The number of cars sold by a car dealer on 40 randomly selected days are summarized in the following frequency table. Number of cars sold (x) Number of days (f) 0 6 1 20 2 10 3 4 Find the median of th

Answers

Answer 1

The median of the given data is 2.

Given that,

The number of cars sold by a car dealer on 40 randomly selected days are summarized in the following frequency table.

Number of cars sold (x) Number of days (f) 0 6 1 20 2 10 3 4

The median is the value separating the higher half from the lower half of a set of data.

For calculating the median for the following data, we need to calculate the cumulative frequency as below:

Number of cars sold (x) Number of days (f) Cumulative Frequency 0 6 6 1 20 26 2 10 36 3 4 40

Now, the formula to find the median for such type of frequency distribution is:

Median (Md) = L + [(n/2 - F) / f] × w

Where, L = lower class boundary of median class

            n = sum of frequencies of all classes

            Md = Median class

            F = cumulative frequency upto median class

            f = frequency of median class

            w = width of class interval

For the given question, Lower class boundary of median class can be found as the data lies between 20 and 26.

Cumulative frequency upto the median class is 20 (i.e., F = 20) and frequency of median class is 10 (i.e., f = 10)

Width of class interval can be calculated as:

2 - 1 = 1

Median (Md) = L + [(n/2 - F) / f] × w

Here, n = 40,

L = 1,

L = 1 + [((40/2)-20)/10]×1

   = 1 + 1

   = 2

Hence, the median of the given data is 2.

For such more questions on Median

https://brainly.com/question/26151333

#SPJ8


Related Questions

Create the equation of a hyperbola centered at the origin, with a horizontal transverse axis, vertex at (-7, 0), and asymptotes of y equals plus or minus six sevenths x period Show your work. (4 points )

Answers

Therefore, the equation of the hyperbola is x^2 / 49 - y^2 / 36 = 1.

To find the equation of a hyperbola centered at the origin with a horizontal transverse axis, vertex at (-7, 0), and asymptotes of y = ±(6/7)x, we can follow these steps:

Step 1: Identify the necessary values

The center of the hyperbola is at the origin, (h, k) = (0, 0).

The distance between the center and each vertex is given by the value of "a." Since the hyperbola has a horizontal transverse axis, "a" represents the distance from the center to the vertex along the x-axis.

The equation of the asymptotes is in the form y = mx, where m represents the slope. In this case, the slope is ±(6/7), which corresponds to "b/a" in the equation.

Step 2: Determine the value of "a"

Since the vertex is given as (-7, 0), we know that "a" is the distance from the center to the vertex along the x-axis. In this case, a = 7.

Step 3: Determine the value of "b"

The value of "b" can be determined from the equation of the asymptotes, y = ±(6/7)x. We know that "b/a" is equal to the slope of the asymptotes, which is ±(6/7). Thus, b/a = 6/7.

To solve for "b," we can rearrange the equation: b = a * (6/7).

Substituting the value of "a" (a = 7), we get: b = 7 * (6/7) = 6.

Step 4: Write the equation of the hyperbola

The equation of a hyperbola centered at the origin with a horizontal transverse axis is given by the formula:

(x - h)^2 / a^2 - (y - k)^2 / b^2 = 1

In this case, since the center is at (0, 0) and a = 7, b = 6, the equation becomes:

x^2 / 7^2 - y^2 / 6^2 = 1

Simplifying:

x^2 / 49 - y^2 / 36 = 1

To know more about equation,

https://brainly.com/question/9353038

#SPJ11

Let θ be an angle in quadrant IV such that csc θ: - 5/3
Find the exact values of tane and cos θ. tan θ = cos θ =

Answers

In the fourth quadrant, given that csc(θ) = -5/3, we can determine the exact values of tan(θ) and cos(θ). The results are tan(θ) = 3/5 and cos(θ) = -4/5.

Since csc(θ) = -5/3 and csc(θ) is the reciprocal of sin(θ), we can find sin(θ) by taking the reciprocal of csc(θ). Thus, sin(θ) = -3/5.

In the fourth quadrant, both the sine and cosine functions are negative. We can use the Pythagorean identity sin²(θ) + cos²(θ) = 1 to solve for cos(θ). Substituting the known value of sin(θ), we have (-3/5)² + cos²(θ) = 1. Simplifying, 9/25 + cos²(θ) = 1. Rearranging the equation, we find cos²(θ) = 16/25. Taking the square root, cos(θ) = ±4/5.

Since θ is in the fourth quadrant, where both tangent and cosine are negative, tan(θ) = sin(θ)/cos(θ) = (-3/5) / (-4/5) = 3/5.

Therefore, the exact values are tan(θ) = 3/5 and cos(θ) = -4/5.

To learn more about Pythagorean identity click here :

brainly.com/question/24220091

#SPJ11

Do u know this? Answer if u do

Answers

Answer:

Hi

Step-by-step explanation:

Yup

The above method is difference of two square

But you can use collecting like terms method

Use the below duplicate observations to construct an MA(4) (moving average chart of four observations), Cusum chart and an EWMA chart for λ = 0.6. Comment whether the process has remained in control. Compare the purpose and performance of the charts. Use the mean of first 5 observations as target value.

y1 5.88 5.64 5.09 6.04 4.66 5.58 6.07 5.31 5.48

y2 5.61 5.63 5.12 5.36 5.24 4.50 5.41 6.30 5.83

Answers

The problem involves constructing an MA(4) chart, Cusum chart, and EWMA chart for two sets of duplicate observations. The goal is to determine if the process remains in control using the mean of the first 5 observations as the target value.

To construct an MA(4) chart, we calculate the moving average of four consecutive observations for each set of data. The chart will plot the moving averages and establish control limits based on the mean and standard deviation of the moving averages. By examining the plotted points, we can determine if any points fall outside the control limits, indicating a potential out-of-control situation.
A Cusum chart is constructed by calculating cumulative sums of deviations from a target value (mean of the first 5 observations). The chart shows the cumulative sums over time, and the control limits are set based on the standard deviation of the individual observations. Deviations beyond the control limits suggest a shift in the process.
An EWMA chart is created by exponentially weighting the observations and calculating a weighted average. The chart is sensitive to recent observations and adjusts the weights accordingly. Control limits are set based on the mean and standard deviation of the weighted averages.
To assess whether the process has remained in control, we compare the plotted points on each chart to the control limits. If the points fall within the control limits and exhibit random patterns, the process is considered to be in control. However, if any points fall outside the control limits or show non-random patterns, it suggests a potential out-of-control situation.
By analyzing the plotted points on the MA(4) chart, Cusum chart, and EWMA chart for the given data, we can determine if the process has remained in control. These charts serve different purposes and provide different insights into process performance, allowing for the detection of potential variations or shifts in the data.

Learn more about mean here
https://brainly.com/question/31101410



#SPJ11

1. a) George saves N$ 275 the first month and every month later increases it by N$ 65.
i) How much will John save in the 13th month?
ii) How much will he save after two (2) years

Answers

George  will save N$ 8230 after two (2) years found using the AP series.

Given,George saves N$ 275 the first month and every month later increases it by N$ 65.

i) How much will John save in the 13th month?The formula to calculate the sum of n terms of an AP series is given by:

S_n = (n/2) * [2a + (n-1)d]

Where S_n is the sum of the first n terms of the AP series, a is the first term of the series, and d is the common difference between any two consecutive terms of the series.

So, a = 275, d = 65, and n = 13∴ S_13 = (13/2) * [2(275) + (13 - 1)65]

= 6.5 * [550 + 780]= 6.5 * 1330= 8645

Therefore, John will save N$ 8645 in the 13th month.

ii) How much will he save after two (2) years?

As we know, John saves N$ 275 in the first month and increases it by N$ 65 every month.

Therefore, his savings after n months will be:S_n = 275 + 340(n - 1)

Using this formula for 24 months (2 years), we get:

S_24 = 275 + 340(24 - 1)= 275 + 7955= 8230

Therefore, he will save N$ 8230 after two (2) years.

Know more about the AP series.

https://brainly.com/question/24205483

#SPJ11

The point is on the terminal side of an angle in standard
position. Find the exact values of the six trigonometric functions
of the angle. (5 1/2, -2 root 15)
7. [0/5.26 Points] DETAILS PREVIOUS ANSWERS LARPCALC11 4.4.018. The point is on the terminal side of an angle in standard position. Find the exact values of the six trigonometric functions of the angl

Answers

The exact values of the six trigonometric functions of the angle

sinθ = -4√15/19

cosθ =  11/19

tanθ = -4√15/11

secθ =  19/11

cosecθ =  19/-4√15

cotθ =  11/-4√15

Here, we have,

Given (x,y) lies on the terminal side of θ, then r = √x²+y²

(5 1/2, -2√15)

now, we have,

r = √121/4 + 60

so, we get, r = 19/2

now, we have,

sinθ = y/r

       = -2√15/ 19/2

       = -4√15/19

cosθ = x/r = 11/19

tanθ = y/x = -4√15/11

secθ = r/x = 19/11

cosecθ = r/y = 19/-4√15

cotθ = x/y = 11/-4√15

learn more on trigonometric functions :

https://brainly.com/question/32038095

#SPJ4

You may need to use the appropriate appendix table or technology to answer this question. Given that z is a standard normal random variable, compute the following probabilities. (Round your answers to four decimal places.) (a) P(z s-2.0) (b) P(Z Z-2) (c) P(Z 2-1.7) (d) P(-2.3 ≤ 2) (e) P(-3

Answers

Given that `z` is a standard normal random variable, we are to calculate the following probabilities using the appropriate appendix table or technology:

(a) `P(z ≤ -2.0)` (b) `P(Z > -2)` (c) `P(Z < 1.7)` (d) `P(-2.3 ≤ Z ≤ 2)` (e) `P(-3 < Z < -1.5)`.

From the normal distribution table, we can read the probability of a `z-score`. Using this table, we can calculate the following probabilities:

(a) P(z ≤ -2.0). The standard normal distribution table shows that the area to the left of a `z-score` of `2.0` is `0.0228`. Hence, P(z ≤ -2.0) = 0.0228.

Answer: `0.0228`

(b) P(Z > -2)P(Z > -2) = 1 - P(Z ≤ -2) = 1 - 0.0228 = 0.9772

Answer: `0.9772`

(c) P(Z < 1.7)P(Z < 1.7) = 0.9554

Answer: `0.9554`

(d) P(-2.3 ≤ Z ≤ 2)P(-2.3 ≤ Z ≤ 2) = P(Z ≤ 2) - P(Z ≤ -2.3)

We need to find `P(Z ≤ 2)` and `P(Z ≤ -2.3)` by referring to the standard normal distribution table:

P(Z ≤ 2) = 0.9772P(Z ≤ -2.3) = 0.0107

Therefore, P(-2.3 ≤ Z ≤ 2) = 0.9772 - 0.0107 = 0.9665

Answer: `0.9665`

(e) P(-3 < Z < -1.5)P(-3 < Z < -1.5) = P(Z < -1.5) - P(Z < -3)

We need to find `P(Z < -1.5)` and `P(Z < -3)` by referring to the standard normal distribution table:

P(Z < -1.5) = 0.0668P(Z < -3) = 0.0013

Therefore, P(-3 < Z < -1.5) = 0.0668 - 0.0013 = 0.0655

Answer: `0.0655`.

To know more about variable refer to:

https://brainly.com/question/28248724

#SPJ11

Find the DR(t)|| and ||D,R(t)|| if R(t) = 2(et - 1)i+2(e¹ + 1)j + ek.

Answers

Therefore, derivative [tex]DR(t) = 2e^(t)i + 2e^(1)j + e^(1)k and ||D,R(t)|| = [4e^(2t) + 4e + 1].[/tex]

Given R(t) = 2(et - 1)i + 2(e¹ + 1)j + ek, we are to determine DR(t) and ||D, R(t)||.

For the purpose of this function explanation, we assume that DR(t) represents the derivative of R(t) with respect to t.

This means that the derivative of R(t) with respect to time will be taken.

So, let's differentiate R(t) using the formula below:R(t) = 2(et - 1)i + 2(e¹ + 1)j + ekDifferentiating R(t) with respect to t, we get;

we simply take the magnitude of DR(t) as shown below:

[tex]||D,R(t)|| = [2e^(t)]² + [2e^(1)]² + [e^(1)]²||D,R(t)|| = [4e^(2t) + 4e + 1][/tex]

Hence, [tex]DR(t) = 2e^(t)i + 2e^(1)j + e^(1)k and ||D,R(t)|| = √[4e^(2t) + 4e + 1].[/tex]

To know more about derivatives visit:

https://brainly.com/question/25324584

#SPJ11

Homework: Homework 4 Question 34, 6.2.7 45.45%, 20 of 44 points O Points: 0 of 1 Find the area of the shaded region. The graph to the right depicts IQ scores of adults, and those scores are normally d

Answers

The area of the shaded region is given by the difference in the cumulative probabilities of the two scores.The formula for z = (X - µ) / σ is used to calculate the z-scores.

Given,μ1 = 100, μ2 = 105,σ1 = σ2 = 15x1 = 75, x2 = 120.Now, we need to find the shaded region.Area of the shaded region = P(X < 75 or X > 120)Area of the shaded region = P(X < 75) + P(X > 120)We can calculate the required probability by using z-scores.The formula for z = (X - µ) / σ is used to calculate the z-scores.z1 = (75 - 100) / 15z1 = -1.67z2 = (120 - 105) / 15z2 = 1P(X < 75) = P(Z < -1.67) = 0.0475 (From Standard Normal Distribution Table)P(X > 120) = P(Z > 1) = 0.1587 (From Standard Normal Distribution Table)Therefore, the area of the shaded region is 0.0475 + 0.1587 = 0.2062 or 20.62%.

Given,μ1 = 100, μ2 = 105,σ1 = σ2 = 15x1 = 75, x2 = 120.Now, we need to find the shaded region. We can calculate the area of the shaded region by using the formula,Area of the shaded region = P(X < 75 or X > 120)We know that, the two sets of data are normally distributed, with the mean, μ1 = 100 and μ2 = 105, and the standard deviation, σ1 = σ2 = 15. Therefore, to calculate the probability, we will need to calculate the corresponding z-scores using the formula,z = (X - µ) / σ.First, we will calculate the z-score for the lower limit, X = 75.z1 = (75 - 100) / 15z1 = -1.67Next, we will calculate the z-score for the upper limit, X = 120.z2 = (120 - 105) / 15z2 = 1Now, we can calculate the probability of X being less than 75 by using the Standard Normal Distribution Table.P(X < 75) = P(Z < -1.67) = 0.0475Similarly, we can calculate the probability of X being greater than 120.P(X > 120) = P(Z > 1) = 0.1587Therefore, the area of the shaded region is given by,Area of the shaded region = P(X < 75 or X > 120)Area of the shaded region = P(X < 75) + P(X > 120)Area of the shaded region = 0.0475 + 0.1587Area of the shaded region = 0.2062 or 20.62%.Thus, the area of the shaded region is 0.2062 or 20.62%.

To know more about area of the shaded region visit :-

https://brainly.com/question/20162990

#SPJ11

Solve the problem. Find equations of all tangents to the curve f(x) =1/x that have slope-1
a) y=-x+2
b) y=x+2, y=x-2
c) y = -x + 2,
d) y=-x-2 Oy=x-2.

Answers

There are no tangents to the curve f(x) =1/x that have slope -1.Therefore, the answer is option E. Oy=x-2.

Given a function,  f(x) =1/x. We have to find the equation of all tangents to the curve f(x) =1/x that have slope -1.

To find the equations of tangents, we need to find the derivative of the function f(x) and equate it to -1.Let's find the derivative of the function f(x).f(x) = 1/x

Therefore,   f'(x) = -1/x²Equating the slope with -1, we have,-1/x² = -1 => 1/x² = -1 => x² = -1,

which is not possible. Hence, there are no tangents to the curve f(x) =1/x that have slope -1.Therefore, the answer is option E. Oy=x-2.

To know more about Tangent  visit :

https://brainly.com/question/10053881

#SPJ11

2 pts Question 12 The data below represent the number of books read in the past year by a sample of five students. 1 5 5 15 38 The coefficient of variation for this sample is Hint: Feel free to copy d

Answers

The coefficient of variation for this sample is approximately 96.94%.

The data provided is: 1, 5, 5, 15, 38. To calculate the coefficient of variation (CV) for this sample, we have to find the standard deviation and the mean, which is the average of the data set.Mean = (1 + 5 + 5 + 15 + 38)/5 = 13.6To find the standard deviation, we can use the formula:
s = sqrt [Σ(x - m)²/N]
Where:
Σ denotes the sum of all values
x denotes each value in the data set
m denotes the mean of the data set
N denotes the total number of values in the data set
So, we have:
s = sqrt [((1 - 13.6)² + (5 - 13.6)² + (5 - 13.6)² + (15 - 13.6)² + (38 - 13.6)²)/5]
s = sqrt [869.44/5]
s = sqrt [173.888]
s = 13.184
Therefore, the standard deviation is 13.184. Now we can calculate the coefficient of variation (CV) using the formula:
CV = (s / mean) x 100
CV = (13.184 / 13.6) x 100
CV = 96.94
So, the coefficient of variation for this sample is approximately 96.94%.

To know more about coefficient visit:

https://brainly.com/question/1594145

#SPJ11

Given the following integral and value of n, approximate the following integral using the methods indicated (round your answers to six decimal places): e-5r2 dr, n = 4 (a) Trapezoidal Rule (b) Midpoint Rule (c) Simpson's Rule

Answers

To approximate the integral ∫e^(-5r^2) dr using different methods with n = 4, we'll apply the Trapezoidal Rule, Midpoint Rule, and Simpson's Rule. Let's calculate each approximation:

(a) Trapezoidal Rule:

The Trapezoidal Rule approximates the integral using trapezoids. The formula for the Trapezoidal Rule is:

∫[a,b]f(x) dx ≈ (h/2)[f(a) + 2f(x₁) + 2f(x₂) + ... + 2f(xₙ₋₁) + f(b)]

In our case, we have n = 4, so we divide the interval [a, b] into 4 equal subintervals. Let's calculate the approximation using the Trapezoidal Rule:

h = (b - a) / n = (1 - 0) / 4 = 0.25

x₀ = 0

x₁ = 0.25

x₂ = 0.5

x₃ = 0.75

x₄ = 1

Approximation using Trapezoidal Rule:

≈ (0.25/2) [e^(-5(0)) + 2e^(-5(0.25)) + 2e^(-5(0.5)) + 2e^(-5(0.75)) + e^(-5(1))]

Calculate the values using a calculator or software and sum them up. Round the result to six decimal places.

(b) Midpoint Rule:

The Midpoint Rule approximates the integral using rectangles. The formula for the Midpoint Rule is:

∫[a,b]f(x) dx ≈ h[f(x₀+1/2h) + f(x₁+1/2h) + ... + f(xₙ₋₁+1/2h)]

Let's calculate the approximation using the Midpoint Rule:

Approximation using Midpoint Rule:

≈ 0.25 [e^(-5(0+0.25/2)) + e^(-5(0.25+0.25/2)) + e^(-5(0.5+0.25/2)) + e^(-5(0.75+0.25/2))]

Calculate the values using a calculator or software and sum them up. Round the result to six decimal places.

(c) Simpson's Rule:

Simpson's Rule approximates the integral using parabolic arcs. The formula for Simpson's Rule is:

∫[a,b]f(x) dx ≈ (h/3)[f(x₀) + 4f(x₁) + 2f(x₂) + 4f(x₃) + ... + 2f(xₙ₋₂) + 4f(xₙ₋₁) + f(xₙ)]

Let's calculate the approximation using Simpson's Rule:

Approximation using Simpson's Rule:

≈ (0.25/3)[e^(-5(0)) + 4e^(-5(0.25)) + 2e^(-5(0.5)) + 4e^(-5(0.75)) + e^(-5(1))]

To approximate the integral ∫e^(-5r^2) dr using Simpson's Rule with n = 4, let's calculate the approximation:

h = (b - a) / n = (1 - 0) / 4 = 0.25

x₀ = 0

x₁ = 0.25

x₂ = 0.5

x₃ = 0.75

x₄ = 1

Approximation using Simpson's Rule:

≈ (0.25/3)[e^(-5(0)) + 4e^(-5(0.25)) + 2e^(-5(0.5)) + 4e^(-5(0.75)) + e^(-5(1))]

Let's calculate each term:

e^(-5(0)) = e^0 = 1

e^(-5(0.25)) ≈ 0.993262

e^(-5(0.5)) ≈ 0.882497

e^(-5(0.75)) ≈ 0.616397

e^(-5(1)) ≈ 0.367879

Now, substitute the values into the approximation formula:

≈ (0.25/3)[1 + 4(0.993262) + 2(0.882497) + 4(0.616397) + 0.367879]

Perform the calculations:

≈ (0.25/3)[1 + 3.973048 + 1.764994 + 2.465588 + 0.367879]

≈ (0.25/3)(9.571509)

≈ 0.794292

Rounding to six decimal places, the approximation of the integral using Simpson's Rule with n = 4 is approximately 0.794292.

To know more about Rule visit-

brainly.com/question/31022209

#SPJ11

We consider a pure-exchange economy with a single (divisible) good that consists of the following elements: 1. I is the (non-empty) set of consumers, with |I| < [infinity]. 2. S is the (non-empty) set of states, with |S| < [infinity]. 3. w = = (ws), is the vector of total endowments ws0 is the total endowment at state s. 4. π = (T³), is the probability vector over the states: T> 0 is the (common) prior probability of state s. Σε π = 1. 5. x₁ = (x), is consumer i's consumption vector for each i. • x ≥ 0 is her consumption at state s. 6. U₂: RS → R is consumer i's utility function for each i.

Answers

The elements described represent the set of consumers, set of states, total endowments, probability distribution over states, consumption vectors for each consumer, and utility functions for each consumer in a pure-exchange economy with a single divisible good.

The given description outlines the elements of a pure-exchange economy with a single divisible good. Let's break down the elements: I: Represents the set of consumers in the economy. The cardinality of I is denoted as |I|, and it is specified that |I| is finite (|I| < ∞). This means there are a limited number of consumers in the economy. S: Represents the set of states in the economy. The cardinality of S is denoted as |S|, and it is specified that |S| is finite (|S| < ∞). This means there are a limited number of states that the economy can be in.

w: Represents the vector of total endowments. The subscript "s" denotes the specific state, and ws0 represents the total endowment at state s. Each state has a different total endowment. π: Represents the probability vector over the states. The subscript "s" denotes the specific state, and T > 0 represents the common prior probability of state s. The sum of all probabilities in π is equal to 1 (∑επ = 1). This means the probabilities assigned to each state add up to one. x₁: Represents consumer i's consumption vector. Each consumer i has a consumption vector x, where x ≥ 0 denotes her consumption at state s. This means each consumer can consume a non-negative amount of the single divisible good in each state.

U₂: Represents consumer i's utility function. The function U maps the consumer's consumption vector to a real number in R, representing her level of utility. Each consumer i has their own utility function. In summary, the elements described in the given context represent the set of consumers, set of states, total endowments, probability distribution over states, consumption vectors for each consumer, and utility functions for each consumer in a pure-exchange economy with a single divisible good.

To learn more about probability, click here: brainly.com/question/16988487

#SPJ11

Example Consider the Markov chains with the following transition matrices 0 0.5 0.5 a. P = 0.5 0 0.5 0.5 0.5 0 0 0 0.5 0.5] 10 0 0 b. P = 01 0 0 0 1 0 0 Г0.3 0.4 0 0 0.31 0 1.0 0 0 0 c. P = 0 0 0 0.6

Answers

The limiting distribution for the given Markov chain is [0.25, 0.25, 0.25, 0.25].

a. The transition matrix P is given as follows:

P = [0 0.5 0.5; 0.5 0 0.5; 0.5 0.5 0 0 0.5 0.5; 0 0 0]

P is an ergodic Markov chain since all the states are communicating.

Therefore, the limiting distribution, denoted by π, exists and is unique.

We use the formula πP = π to find the limiting distribution, which yields [π₁, π₂, π₃, π₄] = [0.25, 0.25, 0.25, 0.25]

Thus the limiting distribution for the given Markov chain is [0.25, 0.25, 0.25, 0.25].

Know more about Markov chain here:

https://brainly.com/question/30530823

#SPJ11








Which of the following is the distance of the point S(6.-1.-2) to the line passing through the points P(4.2.-1) and Q(2,8,2) 7 29 D M 9 61 9 Son avete 1946.07

Answers

The intersection point R of line PQ and the plane passing through point S is (11/22, 51/44, -21/22).The distance of point S from PQ line is |(-2)(6) + (6)(-1) + (3)(-2) - 20|/√((-2)²+(6)²+(3)²)=34/7 The answer is 34/7.

The question is asking for the distance of the point S(6,-1,-2) to the line passing through the points P(4,2,-1) and Q(2,8,2).The distance of a point (x1, y1, z1) to a line ax+by+cz+d=0 is given by:|ax1+by1+cz1+d|/√a²+b²+c², where a, b and c are the coefficients of x, y and z, respectively, in the equation of the line and d is a constant term.

The direction vector of PQ = (2-4, 8-2, 2+1) = (-2, 6, 3).The normal vector of PQ is perpendicular to the direction vector and is given by the cross product of PQ direction vector with the vector from PQ to the point S:{{(-2, 6, 3)} × {(6-4), (-1-2), (-2+1)}}={{(-2, 6, 3)} × {(2), (-3), (-1)}}={18, 8, -18}.

Using the point-normal form of a plane equation, the equation of the plane passing through point S and perpendicular to the line PQ is:18(x-6) + 8(y+1) - 18(z+2) = 0Simplifying, we get:9(x-6) + 4(y+1) - 9(z+2) = 0Now, we need to find the intersection of this plane and line PQ.

Let this intersection point be R(x,y,z).The coordinates of point R are given by the solution of the system of equations:9(x-6) + 4(y+1) - 9(z+2) = 0….(1)-2x + 6y + 3z - 20 = 0….(2)x - y - 3z + 5 = 0……

(3)Solving equation (3) for x, we get:x = y + 3z - 5Substituting in equation (2), we get:-(y+3z-5) + 6y + 3z - 20 = 0=> 5y + 6z = 15 or y = 3 - 6z/5Substituting in equation

(1), we get:-45z/5 - 4z/5 - 9(z+2) = 0=> z = -21/22 and y = 51/44 and x = 11/22.

Therefore, the intersection point R of line PQ and the plane passing through point S is (11/22, 51/44, -21/22).

To know more about Distance  visit :

https://brainly.com/question/15172156

#SPJ11

Evaluate the piecewise defined function at the indicated values. f (x) { 4 if x ≤ 2 { 2x-5 if x > 2 f(-3) = __
f(0) = __
f(2) = __ f(3) = __ f(5) = __

Answers

To evaluate the piecewise defined function at the indicated values, we substitute the given values of x into the corresponding parts of the function.

f(-3) = 4, since -3 ≤ 2 and the first condition is satisfied.

f(0) = 4, since 0 ≤ 2 and the first condition is satisfied.

f(2) = undefined, as there is no explicit definition for x = 2 in the function.

f(3) = 2(3) - 5 = 1, since 3 > 2 and we substitute x = 3 into the second part of the function.

f(5) = 2(5) - 5 = 5, since 5 > 2 and we substitute x = 5 into the second part of the function.

 To  learn  more about function click here:brainly.com/question/30721594

#SPJ11

ription would you get for $300? (Give your answer rounded to the nearest month.) 2. A grandmother sets up an account to make regular payments to her granddaughter on her birthday. The grandmother deposits $20,000 into the account on her grandaughter's 18th birthday. The account earns 2.3% p.a. compounded annually. She wants a total of 13 reg- ular annual payments to be made out of the account and into her granddaughter's account beginning now. (a) What is the value of the regular payment? Give your answer rounded to the nearest cent. (b) If the first payment is instead made on her granddaughter's 21st birthday, then what is the value of the regular payment? Give your answer rounded to the nearest cent. (c) How many years should the payments be deferred to achieve a regular payment of $2000 per year? Round your answer up to nearest whole year.

Answers

(a) The value of the regular payment, when the payments begin on the granddaughter’s 18th birthday, is approximately $2,234.18.

(b) If the first payment is instead made on her granddaughter’s 21st birthday, the value of the regular payment remains the same, which is approximately $2,234.18.


To achieve a regular payment of $2,000 per year, the payments should be deferred for approximately 12 years, rounding up to the nearest whole year.

(a) To calculate the value of the regular payment when the payments begin on the granddaughter’s 18th birthday, we can use the present value of an annuity formula. The formula is given by:

P = PMT * (1 – (1 + r)^(-n)) / r,

Where P is the present value (initial deposit), PMT is the regular payment, r is the interest rate per period, and n is the number of periods.

In this case, the initial deposit (P) is $20,000, the interest rate  is 2.3% per year, and we have 13 regular annual payments. Plugging these values into the formula, we can solve for PMT:

$20,000 = PMT * (1 – (1 + 0.023)^(-13)) / 0.023.

Solving this equation yields a regular payment value of approximately $2,234.18.

(b) If the first payment is instead made on the granddaughter’s 21st birthday, the value of the regular payment remains the same. The timing of the payments does not affect the value of the regular payment. Therefore, the regular payment is still approximately $2,234.18.

To achieve a regular payment of $2,000 per year, we need to determine how many years the payments should be deferred. We can rearrange the present value of an annuity formula to solve for n:

N = -log(1 – (PMT * r) / P) / log(1 + r),

Where n is the number of periods, PMT is the regular payment ($2,000), r is the interest rate per period (2.3% per year), and P is the present value ($20,000).

Plugging in the values, we have:

N = -log(1 – (2000 * 0.023) / 20000) / log(1 + 0.023).

Solving this equation yields a value of approximately 12.027 years.

Rounding up to the nearest whole year, the payments should be deferred for approximately 13 years to achieve a regular payment of $2,000 per year.


Learn more about interest rate here : brainly.com/question/31518705

#SPJ11

Verify that x ÷ (y + z) ≠ (x ÷ y) + (x ÷ z) when x = 12, y = -14 and z = 2.

Answers

To verify whether x ÷ (y + z) ≠ (x ÷ y) + (x ÷ z) when x = 12, y = -14, and z = 2, we can substitute these values into the equation and check if both sides are equal.

Let's evaluate each side separately:

Left side: x ÷ (y + z)
= 12 ÷ (-14 + 2)
= 12 ÷ (-12)
= -1

Right side: (x ÷ y) + (x ÷ z)
= (12 ÷ -14) + (12 ÷ 2)
= (-6/7) + 6
= 6 - 6/7
= 36/7 - 6/7
= 30/7

Since -1 is not equal to 30/7, we can conclude that x ÷ (y + z) is not equal to (x ÷ y) + (x ÷ z) when x = 12, y = -14, and z = 2.

PLEASE I REALLY NEED HELP ASAPPP :((!!


Janie uses a reflecting tool to reflect Point B onto Point A. Which of the following statements are true about the line of reflection?


Reflection line is perpendicular to AB

Choose... True/False


Reflection line does not bisect AB.

Choose... True/False


Reflection line passes through the midpoint of BA.

Choose... True/False


Reflection line forms two equal angles with segment AB.

Choose... True/False

Answers

Answer:

TrueFalseTrueTrue

Step-by-step explanation:

You want to know what is true about the line of reflection that results in point B being reflected onto point A.

Reflection

The line of reflection is the perpendicular bisector of the segment between a point (B) and its image (A). This means ...

the reflection line is perpendicular to ABthe reflection line bisects AB (false that it does not bisect AB)the reflection line passes through the midpoint of ABthe reflection line forms two equal angles with segment AB (those angles are 90°)

Hence the true/false status of the given statements is ...

True (perpendicular)False (doesn't bisect)True (through midpoint)True (equal angles)

<95141404393>

I need help with this it’s geometry this is my 2nd time asking for help

Answers

Answer:

The measure of angle WVX is 140°.

Step-by-step explanation:

Let x be the measure of angle WVX.

[tex] \frac{14}{9} \pi = 2x[/tex]

[tex] x = \frac{7}{9} \pi( \frac{180}{\pi}) = 140 \: degrees[/tex]

Answer:

angle = arc length/radius
in this case, the arc length is 14/9*[tex]\pi[/tex] and the radius is 2. Upon multiplying these, you get 140.

so, the answer is 140 degrees.

Solve the absolute value inequality. |7x+12| ≥ -6 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is (Type your answer in interval notation. Use integers or fractions for any numbers in the expression. B. The solution is the empty set.

Answers

The solution set is (-∞, +∞) or (-infinity, infinity) in interval notation.

The given absolute value inequality is |7x + 12| ≥ -6. The absolute value of any expression is always non-negative, meaning it is equal to or greater than zero. Therefore, the absolute value of any quantity cannot be less than -6.

In this case, we have |7x + 12| on the left side of the inequality. Since the absolute value is always non-negative, it can never be less than -6. In fact, the absolute value will be zero or a positive value.

So, for any value of x, the absolute value |7x + 12| will be greater than or equal to zero, and therefore it will satisfy the inequality |7x + 12| ≥ -6.

This means that the solution set for this inequality is the set of all real numbers. In interval notation, we represent the set of all real numbers as (-∞, +∞), indicating that there are no restrictions on the values of x. Therefore, the correct choice is: The solution set is (-∞, +∞) or (-infinity, infinity) in interval notation.

to know more about Real numbers, click: brainly.com/question/31715634

#SPJ11

Find the distance between the skew lines P(t) = (5, −3, 4) + t (−4, −3, 2) and Q(t) = (3, 4, 3) + t (2, −5, 1). Hint: Take the cross product of the slope vectors of P and Q to find vector normal to both of these lines. distance = ___

Answers

To find the distance between the skew lines P(t) and Q(t), we can use the cross product of the slope vectors of the lines to find a vector that is normal to both lines.

Then, we can find the projection of the vector connecting a point on one line to the other line onto the normal vector. This projection represents the shortest distance between the lines.

The slope vector of line P(t) is (-4, -3, 2), and the slope vector of line Q(t) is (2, -5, 1). Taking the cross product of these two vectors gives us a vector normal to both lines, which is (-7, -2, -23).

Next, we choose a point on one line and find the vector connecting that point to a point on the other line. Let's choose the point (5, -3, 4) on line P(t) and the point (3, 4, 3) on line Q(t). The vector connecting these two points is (-2, 7, -1).

To find the distance, we need to find the projection of the vector (-2, 7, -1) onto the normal vector (-7, -2, -23). The formula for the projection is given by (vector dot product) / (magnitude of the normal vector). The dot product of these two vectors is 59, and the magnitude of the normal vector is sqrt(618).

Dividing the dot product by the magnitude, we get 59 / sqrt(618), which simplifies to (59 * sqrt(618)) / 618.

Therefore, the distance between the skew lines P(t) and Q(t) is (59 * sqrt(618)) / 618.

To learn more about vector click here:

brainly.com/question/24256726

#SPJ11

why is an equilateral triangle not allowed what would the euler line of an equalateral trianlge look like

Answers

In an equilateral triangle, all important points (centroid, circumcenter, orthocenter) coincide, causing the Euler line to collapse into a single point.

An equilateral triangle is certainly allowed in mathematics and is a well-defined geometric shape. However, when it comes to the concept of an Euler line, which is a special line associated with triangles, an equilateral triangle has some unique properties.

The Euler line is a line that passes through several important points of a triangle, including the centroid, circumcenter, orthocenter, and sometimes the nine-point center. However, in the case of an equilateral triangle, these points coincide.

In an equilateral triangle, all three vertices are equidistant from the centroid, circumcenter, and orthocenter because they are essentially the same point. This means that the Euler line, which normally connects these points, collapses into a single point in the case of an equilateral triangle. So, there is no distinct Euler line for an equilateral triangle since the points it is supposed to connect are all coincident.To summarize, while an equilateral triangle is a valid geometric shape, it has unique properties that result in the Euler line degenerating into a single point, as all the significant points it would typically connect coincide in this particular case.

ToTo learn more about Euler line click here brainly.com/question/31893613

#SPJ11

Durabright wants to establish kanbans to feed a newly installed work cell for its line of LED traffic signal lamps. The daily production (demand) rate for this new family of products is 105 units. The supplier lead time for the bulb housing, used by all products in this product family, is 9 days. They want to keep 1.25 days of safety stock of this housing on hand (the safety stock factor).
The kanban size for the bulb housing components is 44 units. How many kanbans do they require? (Display your answer to the most appropriate whole number.)

Answers

Durabright requires approximately 14 kanbans for the bulb housing components in their work cell for LED traffic signal lamps.

To calculate the number of kanbans required, we need to consider the daily demand rate, supplier lead time, safety stock factor, and kanban size.

The daily production rate (demand) for the LED traffic signal lamps is 105 units. Since the supplier lead time for the bulb housing is 9 days, we need to account for the demand during this time. Therefore, the total demand during the lead time is 105 units/day× 9 days = 945 units.

The safety stock factor is 1.25 days, which means Durabright wants to maintain 1.25 days' worth of safety stock for the bulb housing. This is equivalent to 105 units/day× 1.25 days = 131.25 units.

Now, we can calculate the total inventory required by adding the demand during lead time and the safety stock:

945 units + 131.25 units = 1076.25 units.

Next, we divide the total inventory required by the kanban size to determine the number of kanbans:

1076.25 units / 44 units/kanban = 24.46 kanbans.

Since kanbans cannot be fractional, we round up to the nearest whole number. Therefore, Durabright requires approximately 25 kanbans for the bulb housing components.

Learn more about demand rate here:

https://brainly.com/question/30968764

#SPJ11

Use a calculator to find the solutions for the equation that lie in the interval [0, 2π). Round answers to four decimal places. 4 sin² x - 7 sinx = -3

Answers

Using a calculator, the solutions for the equation 4sin²(x) - 7sin(x) = -3 that lie in the interval [0, 2π) are approximately x ≈ 0.6719 and x ≈ 5.8129.

To find the solutions, we can rearrange the equation and convert it into a quadratic equation. Let's denote sin(x) as y. The equation becomes 4y² - 7y + 3 = 0.

We can now solve this quadratic equation for y using a calculator or a quadratic formula. By substituting y = sin(x) back into the equation, we obtain sin(x) = 0.6719 and sin(x) = 5.8129. To find the values of x, we use the inverse sine function on a calculator.

However, since we are looking for solutions in the interval [0, 2π), we only consider the values of x within that range. Therefore, the solutions are approximately x ≈ 0.6719 and x ≈ 5.8129, rounded to four decimal places.

To know more about formula click here

brainly.com/question/30098455

#SPJ11

Find the values of the trigonometric functions of 9 from the information given. csc(θ) = 6, θ in Quadrant I sin(θ) =
cos(θ) = tan(θ) = sec(θ) = cot(θ) =

Answers

The value of the trigonometric functions of 9, given that csc(θ) = 6 and θ is in Quadrant I, are as follows: sin(θ) = 1/6, cos(θ) = √(1 - sin²(θ)) ≈ 0.997, tan(θ) = sin(θ)/cos(θ) ≈ 0.168, sec(θ) = 1/cos(θ) ≈ 1.003, and cot(θ) = 1/tan(θ) ≈ 5.946.

Given that csc(θ) = 6, we can find sin(θ) by taking the reciprocal: sin(θ) = 1/csc(θ) = 1/6 ≈ 0.167. Since θ is in Quadrant I, sin(θ) is positive.

To find cos(θ), we can use the Pythagorean identity: sin²(θ) + cos²(θ) = 1. Substituting sin(θ) = 1/6, we get cos²(θ) = 1 - (1/6)² = 35/36. Taking the square root, cos(θ) = √(35/36) ≈ 0.997.

Next, we can find tan(θ) using the ratio of sin(θ) to cos(θ): tan(θ) = sin(θ)/cos(θ) ≈ 0.167/0.997 ≈ 0.168.

Secant (sec(θ)) is the reciprocal of cosine: sec(θ) = 1/cos(θ) ≈ 1/0.997 ≈ 1.003.

Finally, cotangent (cot(θ)) is the reciprocal of tangent: cot(θ) = 1/tan(θ) ≈ 1/0.168 ≈ 5.946.

In summary, for θ in Quadrant I with csc(θ) = 6, the values of the trigonometric functions are: sin(θ) ≈ 0.167, cos(θ) ≈ 0.997, tan(θ) ≈ 0.168, sec(θ) ≈ 1.003, and cot(θ) ≈ 5.946.

To learn more about trigonometric functions click here :

brainly.com/question/25618616

#SPJ11

Z~N(0, 1). Find P(Z < -1.3). Give your answer to 4 decimal places.

2. Z~N(0, 1). Find P(Z > -0.53). Give your answer to 4 decimal places.

3.X~N(5, 16). Find P(X > 10). Give your answer to 4 decimal places.

4.X~N(5, 16). Find P( 2 < X < 6). Give your answer to 4 decimal places.

5.The diameters of a mechanical component produced on a certain production line are known from experience to have a normal distribution with mean 97.5mm and standard deviation 4.4mm. find the proportion of components with diameter between 95mm and 105mm. Give your answer to 4 decimal places.

Answers

The answers are as follows P(Z < -1.3) ≈ 0.0968, P(Z > -0.53) ≈ 0.7029, P(X > 10) ≈ 0.3085, P(2 < X < 6) ≈ 0.2335, Proportion(diameter between 95mm and 105mm) ≈ 0.7734.

1. To find P(Z < -1.3), we look up the corresponding value in the standard normal distribution table, which is approximately 0.0968.

2. P(Z > -0.53) is equivalent to 1 - P(Z < -0.53). Using the standard normal distribution table, we find P(Z < -0.53) to be approximately 0.2971. Subtracting this value from 1 gives us approximately 0.7029.

3. To find P(X > 10) for X following a normal distribution with mean 5 and standard deviation 16, we first standardize the value by subtracting the mean and dividing by the standard deviation. The standardized value is (10 - 5) / 16 = 0.3125. We then look up the corresponding value in the standard normal distribution table, which is approximately 0.6215. Since we are interested in the probability of X being greater than 10, we subtract this value from 1 to get approximately 0.3785.

4. P(2 < X < 6) can be calculated by standardizing both values. For 2, the standardized value is (2 - 5) / 16 = -0.1875, and for 6, the standardized value is (6 - 5) / 16 = 0.0625. Using the standard normal distribution table, we find the probability corresponding to -0.1875 to be approximately 0.4251 and the probability corresponding to 0.0625 to be approximately 0.5274. Subtracting the former from the latter gives us approximately 0.2335.

5. To find the proportion of components with a diameter between 95mm and 105mm, we standardize both values. For 95mm, the standardized value is (95 - 97.5) / 4.4 = -0.5682, and for 105mm, the standardized value is (105 - 97.5) / 4.4 = 1.7045. Using the standard normal distribution table, we find the probability corresponding to -0.5682 to be approximately 0.2839 and the probability corresponding to 1.7045 to be approximately 0.9567. Subtracting the former from the latter gives us approximately 0.7734, which represents the proportion of components with a diameter between 95mm and 105mm.

Learn more about proportion here:

https://brainly.com/question/26974513

#SPJ11

(The Eckart-Young Theorem) Given a matrix A € Rmxn and the full SVD A = UEVT. Define Ak = 1 0₁u₁v. Assume that k ≤ rank(A) = r. Show that Ak = arg, min B: rank(B)

Answers

The Eckart-Young theorem states that for a given matrix A and its singular value decomposition (SVD) A = UΣV^T, the best rank-k approximation of A (denoted as Ak) in terms of the Frobenius norm is obtained by taking the first k singular values of Σ and corresponding columns of U and V.

To prove that Ak is the minimizer of the rank among all matrices B with the same dimensions as A, we need to show that rank(Ak) ≤ rank(B) for any matrix B.

Let's assume that B is a matrix with rank(B) < rank(Ak). This means that the rank of B is strictly less than k.

Since rank(B) < k, we can construct a matrix C by taking the first k columns of U and V from the SVD of A:

C = U(:, 1:k) * Σ(1:k, 1:k) * V(:, 1:k)^T

Note that C has rank(C) = k.

Now, let's consider the difference between A and C:

D = A - C

The rank of D, denoted as rank(D), can be expressed as rank(D) = rank(A - C) ≤ rank(A) + rank(-C) = rank(A) + rank(C) ≤ r + k, since rank(-C) = rank(C) = k.

However, since k ≤ r, we have rank(D) ≤ r + k ≤ 2k.

Now, let's consider the difference between B and C:

E = B - C

Since rank(B) < k and rank(C) = k, we have rank(E) = rank(B - C) < k.

Therefore, we have rank(D) ≤ 2k and rank(E) < k.

Now, consider the sum of D and E:

F = D + E

The rank of F, denoted as rank(F), can be expressed as rank(F) = rank(D + E) ≤ rank(D) + rank(E) ≤ 2k + k = 3k.

However, since rank(D) ≤ 2k and rank(E) < k, we have rank(F) ≤ 3k < 4k.

Now, let's consider the matrix Ak:

Ak = U(:, 1:k) * Σ(1:k, 1:k) * V(:, 1:k)^T

Since Ak is formed by taking the first k columns of U and V from the SVD of A, we have rank(Ak) = k.

Comparing rank(F) < 4k and rank(Ak) = k, we can see that rank(F) < rank(Ak).

This contradicts our assumption that B is a matrix with rank(B) < rank(Ak).

Therefore, we can conclude that Ak = arg min B: rank(B) for any matrix B with the same dimensions as A.

In other words, Ak is the minimizer of the rank among all matrices B with the same dimensions as A.

To know more about expressed visit-

brainly.com/question/32535955

#SPJ11


Use the Indirect or Short Method: Identify if the argument is
valid or invalid
P --> (Q & R) / R --> S // P -->
S

Answers

The argument is valid using the indirect or short method of proof because the conclusion follows logically from the premises.

The argument is valid. The Indirect Method for proving a syllogism is a technique that looks at whether the syllogism's conclusion is false and whether this leads to a false premise.

If a false conclusion leads to a false premise, the syllogism is sound and valid.

When considering the validity of the argument, there are two main techniques: direct and indirect.

Direct method: The direct method is used to validate the argument by evaluating it in terms of its logical truth.

The premises' validity is used to assess the soundness of the conclusion.

Indirect method: The indirect method is used to invalidate the argument by evaluating it in terms of its logical falsehood.

The conclusion's invalidity is used to assess the unsoundness of the premises.

The argument is valid using the indirect or short method of proof because the conclusion follows logically from the premises.

Know more about an argument here:

https://brainly.com/question/3775579

#SPJ11

All 33 of the students in a mathematics class attended class on Monday. On Tuesday only 28 students attended. What was the percent of decrease?

Answers

The percent of decrease in attendance from Monday to Tuesday in the mathematics class was approximately 15.15%.

To calculate the percent of decrease, we need to find the difference between the initial and final values, divide it by the initial value, and then multiply by 100. On Monday, all 33 students attended class, and on Tuesday, only 28 students attended.

The difference in attendance is 33 - 28 = 5 students. Dividing this by the initial attendance (33) and multiplying by 100 gives us (5/33) * 100 = 15.15%. Therefore, the percent of decrease in attendance from Monday to Tuesday is approximately 15.15%.

To learn more about percent click here: brainly.com/question/31323953

#SPJ11

Other Questions
QUESTION 3a. Differentiate between affiliate marketing and affiliate network.State ONE (1) example foreach.Note: sir no copyright please give your won answerand answer give maximum 120 word, than In a September 2019 survey of adults in the U.S., participants were asked if within the last 5 years, they knew of a friend or family member who died due to inability to pay for medical treatment. Overall, 13.4% answered yes. The rate for seniors (those 65 and over) is much lower at 6.6% due to Medicaide and Medicare. We will focus on the difference between the two younger age groups. The table below has the breakdown of the data by three Age Groups. Yes No AGE 18-44 87 Total 515 372 212 45-64 428 326 198 952 46 65+ 14 Total 147 1099 This problem will focus on a Difference of Proportion Problem between those 18 to 44 and those 45 to 64. Use this order, Proportion(18 to 44) Proportion (45 to 64), in calculating the difference so it is positive. Answer the following questions. Conduct a Hypothesis Test that the Difference of the two proportions is zero. Use an alpha level of .05 and a 2-tailed test. Note that this requires a pooled estimated of the standard error. What is the test Statistic (z*) for this Hypothesis Test? It will be a positive value. Use three decimal places in your answer and use the proper rules of rounding. The plumbing company is struggling with supply chain issues, they are experiencing shoartages and do not have materials in stock which resulted in delayed deadlines and additional cost on projects. One of the recommendation is that they should keep at least 50% of the materials available few months in advance so they will be able to finish the work faster.Write few steps on how they can achieve this goal in few week and list how they can keep track of each step so they do not experience any more shortages, use the recommendation above. The waving of a nation's flag and signing the national anthem after a nation's victory in an Olympic games or World Championship would be: Promoting Inter-state Competitive Images Reinforcing the Impression of Inter-state Boundaries Promoting Nationalism Unifying of a Nation All of the above None of the above Modify the TreeMap implementation to support location-aware entries. Provide methods firstEntry( ), lastEntry( ), findEntry(k), before(e), after(e), and remove(e), with all but the last of these returning an Entry instance, and the latter three accepting an Entry e as a parameter. (Hint: Consider having an entry instance keep a reference to the node at which it is stored.) In JAVA What is your WACC if your capitalization is: $8mm Bonds at 5% after-tax yield $4mm Preferred Stock at 8% yield $24mm Common Stock at 30% required rate of return16%13.4%17.2%22%10% 3. Una seora desea colocar listn alrededor de un mantel circular que mide 80 cm de radio.cunto listn debe comprar? Organizational Behaviour analysis on CIBC BANK (Canadian Imperial Bank of Commerce) Topics needs to explain -Key Findings/Strengths, Recommendations and Development Opportunities, Implications for CIBC Bank. ( Explain this with a minimum of 300 words).Power and Influence in the Workplace of CIBC BANK (Explain this with a minimum of 200 words).Recommendations and Development Opportunities Implications for CIBC bank (Explain this with a minimum of 150 words). We examined two important topics in finance this week: (a) present and future values and (b) security valuation.Critically reflect on the importance of present and future values. What factors must be considered when calculating present and future values? What other qualitative factors play into present and future value decisions? Perhaps you have opportunities in your professional life to use present and future values. What are some real or potential applications of these concepts? Chosen airline is Malaysian Airlines3. Access Yahoo Finance on the internet i. Identify Financial reports of an airline of your choice available on Yahoo Finance (no group should choose Delta Airline as already explained by Daniel Pronk) ii. Study the chosen airline's Financial Statement. You may use ONLY one, the Balance Sheet OR the income statement OR the Cash Flow Statement to identify the relevant indicators. iii. Capture and deduce these indicators in your report (in the similar way Daniel Pronk did). You may write as many deductions as possible that you can recognize. What is the danger of using too few studies in derivinga formula? Which structure is located in the left lower quadrant of the abdomen?A)LiverB)DuodenumC)GallbladderD)Sigmoid colon You have just taken a one-year loan of $1,000 from your bank. The nominal interest rate is 8%, and you anticipate an inflation rate over the next year of 3%. What is the real interest rate on the loan (show the formula you would use and give an approximate answer). What is the meaning of the real vs the nominal interest rate? If the function x^2 + y^2 = k is rotated through 2n about the x-axis for the region 0= Homework3: find the solution of the following differential equation by Euler's modified method for x=0.05 & x=0.1 by taking h=0.05 correct up dy to 3 decimal places, = x + y, (y=1 when x=0/ y(0)=1] dx Given that y has a standard normal distribution, calculate (a) P(y < 1.36) (b) P(y < -0.9) (c) P(0.56 How much heat will be required to convert 20g of water at 100C into steam at 100C ? (Specific latent heat of vaporization of water = 540 cal/g) Continuous traits are often influenced by multiple simple (Mendelian) genes. True or False? Let's consider the loanable funds market. The real interest rate is determined in this market. If the government exogenously increases its government purchases, then what would happen to the national savings and investment? And indicate the crowding-out effects in the loanable funds market. Diagram/s are required to aid your explanation. Initially, Airlift is the only high-lift tower crane service in the state and provides tower cranes toconstruct high-rise buildings.Suppose Airlift faces a linear market demand curve:Q=307.5 -0.1Pwhere P is price per hour for its service in dollars and Q is the number of service hours per month,Airlif has the following variable costs (for purposes of this problem, you may assume that there are no fixed costs associnted with this service):TVCa =125QaA) Given that Airlif is the only supplier in this market, determine the price Airlif will chargeper hour, the number of hour of service per month, and the profits earned assuring Airlifsobjective is profit maximization.Now suppose the situation changes and Hangonhigh decides to enter the market for this service.Being new to the market, Hangonhigh's costs are different from Airlif's, Again assuming nofixed costs, Hangonhigh's costs for the service are given by:TVCb =175Qbb. If these two firms behave as profit maximizing Coumnot duopolists choosing output level determine each firm's output reaction function.c How many hours of service will each firm sell?D) What will be the total number of hours of service and what will be the hourly market pricefor the service?E) Compare the market outcores under monopoly conditions to those with two competitors,Specifically, how does price and output (hours of service sold) compare after the entry byHangernhighBonusSuppose instead of a Courot duopoly, that the Stackelbergmodel is the appropriate one given that Airlifcould anticipate Hangemhigh's, entry and useits first-mover or dominant firm position to its advantage. Under this scenario, how muchoutput would each firm offer and what would be the market price for the service?