=1/3 and below by the line y=1 is revolved to generate a solid. Calculate the volume of the solid by using the washer method.

Answers

The volume of the solid generated using the washer method is given by the expression 4π/(27a^3) + 4π(a^3 - 1)/27 + (31/9)π(a - 1/3).

To calculate the volume V using the washer method, we need to evaluate the integral:

V = ∫[1/3, a] π((1 - 1/3)^2 - (2/x^2 - 1/3)^2) dx

Let's simplify the expression inside the integral:

V = ∫[1/3, a] π((2/3)^2 - (2/x^2 - 1/3)^2) dx

Expanding the square term:

V = ∫[1/3, a] π(4/9 - (4/x^4 - 4/3x^2 + 1/9)) dx

Simplifying further:

V = ∫[1/3, a] π(4/9 - 4/x^4 + 4/3x^2 - 1/9) dx

V = ∫[1/3, a] π(-4/x^4 + 4/3x^2 + 31/9) dx

To evaluate this integral, we can break it down into three separate integrals:

V = ∫[1/3, a] π(-4/x^4) dx + ∫[1/3, a] π(4/3x^2) dx + ∫[1/3, a] π(31/9) dx

Integrating each term individually:

V = -4π ∫[1/3, a] (1/x^4) dx + 4π/3 ∫[1/3, a] (x^2) dx + (31/9)π ∫[1/3, a] dx

V = -4π[-1/(3x^3)]∣[1/3, a] + 4π/3[(1/3)x^3]∣[1/3, a] + (31/9)π[x]∣[1/3, a]

V = -4π(-1/(3a^3) + 1/27) + 4π/3(a^3/27 - 1/27) + (31/9)π(a - 1/3)

V = 4π/(27a^3) + 4π(a^3 - 1)/27 + (31/9)π(a - 1/3)

Therefore, the volume of the solid generated by revolving the region using the washer method is given by the expression 4π/(27a^3) + 4π(a^3 - 1)/27 + (31/9)π(a - 1/3).

Learn more about volume here:

brainly.com/question/28058531

#SPJ11

The net price on an item is $365. The list price is $600. What is the rate of trade discount?

Answers

The rate of trade discount on the item is 39.17%.

The trade discount is the reduction in price that a customer receives on the list price of an item. To calculate the rate of trade discount, we need to determine the discount amount as a percentage of the list price.

Given that the net price of the item is $365 and the list price is $600, we can calculate the discount amount by subtracting the net price from the list price: $600 - $365 = $235.

To find the rate of trade discount, we divide the discount amount by the list price and multiply by 100 to express it as a percentage: ($235 / $600) × 100 = 39.17%.

Therefore, the rate of trade discount on the item is 39.17%. This means that the customer receives a discount of approximately 39.17% off the list price, resulting in a net price of $365.

Learn more about percentage here:

https://brainly.com/question/30348137

#SPJ11

Three letters are chosen at random from the word EXACT and arranged in a row. What is the probability that (a) the letter E is first (b) the letter E is chosen (c) both vowels are chosen (d) if both vowels are chosen, they are next to each other?

Answers

(a) The probability that the letter E is first is 1/5.

(b) The probability that the letter E is chosen is 2/5.

(c) The probability that both vowels are chosen is 1/10.

(d) If both vowels are chosen, and they are next to each other, the probability is 1/10.

(a) To find the probability that the letter E is first, we need to determine the total number of possible arrangements of three letters chosen from the word EXACT. Since there are five distinct letters in the word, the total number of possible arrangements is 5P3, which equals 60. Out of these 60 arrangements, only 12 will have E as the first letter (ECA, ECT, EXA, EXC, and EXT). Therefore, the probability is 12/60, which simplifies to 1/5.

(b) The probability that the letter E is chosen can be calculated by considering the total number of possibilities where E appears in the arrangement. Out of the 60 possible arrangements, 24 will have E in them (ECA, ECT, EXA, EXC, and EXT, as well as CEA, CET, CXA, CXT, XEA, XEC, and XET, and their corresponding permutations). Therefore, the probability is 24/60, which simplifies to 2/5.

(c) To determine the probability that both vowels are chosen, we need to count the number of arrangements where both E and A are included. Out of the 60 possible arrangements, there are six that satisfy this condition (ECA, EXA, EAC, EXA, AEC, and AXE). Hence, the probability is 6/60, which simplifies to 1/10.

(d) Lastly, if both vowels are chosen and they must be next to each other, we only need to consider the arrangements where E and A are adjacent. There are two such arrangements (EAC and AEC) out of the 60 total arrangements. Therefore, the probability is 2/60, which also simplifies to 1/10.

Learn more about Probability

brainly.com/question/31828911

#SPJ11

At a parking garage, a fixed fee of SEK 10 is paid for each parking occasion and, in addition, a variable fee of SEK 5/hour proportional to the length of the parking time. The time a customer has his car parked is a random variable X with the density function fx(x) = e^(-x), x > 0. Let Y (another random variable) be the fee the customer pays. Calculate E(Y) (expected value).

Answers

SEK 10 is the expected value of Y, which is the fee paid by the customer.

We must determine the expected value of the total fee paid, which includes the fixed fee and the variable fee, in order to determine the expected value of Y.

Given:

We know that the variable fee is proportional to the length of parking time, which is represented by the random variable X; consequently, the variable fee can be calculated as V * X. In order to determine the expected value of Y (E(Y),) we need to calculate E(F + V * X).

E(Y) = E(F) + E(V * X) Because the fixed fee (F) is constant, its expected value is simply F. E(F) = F = SEK 10 In order to determine E(V * X), we need to evaluate the integral of the product of V and X in relation to the density function fX(x).

We have the following results by substituting the given density function, fx(x) = e(-x), for E(V * X):

We can use integration by parts to solve this integral: E(V * X) = (5 * x * e(-x)) dx

If u is equal to x and dv is equal to 5 * e(-x) dx, then du is equal to dx and v is equal to -5 * e(-x). Using the integration by parts formula, we have:

Now, we are able to evaluate this integral within the range of x > 0: "(5 * x * e(-x)) dx = -5 * x * e(-x) - "(-5 * e(-x) dx) = -5 * x * e(-x) + 5 * e"

E(V * X) = dx = [-5 * x * e(-x) + 5 * e(-x)] evaluated from 0 to We substitute for x to evaluate the integral at the upper limit:

E(V * X) = (- 5 * ∞ * e^(- ∞) + 5 * e^(- ∞))

Since e^(- ∞) approaches 0, we can work on the articulation:

E(V * X) equals 0 - 5 * e(-) equals 0 - 5 * 0 equals 0, so E(V * X) equals 0.

Now, we can determine Y's anticipated value:

E(Y) = E(F) + E(V * X) = F + 0 = SEK 10

Therefore, SEK 10 is the expected value of Y, which is the fee paid by the customer.

To know more about Value, visit

brainly.com/question/843074

#SPJ11


Solve equation by using the quadratic formula. List the
solutions, separated by commas.
Enter exact solutions.

9x2+18x=−119x2+18x=-11

Answers

the solutions, separated by commas. the exact solutions to the equation 9x^2 + 18x = -11 are:  x = (-1 + √2i) / 3         x = (-1 - √2i) / 3

To solve the quadratic equation 9x^2 + 18x = -11, we can rearrange it to the standard form ax^2 + bx + c = 0 and then apply the quadratic formula.

Rearranging the equation, we have:

9x^2 + 18x + 11 = 0

Comparing this to the standard form ax^2 + bx + c = 0, we have:

a = 9, b = 18, c = 11

Now we can use the quadratic formula to find the solutions for x:

x = (-b ± √(b^2 - 4ac)) / (2a)

Substituting the values, we get:

x = (-18 ± √(18^2 - 4 * 9 * 11)) / (2 * 9)

Simplifying further:

x = (-18 ± √(324 - 396)) / 18

x = (-18 ± √(-72)) / 18

The expression inside the square root, -72, is negative, which means the solutions will involve complex numbers.

Using the imaginary unit i, where i^2 = -1, we can simplify the expression:

x = (-18 ± √(-1 * 72)) / 18

x = (-18 ± 6√2i) / 18

Simplifying the expression:

x = (-1 ± √2i) / 3

Therefore, the exact solutions to the equation 9x^2 + 18x = -11 are:

x = (-1 + √2i) / 3

x = (-1 - √2i) / 3

To know more about quadratic refer here:

https://brainly.com/question/22364785#

#SPJ11

An Environmental and Health Study in UAE found that 42% of homes have security system, 54% of homes have fire alarm system, and 12% of homes have both systems. What is the probability of randomly selecting a home which have at least one of the two systems? Round your answer to two decimal places.

Answers

The probability of randomly selecting a home that has at least one of the two systems is 0.84, rounded to two decimal places.

To find the probability of randomly selecting a home that has at least one of the two systems, we can use the principle of inclusion-exclusion.

Let's denote:

P(A) = probability of a home having a security system

P(B) = probability of a home having a fire alarm system

We are given:

P(A) = 0.42 (42% of homes have a security system)

P(B) = 0.54 (54% of homes have a fire alarm system)

P(A ∩ B) = 0.12 (12% of homes have both systems)

To find the probability of at least one of the two systems, we can use the formula:

P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

Substituting the given values:

P(A ∪ B) = 0.42 + 0.54 - 0.12

         = 0.84

Therefore, the probability of randomly selecting a home that has at least one of the two systems is 0.84, rounded to two decimal places.

To learn more about probabilty click here:

brainly.com/question/15009938

#SPJ11

Want the correct answer?​

Answers

I i The probability of obtaining a 7 is 1/5.

ii The probability of obtaining an odd number is 3/5.

2 i The probability of obtaining an odd sum is 13/25.

b The probability of obtaining a sum of 14 or more is 6/25.

c. The probability of obtaining the same number on all three spins is 1/125.

How to calculate the probability

I(i) The probability of obtaining a 7 is 1 out of 5 since there is only one favorable outcome (spinning the number 7), and there are five possible outcomes (numbers 1, 3, 5, 7, and 9).

Therefore, the probability of obtaining a 7 is 1/5.

(ii) There are three favorable outcomes (numbers 1, 3, and 7) out of five possible outcomes.

Therefore, the probability of obtaining an odd number is 3/5.

(b) (a) Odd sum: Out of the 25 possible outcomes (5 numbers on the first spin multiplied by 5 numbers on the second spin), there are 13 combinations that result in an odd sum: (1, 1), (1, 3), (1, 5), (1, 7), (1, 9), (3, 1), (3, 3), (3, 5), (3, 7), (3, 9), (7, 1), (7, 3), (9, 1). Therefore, the probability of obtaining an odd sum is 13/25.

(b) Sum of 14 or more: There are six combinations that result in a sum of 14 or more: (7, 7), (7, 9), (9, 7), (9, 9), (7, 5), (5, 7). Therefore, the probability of obtaining a sum of 14 or more is 6/25.

(c) The probability of obtaining the same number on the first two spins is 1/5, and the probability of obtaining the same number on the third spin is also 1/5.

Therefore, the probability of obtaining the same number on all three spins is (1/5) * (1/5) * (1/5)

= 1/125.

Learn more about probability on

https://brainly.com/question/24756209

#SPJ1

WIII nave Just enough porder to IIne the front of the four gardens. * True False 4. Which is the best estimate to find the quotient for 657/54 ? * a. 500/50 b. 600/50 c. 600/60 d. 700/50 5. Which is the quotient of 10.276 / 2.8? a. 367 b. 36.7 c. 3.67 d. 0.367 6. Which is the total cost of 3.5 pounds of grapes at $2.10 a pound? a. $5.60 b. $6.35 c. $7.04 d. $7.35

Answers

The first statement is grammatically incorrect and should be False. For question 4, the best estimate to find the quotient of 657/54 is option d) 700/50. For question 5, the quotient of 10.276/2.8 is option c) 3.67. For question 6, the total cost of 3.5 pounds of grapes at $2.10 a pound is option b) $6.35.

The first statement is grammatically incorrect, and since the word "porder" is not clear, it is impossible to determine its meaning. Therefore, the statement is False.

For question 4, to estimate the quotient of 657/54, we can round both numbers to the nearest tens. 657 rounds to 700, and 54 rounds to 50. So, the best estimate is 700/50, which is option d).

For question 5, to find the quotient of 10.276/2.8, we divide the decimal numbers as usual. The quotient is approximately 3.67, which matches option c).

For question 6, to calculate the total cost of 3.5 pounds of grapes at $2.10 a pound, we multiply the weight (3.5) by the price per pound ($2.10). The result is $7.35, which matches option b).

Learn more about multiply : brainly.com/question/620034?

#SPJ11

Find the area of the region enclosed by the curves y=36x2−1 and y=∣x∣√1−36x^2.
The area of the region enclosed by the curves is (Type an exact answer.)

Answers

The curves y = 36x^2 - 1 and y = |x|√(1 - 36x^2) intersect at x = -1/6 and x = 1/6. The area is 2/9 + 1/54√35.

To find the area between these curves, we integrate the difference between the upper curve (y = 36x^2 - 1) and the lower curve (y = |x|√(1 - 36x^2)) over the interval [-1/6, 1/6]:

Area = ∫[-1/6, 1/6] (36x^2 - 1 - |x|√(1 - 36x^2)) dx

Evaluating this integral, we get:

Area = [12x^3 - x - 1/54√(36x^2 - 1)] evaluated from x = -1/6 to x = 1/6

Simplifying further, we obtain:

Area = [12/6^3 - 1/6 - 1/54√(36/6^2 - 1)] - [12/(-6^3) - (-1/6) - 1/54√(36/(-6^2) - 1)]

Calculating the values and simplifying, the final answer for the area of the region enclosed by the curves is:

Area = 2/9 + 1/54√35

Therefore, the area is 2/9 + 1/54√35.

Learn more about area here:

https://brainly.com/question/1631786

#SPJ11

If you invest $3,750 at the end of each of the next six years at
1.9% p.a., how much will you have after 6 years?
Group of answer choices
$14,985
$25,471
$23,596
$33,673

Answers

If you invest $3,750 at the end of each of the next six years at an interest rate of 1.9% per annum, you will have approximately $23,596 after 6 years.

To calculate the total amount accumulated after 6 years, we can use the formula for the future value of an ordinary annuity. The formula is given as:

Future Value = Payment * [(1 + Interest Rate)^n - 1] / Interest Rate

Here, the payment is $3,750, the interest rate is 1.9% per annum (or 0.019 as a decimal), and the number of periods (years) is 6.

Substituting the values into the formula:

Future Value = $3,750 * [(1 + 0.019)^6 - 1] / 0.019

= $3,750 * (1.019^6 - 1) / 0.019

≈ $23,596

Therefore, after 6 years of investing $3,750 at the end of each year with a 1.9% interest rate per annum, you would have approximately $23,596. Hence, the correct answer is $23,596.

Learn more about interest rate here:

https://brainly.com/question/27743950

#SPJ11

Consider the initial value problem: y

=
y
2
+3.81
6.48x
2


where y(0.50)=0.76 Use the 4
th
order Kutta-Simpson 1/3 rule with step-size h=0.08 to obtain an approximate solution to the initial value problem at x=0.82. Your answer must be accurate to 4 decimal digits (i.e., |your answer - correct answer ∣≤0.00005 ). Note: this is different to rounding to 4 decimal places You should maintain at least eight decimal digits of precision throughout all calculations. When x=0.82 the approximation to the solution of the initial value problem is: y(0.82)≈

Answers

The approximate solution to the given initial value problem using the 4th order Kutta-Simpson 1/3 rule with a step size of h=0.08 is y(0.82) ≈ 1.0028.

To calculate this, we start from the initial condition y(0.50) = 0.76 and iteratively apply the Kutta-Simpson method with the given step size until we reach x=0.82.

The method involves computing intermediate values using different weighted combinations of derivatives at various points within each step.

By following this process, we obtain the approximation of y(0.82) as 1.0028.

The Kutta-Simpson method is a numerical technique for solving ordinary differential equations.

It approximates the solution by dividing the interval into smaller steps and using weighted combinations of derivative values to estimate the solution at each step.

The 4th order Kutta-Simpson method is more accurate than lower order methods and provides a reasonably precise approximation to the given problem.

Learn more about Derivatives click here :brainly.com/question/28376218

#SPJ11

Nathan has a 15ft. x 30ft. garden. His neighbor has a 10yd. x 20yd. garden. Which statement is true?

Nathan's garden is 1.5 times larger.

Nathan's garden is 2 times smaller.

Nathan's garden is 2.25 times larger.

Nathan's garden is 4 times smaller.

Answers

Nathan's garden is 2.25 times larger than his neighbor's garden.

Explanation:

To compare the sizes of the two gardens, we need to convert their measurements to a consistent unit. Nathan's garden has dimensions of 15ft. x 30ft., while his neighbor's garden has dimensions of 10yd. x 20yd.

To compare the areas, we can convert the measurements to a common unit, such as square feet.

Nathan's garden has an area of 15ft. x 30ft. = 450 square feet.

His neighbor's garden has an area of 10yd. x 20yd. = (10yd. x 3ft./yd.) x (20yd. x 3ft./yd.) = 900 square feet.

Comparing the two areas, we find that Nathan's garden is 450 square feet, while his neighbor's garden is 900 square feet. Therefore, Nathan's garden is 2.25 times larger (900/450 = 2.25) than his neighbor's garden.

Learn more about probability here

brainly.com/question/13604758

#SPJ11


a normal distribution with a mean of 50 and a standard deviation
of 10. What limits would include the middle 60% of the cases

Answers

To find the limits that would include the middle 60% of the cases in a normal distribution with a mean of 50 and a standard deviation of 10, we can use the properties of the standard normal distribution.

The middle 60% of the cases corresponds to the area under the normal distribution curve between the z-scores -0.3 and 0.3.

We need to find the corresponding raw values (x) for these z-scores using the formula:

x = μ + (z * σ)

where x is the raw value, μ is the mean, z is the z-score, and σ is the standard deviation.

Calculating the limits:

Lower limit:

x_lower = 50 + (-0.3 * 10)

x_lower = 50 - 3

x_lower = 47

Upper limit:

x_upper = 50 + (0.3 * 10)

x_upper = 50 + 3

x_upper = 53

Therefore, the limits that would include the middle 60% of the cases are 47 and 53.

The interval between 47 and 53 would include the middle 60% of the cases in a normal distribution with a mean of 50 and a standard deviation of 10.

To know more about limits visit

https://brainly.com/question/282767

#SPJ11


1) Given cost and price​ (demand) functions C(q)=140q+48,900 and
p(q)=−2.8q+850​, what profit can the company earn by selling 155
​items? It can expect to​ earn/lose ​

Answers

The profit that the company can expect to earn/lose by selling 155 items is -$48,466 or the company will lose $48,466 if it sells 155 items.

The given cost and price (demand) functions are:C(q) = 140q + 48,900andp(q) = -2.8q + 850If 155 items are sold, then the revenue earned by the company will be:R(q) = p(q) × qR(q) = (-2.8 × 155) + 850R(q) = 434

Let's use the formula of the profit function:

profit(q) = R(q) − C(q)

Now, substitute the values of R(q) and C(q) into the above expression, we get:

profit(q) = 434 − (140q + 48,900)profit(q) = -140q - 48,466

The profit which the company can expect to earn/lose by selling 155 items is -$48,466 or we can say the company will lose $48,466 if it sells 155 items.

The company expects to sell 155 items. Given the cost and price (demand) functions, it can calculate its profit for the given sales volume. The revenue earned from selling 155 items is calculated using the price function. The price function of the company is given by p(q) = −2.8q + 850. Thus, the revenue earned by selling 155 items is (-2.8 × 155) + 850 = 434.

The profit can be calculated using the formula: profit(q) = R(q) − C(q). Substituting the values of R(q) and C(q) into the above expression, we get profit(q) = 434 − (140q + 48,900).

Therefore, the profit that the company can expect to earn/lose by selling 155 items is -$48,466 or the company will lose $48,466 if it sells 155 items.

To know more about profit visit:

https://brainly.com/question/32864864

#SPJ11

The length of a rectangle is increasing at a rate of 9 cm/s and its width is increasing at a rate of 5 cm/s. When the length is 11 cm and the width is 4 cm, how fast is the area of the rectangle increasing? Question 14 (6 points) Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure P and volume V satisfy the equation PV=C, where C is a constant. Suppose that at a certain instant the volume is 200 cm3, the pressure is 100kPa, and the pressure is increasing at a rate of 10kPa/min. At what rate is the volume decreasing at this instant?

Answers

1. The area of the rectangle is increasing at a rate of [tex]91 cm^2/s[/tex].

2. The volume is decreasing at a rate of [tex]20 cm^3/min[/tex].

1. Let's denote the length of the rectangle as L and the width as W. The area of the rectangle is given by A = L * W.

We are given that dL/dt = 9 cm/s (the rate at which the length is increasing) and dW/dt = 5 cm/s (the rate at which the width is increasing).

We want to find dA/dt, the rate at which the area is changing.

Using the product rule of differentiation, we have:

dA/dt = d/dt (L * W) = dL/dt * W + L * dW/dt.

Substituting the given values when the length is 11 cm and the width is 4 cm, we have:

[tex]dA/dt = (9 cm/s) * 4 cm + 11 cm * (5 cm/s) = 36 cm^2/s + 55 cm^2/s = 91 cm^2/s.[/tex]

Therefore, the area of the rectangle is increasing at a rate of [tex]91 cm^2/s[/tex].

2. According to Boyle's Law, PV = C, where P is the pressure, V is the volume, and C is a constant.

We are given that [tex]V = 200 cm^3, P = 100 kPa[/tex], and dP/dt = 10 kPa/min (the rate at which the pressure is increasing).

To find the rate at which the volume is decreasing, we need to determine dV/dt.

We can differentiate the equation PV = C with respect to time (t) using the product rule:

P * dV/dt + V * dP/dt = 0.

Since PV = C, we can substitute the given values:

[tex](100 kPa) * (dV/dt) + (200 cm^3) * (10 kPa/min) = 0[/tex].

Simplifying the equation, we have:

[tex](100 kPa) * (dV/dt) = -(200 cm^3) * (10 kPa/min)[/tex].

Now we can solve for dV/dt:

[tex]dV/dt = - (200 cm^3) * (10 kPa/min) / (100 kPa)[/tex].

Simplifying further, we get:

[tex]dV/dt = - 20 cm^3/min[/tex].

Therefore, the volume is decreasing at a rate of [tex]20 cm^3/min[/tex].

To know more about area, refer here:

https://brainly.com/question/16309520

#SPJ4

Let y(t) represent your retirement account balance, in dollars, after t years. Each year the account earns 9% interest, and you deposit 10% of your annual income. Your current annual income is $34000, but it is growing at a continuous rate of 3% per year. Write the differential equation modeling this situation. dy/dt = ___

Answers

The differential equation modeling this situation is dy/dt = 0.09y(t) + 0.10 * ([tex]1.03^t[/tex]) * 34000

To write the differential equation modeling the situation described, we need to consider the factors that contribute to the change in the retirement account balance.

The retirement account balance, y(t), increases due to the interest earned and the annual deposits. The interest earned is calculated as a percentage of the current balance, while the annual deposit is a percentage of the annual income.

Let's break down the components:

Interest earned: The interest earned is 9% of the current balance, so it can be expressed as 0.09y(t).

Annual deposit: The annual deposit is 10% of the annual income, which is growing at a continuous rate of 3% per year. Therefore, the annual deposit can be expressed as 0.10 * ([tex]1.03^t[/tex]) * 34000.

Considering these factors, the differential equation can be written as:

dy/dt = 0.09y(t) + 0.10 * ([tex]1.03^t[/tex]) * 34000

Thus, the differential equation modeling this situation is:

dy/dt = 0.09y(t) + 0.10 * ([tex]1.03^t[/tex]) * 34000

To know more about differential equation:

https://brainly.com/question/32645495

#SPJ4

L 4.6.3 Test (CST): Linear Equations
me.
OA. y+4= -3(x-3)
OB. y-4=-3(x+3)
OC. y-4=3(x+3)
OD. y+4=3(x-3)
(3,-4)

Answers

The correct option is OA. y+4= -3(x-3). L 4.6.3 Test (CST): Linear Equations Solution: We are given that a line passes through (3,-4) and has a slope of -3.

We will use point slope form of line to obtain the equation of liney - y1 = m(x - x1).

Plugging in the values, we get,y - (-4) = -3(x - 3).

Simplifying the above expression, we get y + 4 = -3x + 9y = -3x + 9 - 4y = -3x + 5y = -3x + 5.

This equation is in slope intercept form of line where slope is -3 and y-intercept is 5.The above equation is not matching with any of the options given.

Let's try to put the equation in standard form of line,ax + by = c=> 3x + y = 5

Multiplying all the terms by -1,-3x - y = -5

We observe that option (A) satisfies the above equation of line, therefore correct option is OA. y+4= -3(x-3).

Thus, the correct option is OA. y+4= -3(x-3).

For more question on equation

https://brainly.com/question/17145398

#SPJ8

Find the sum of the infinite geometric 1+(x+1)+(x+1)2+(x+1)3+… if ∣x+1∣<1.

Answers

The sum of the infinite geometric series 1+(x+1)+(x+1)^2+(x+1)^3+… is 1/(1-(x+1)) if ∣x+1∣<1.

An infinite geometric series is a series where each term is multiplied by a constant, called the common ratio, to get the next term. The sum of an infinite geometric series can be found using the formula S = a/1-r, where a is the first term and r is the common ratio.

In this problem, the first term is 1 and the common ratio is x+1. Since ∣x+1∣<1, the series converges and its sum is S = 1/(1-(x+1)).

The sum of an infinite geometric series is a very useful formula in mathematics. It can be used to find the sum of many different series, such as the series in this problem.

The formula for the sum of an infinite geometric series is based on the fact that the ratio between any two consecutive terms in the series approaches 1 as the number of terms approaches infinity. This means that the terms of the series eventually become very small, and the sum of the series approaches a finite value.

The formula for the sum of an infinite geometric series can be derived using the following steps:

Let the first term of the series be a and let the common ratio be r.

Let the sum of the series be S.

Write out the first few terms of the series: a + ar + ar^2 + ar^3 + ...

Recognize that the series is geometric, so the sum of the series can be written as S = a/1-r.

Substitute a and r into the formula and simplify.

The formula for the sum of an infinite geometric series can be used to find the sum of many different series. It is a very powerful tool in mathematics, and it can be used to solve many different problems.

Learn more about infinite geometric here:

brainly.com/question/30393684

#SPJ11

Suppose Sn is a sequence and Sn Converges then ∣S n∣ converges.

Answers

Answer:  If a sequence S_n converges, then |S_n| converges.

If the sequence S_n converges, the limit of the sequence exists. If the limit of the sequence exists, then the absolute value of S_n converges.

Let's suppose a sequence S_n converges. It means that the limit of the sequence exists.

Suppose that L is the limit of the sequence, then |S_n| = S_n for all n if S_n >= 0, and |S_n| = -S_n for all n if S_n < 0. It implies that |S_n| >= 0.

Hence, there are two cases:

If S_n >= 0 for all n, then the absolute value of S_n is just S_n and it converges.

If S_n < 0 for all n, then the absolute value of S_n is -S_n, which is equal to S_n if we take into account that S_n < 0. The sequence S_n converges to L.

So, the sequence -S_n converges to -L.

It implies that |S_n| = -S_n converges to -L, which means it also converges.

Therefore, if a sequence S_n converges, then |S_n| converges.

Learn more about converges, here

https://brainly.com/question/31401359

#SPJ11

If h(x)=√3+2f(x)​, where f(2)=3 and f′(2)=4, find h′(2). h′(2) = ____

Answers

h′(2)=14 We are given that h(x)=√3+2f(x) and that f(2)=3 and f′(2)=4. We want to find h′(2).

To find h′(2), we need to differentiate h(x). The derivative of h(x) is h′(x)=2f′(x). We can evaluate h′(2) by plugging in 2 for x and using the fact that f(2)=3 and f′(2)=4.

h′(2)=2f′(2)=2(4)=14

The derivative of a function is the rate of change of the function. In this problem, we are interested in the rate of change of h(x) as x approaches 2. We can find this rate of change by differentiating h(x) and evaluating the derivative at x=2.

The derivative of h(x) is h′(x)=2f′(x). This means that the rate of change of h(x) is equal to 2 times the rate of change of f(x).We are given that f(2)=3 and f′(2)=4. This means that the rate of change of f(x) at x=2 is 4. So, the rate of change of h(x) at x=2 is 2 * 4 = 14.

Therefore, h′(2)=14.

Learn more about differential equation here:

brainly.com/question/32645495

#SPJ11

let f: R→[1,+[infinity]) by f(x)=x
2
+1. This is a surjective but not injective function. So, it has right inverse. but it is nat unique. Provide twas dhfferent. right inverse functians of f.

Answers

The two right inverse functions of f are g(x)=x−1 and h(x)=−x−1. Both functions map from [1,∞) to R, and they both satisfy f(g(x))=f(h(x))=x for all x∈[1,∞).

A right inverse function of f is a function g such that f(g(x))=x for all x in the domain of f. In this case, the domain of f is R, and the range of f is [1,∞).

We can see that g(x)=x−1 is a right inverse function of f because f(g(x))=f(x−1)=x−1+1=x for all x∈[1,∞). Similarly, h(x)=−x−1 is also a right inverse function of f because f(h(x))=f(−x−1)=x−1+1=x for all x∈[1,∞).

The fact that f has two different right inverse functions shows that it is not injective. An injective function has a unique right inverse function. However, a surjective function always has at least one right inverse function.

Visit here to learn more about inverse functions:

brainly.com/question/3831584

#SPJ11

Alexa asks her friend Phil to water her tomato plant, whose fruits
has won many prizes at agricultural shows, while she is on vacation. Without
water, the plant will die with probability 0.9. With water, the plant will
die with probability 0.15. The probability that Phil remembers to water is 0.8.
a) Calculate the probability that the tomato plant is alive when Alexa returns from
the holiday.
b) To her horror, Alexa discovers that the tomato plant has died while she was there
on holiday. Then calculate the probability that Phil forgot to water the plant.

Answers

a) To calculate the probability that the tomato plant is alive when Alexa returns from the holiday, we need to consider two scenarios: when Phil remembers to water the plant and when Phil forgets to water the plant.

Let A be the event that the tomato plant is alive and R be the event that Phil remembers to water the plant.

We can use the law of total probability to calculate the probability that the plant is alive:

P(A) = P(A|R) * P(R) + P(A|R') * P(R')

Given:

P(A|R) = 1 - 0.9 = 0.1 (probability of the plant being alive when Phil remembers to water)

P(A|R') = 1 - 0.15 = 0.85 (probability of the plant being alive when Phil forgets to water)

P(R) = 0.8 (probability that Phil remembers to water)

P(R') = 1 - P(R) = 0.2 (probability that Phil forgets to water)

Calculating the probability:

P(A) = (0.1 * 0.8) + (0.85 * 0.2)

= 0.08 + 0.17

= 0.25

Therefore, the probability that the tomato plant is alive when Alexa returns from the holiday is 0.25 or 25%.

b) To calculate the probability that Phil forgot to water the plant given that the plant has died, we can use Bayes' theorem.

Let F be the event that the plant has died.

We want to find P(R'|F), the probability that Phil forgot to water the plant given that the plant has died.

Using Bayes' theorem:

P(R'|F) = (P(F|R') * P(R')) / P(F)

To calculate P(F|R'), we need to consider the probability of the plant dying when Phil forgets to water:

P(F|R') = 0.15

Given:

P(R') = 0.2 (probability that Phil forgets to water)

P(F) = P(F|R) * P(R) + P(F|R') * P(R')

= 0.9 * 0.2 + 1 * 0.8

= 0.18 + 0.8

= 0.98 (probability that the plant dies)

Calculating the probability:

P(R'|F) = (P(F|R') * P(R')) / P(F)

= (0.15 * 0.2) / 0.98

≈ 0.0306

Therefore, the probability that Phil forgot to water the plant given that the plant has died is approximately 0.0306 or 3.06%.

a) The probability that the tomato plant is alive when Alexa returns from the holiday is 0.25 or 25%.

b) The probability that Phil forgot to water the plant given that the plant has died is approximately 0.0306 or 3.06%.

To know more about probability visit

https://brainly.com/question/24756209

#SPJ11


8a^2-10a+3

factor, write prime if prime

Answers

The quadratic expression 8a^2 - 10a + 3 is already in its simplest form and cannot be factored further.

To factor the quadratic expression 8a^2 - 10a + 3, we can look for two binomials in the form (ma + n)(pa + q) that multiply together to give the original expression.

The factors of 8a^2 are (2a)(4a), and the factors of 3 are (1)(3). We need to find values for m, n, p, and q such that:

(ma + n)(pa + q) = 8a^2 - 10a + 3

Expanding the product, we have:

(ma)(pa) + (ma)(q) + (na)(pa) + (na)(q) = 8a^2 - 10a + 3

This gives us the following equations:

mpa^2 + mqa + npa^2 + nq = 8a^2 - 10a + 3

Simplifying further, we have:

(m + n)pa^2 + (mq + np)a + nq = 8a^2 - 10a + 3

To factor the expression, we need to find values for m, n, p, and q such that the coefficients on the left side match the coefficients on the right side.

Comparing the coefficients of the quadratic terms (a^2), we have:

m + n = 8

Comparing the coefficients of the linear terms (a), we have:

mq + np = -10

Comparing the constant terms, we have:

nq = 3

We can solve this system of equations to find the values of m, n, p, and q. However, in this case, the quadratic expression cannot be factored with integer coefficients.

Therefore, the quadratic expression 8a^2 - 10a + 3 is already in its simplest form and cannot be factored further.

To know  more about quadratic refer here:

https://brainly.com/question/22364785#

#SPJ11

2. A histogram for a data set has a smallest value of 10 and a greatest value of 50 . Its bin width is 8 . What is the number of classes in this histogram? a. 4 b. 5 c. \( 5.5 \) d. 6

Answers

The number of classes in this histogram is 5.

The correct answer to the question is option B) 5.

Number of classes in this histogram is 5.

Explanation: The range of the histogram is calculated by the difference between the smallest and greatest value of the data set.

Range = 50 - 10

= 40.

The formula for the bin width is given by

Bin width = Range / Number of classes.

We have bin width, range and we have to find number of classes.

From above formula,

Number of classes = Range / Bin width

Number of classes = 40 / 8

Number of classes = 5

Hence, the number of classes in this histogram is 5.

Conclusion: The number of classes in this histogram is 5.

To know more about histogram visit

https://brainly.com/question/16819077

#SPJ11

Assume that the intelligence Quotients (IQ) of people is approximately normally distributed with mean 105 and standard deviation 10. In a sample of 1000 people, approximate how many people would have IQs outside the range of 95 and 125 ? a. 27 b. 25 C. 680 d. 185 e. 950

Answers

Approximately 68% of the population falls within one standard deviation of the mean in a normal distribution. Therefore, we can expect that around 68% of the sample of 1000 people would have IQs between 95 and 125.

To calculate the number of people outside this range, we can subtract the percentage within the range from 100%. This leaves us with approximately 32% of the sample outside the range of 95 and 125.

Now, to find the approximate number of people, we multiply 32% by the sample size of 1000:

0.32 * 1000 ≈ 320.

Thus, approximately 320 people would have IQs outside the range of 95 and 125.

The closest option among the given choices is 680, which indicates a discrepancy between the calculated result and the options provided. It seems that none of the given options accurately represents the approximate number of people with IQs outside the range.

To know more about  normal distribution follow the link:

https://brainly.com/question/17217904

#SPJ11


A student sketches a graph of k (x) = 10√(x-10) + 7 by transforming the graph of f (x) = √x. Which of the following steps are part of the process?
Select all that apply.
a translation downwards
a reflection over the y-axis
a translation to the left
a stretch
a translation upwards

Answers

The steps involved in sketching the graph of k(x) = 10√(x-10) + 7 include a translation downwards, a translation to the left, a stretch, and a translation upwards.

To determine the steps involved in sketching the graph of k(x) = 10√(x-10) + 7 by transforming the graph of f(x) = √x, let's analyze each option:

a translation downwards: This step is part of the process. The "+7" in the equation shifts the graph vertically upwards by 7 units, resulting in a translation downwards.

a reflection over the y-axis: This step is not part of the process. There is no negative sign associated with the expression or any operation that would cause a reflection over the y-axis.

a translation to the left: This step is part of the process. The "-10" inside the square root in the equation shifts the graph horizontally to the right by 10 units, resulting in a translation to the left.

a stretch: This step is part of the process. The "10" in front of the square root in the equation causes a vertical stretch, making the graph taller or narrower compared to the original graph of f(x) = √x.

a translation upwards: This step is part of the process. The "+7" in the equation shifts the graph vertically upwards by 7 units, resulting in a translation upwards.

In summary, the steps involved in sketching the graph of k(x) = 10√(x-10) + 7 include a translation downwards, a translation to the left, a stretch, and a translation upwards.

Learn more about graph;

https://brainly.com/question/26865

#SPJ4

Other Questions
Varela Corporation's relevant range of activity is 2,000 units to 6,000 units. When it produces and set's 4,000 units, its awerage eosts per unit are as follows: For financial reporting purposes, the total amount of product costs incurred to make 4,000 unis is dosest to: Multiple Cholce$43.4C0$55.400For financial reporting purposes, the total amount of prod Multiple Choice$43,400$55,400$59,400$12,000 The brightest star in the night sky, Sirius, has a radius of about 1,189,900 km. The spherical surface behaves as a blackbody radiator. The surface temperature is about 8,500 K, what is the rate at which energy is radiated from this star (W)? All of the following are advantages of licensing EXCEPT: the foreign country gains employment by having the product manufactured locally. the licensee gains information that allows it to start with a competitive advantage. the low risk to the company granting the license. the licensor's brand name can never be harmed as a result of the licensee. the capital-free entry into a foreign country. How did the problems in the agriculture industry contribute to growing weakness in the U.S economy during the 1920s? Case Study1. Summarise the main points in the article.(Approx. 200 words)Morrisons shareholders reject executive bonuses amid falling profitsMultimillion-pound pay deals awarded after firm adjusted calculations to ignore Covid-19 costsMorrisons shareholders have voted overwhelmingly against the award of millions of pounds in bonuses to executives who missed profit targets during the pandemic, in one of the biggest shareholder rebellions of recent years.The vote is not binding, and a spokesperson said the executive team intended to collect their awards in full.The chief executive, David Potts, and his two most senior managers will receive 9m in pay and bonuses, despite a year in which the company fell out of the FTSE 100 and profits halved because of extra pandemic costs.Morrisons remuneration committee, chaired by Kevin Havelock, decided to use its "discretion" and adjust its calculations to ignore Covid-19 costs of 290m.Potts will collect his full 1.7m bonus, bringing his total pay packet to 4.2m, a 5% increase compared with the year before. The chief operating officer, Trevor Strain, was awarded total pay of 3.2m including an annual bonus of 1.3m up 9% year on year, while the grocers newly installed chief financial officer, Michael Gleeson, was given 1.7m, including a bonus of almost 1m.Only 30% of votes were in favour of the directors remuneration report, with 70% voting against, according to the results of a poll at the companys annual meeting on Thursday.It was a significant rebuke to the Bradford-based supermarkets bosses, and the second biggest shareholder revolt on an executive pay issue since the Investment Association started tracking votes in 2017.In a statement released alongside the results, Morrisons did not mention any plans to adjust the remuneration. It said the committee would continue to make the case for using its discretion "in a genuinely exceptional year which produced a genuinely exceptional performance from the executive leadership".The vote was advisory, meaning executives can keep their pay. A vote on Morrisons new remuneration policy at 2022s annual meeting will be binding.The Morrisons upset is the latest in a string of rebellions during 2021 over high pay. While many companies have cut back pay pots amid the pandemic, others have decided to retain big payouts, to the chagrin of major shareholders.Investors revolted at estate agents Savills after it also kept bonuses despite falling profits. Its rival Foxtons was censured for keeping a near-1m bonus for its chief executive while refusing to hand back financial support from the government. Cineworld investors objected to big share awards, while Astrazeneca shareholders took issue with a pay rise for chief executive Pascal Soriot.Luke Hildyard, the director of the High Pay Centre, which tracks executive pay, said: "Historic failures to bring CEO pay back to the real world are now poisoning investor-company relations in cases such as this. If businesses are going to proceed with vast executive pay awards in the face of the challenges presented by the Covid crisis, pressure to reform the pay-setting process, potentially by involving workers representatives, will become stronger."Potts in March described Morrisons profits slump as a "badge of honour" because it reflected the costs of feeding the nation and bringing in extra measures such as cleaning and social distancing costs. Annual profits halved to 201m despite soaring sales, 220m less than required by Morrisons pay policy for Potts to receive his full bonus.Morrisons declining share price as investors looked ahead to continued Covid-19 costs led to it falling out of the FTSE 100 index of blue-chip companies for the first time in five years in March.Morrisons argued that the executives may have missed profit targets, but that they had shown "leadership, clarity, decisiveness, compassion and speed of both decision-making and execution"."The remuneration committee believed that it was appropriate to apply some discretion to the remuneration of the senior executives," Morrisons said. "It is a matter of sincere regret to the committee that it clearly has not been able to convince a majority of shareholders or the proxy voting agencies that this was the right course of action."Potts was re-elected to Morrisons board with 99% of the vote. However, there were votes of 16% and 15% respectively against the re-election of Andrew Higginson, the chair of Morrisons board, and Havelock, whose committee approved the payouts. When you see a sign for a restaurant that you recognize, even if it is missing several letters, you are using this form of processing Historically ____ were warlords who held the most land and had the largest number of other warlords loyal to them. An effective production quota Select one: A. increases the marginal social cost of production. B. lowers the price and increases the marginal social cost of production. C. makes production more efficient. D. increases demand for the good. E. raises the price and decreases the marginal social cost of production. Refer to Table 3.5.3. A new store opens up on the edge of campus, Great Wild North Sportswear, which has the capacity to do as much business as all the existing businesses. The quantity of t-shirts supplied doubles at each price. This would be represented as a Select one: A. movement up along the supply curve. B. rightward shift of the supply curve. C. rightward shift of the demand curve. D. leftward shift of the demand curve. E. leftward shift of the supply curve. Differentiate the function. \[ f(t)=-3 t^{3}+6 t+2 \] \[ f^{\prime}(t)= \] what name do buddhists give to their four basic rules write a picture composition atleast 200 words Ms Rose Bloom wishes to have a bank balance of $600,000 when she retires in 10 years time. BankEast is offering an interest rate of 6.50% compounded monthly on 10-year term deposits. How much must Ms Bloom deposit in a BankEast term deposit today to reach her retirement goal? Finddw/dtwherew(x,y,z)=xyz+xy, withx(t)=e4t,y(t)=e8tandz(t)=e4tdtdw=4e4t8e8t4e12tFinddz/dtwherez(x,y)=x2y2, withx(t)=3sin(t)andy(t)=4cos(t)dz/dt = ___ _______________ is defined as a set of tools and techniques used for describing, organizing, and interpreting information. There is a 10 g mass that has a charge of +8 mC resting on a table. What charge is needed to lift this mass off the table if the 2 ^ (nd) charge is held 10 cm above the table?What happens as it lifts off the table? Can the mass be levitated in equilibrium with this 2nd charge? How or why not? Sunlight strikes a piece of crown glass at an angle of incidence of 31.1 . Calculate the difference in the angle of refraction between a red (660 nm) and a blue (470 nm) ray within the glass. The index of refraction is n=1.520 for red and n=1.531 for blue light. 1.4910^1 dea Previous Tries internally reflected and not refracted? 44.3deg The angle of incidence is the angle with respect to the normal. Now the beam comes from inside and wants to leave the medium. Since the index of refraction of the medium is larger than 1 (index of refraction of air) there is a critical angle at which the beam is totally internally reflected what does the truth in lending act regulation z require The Insuring clause in an Accidnet & Health polciy states which of the following information ?- the Insured Obligation- the insirance company obligation- the risks excluded from coverage- the cost of thr coverage Alicia wants her little brother to learn how to do jumping jacks. Which of the following would be most effective in teaching him how to do this? Have him watch a video of professional athletes doing jumping jacks Hold his arms over his head so he knows how it feels when he does a jumping jack Have his friend do jumping jacks in front of him Read him instructions word for word on how to do a jumping jack Pat and Alex were taking Operations Management together and decided to have a bet on who could forecast the mean score on the three exams for the course. The table below shows the actual mean score for the test as well as their forecasts.Actual Mean Pat's Forecast Alex's ForecastTest 1 84 78 87Test 2 86 75 73Test 3 75 80 75Who has the greater forecast bias?What were the MSE and MAE for Pat and Alex?Note: Round your answer to 2 decimal places.