The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr. ​

Answers

Answer 1

Answer:

Correct option not indicated

Explanation:

There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).

The formula to calculate a centripetal force (F) is

F = mv²/r

Where m is mass, v is velocity and r is radius

where

While the formula to calculate a centrifugal force (F) is

F = mω²r

where m is mass, ω is angular velocity and r is radius of the circular path.

From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.

NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.


Related Questions

how do you calculate voltage drop

Answers

Answer:

Multiply current in amperes by the length of the circuit in feet to get ampere-feet. Circuit length is the distance from the point of origin to the load end of the circuit.

Divide by 100.

Multiply by proper voltage drop value in tables. The result is voltage drop.

Explanation:

A 100-W light bulb is left on for 20.0 hours. Over this period of time, how much energy did the bulb use?

Answers

Answer:

Power = Energy/time

Energy = Power xtime.

Time= 20hrs

Power = 100Watt =0.1Kw

Energy = 0.1 x 20 = 2Kwhr.

This Answer is in Kilowatt-hour ...

If the one given to you is in Joules

You'd have to Change your time to seconds

Then Multiply it by the power of 100Watts.

A block of mass M is connected by a string and pulley to a hanging mass m.
The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg.
b. Find the acceleration of the system and tensions on the string.
c. How far will block m drop in the first seconds after the system is released?
d. How long will block M move during the above time?
e. At the time, calculate the velocity of block M
f. Find out the deceleration of block M if the connection string is removal by cutting after the first second. Then, calculate the time taken to contact block M and pulley
How far will block m drop in the first seconds after the system is released?

Answers

(b) Use Newton's second law. The net forces on block M are

• ∑ F (horizontal) = T - f = Ma … … … [1]

• ∑ F (vertical) = n - Mg = 0 … … … [2]

where T is the magnitude of the tension, f is the mag. of kinetic friction between block M and the table, a is the acceleration of block M (but since both blocks are moving together, the smaller block m also shares this acceleration), and n is the mag. of the normal force between the block and the table.

Right away, we see n = Mg, and so f = µn = 0.2Mg.

The net force on block m is

• ∑ F = mg - T = ma … … … [3]

You can eliminate T and solve for a by adding [1] to [3] :

(T - 0.2Mg) + (mg - T ) = Ma + ma

(m - 0.2M) g = (M + m) a

a = (10 kg - 0.2 (20 kg)) (9.8 m/s²) / (10 kg + 20 kg)

a = 1.96 m/s²

We can get the tension from [3] :

T = m (g - a)

T = (10 kg) (9.8 m/s² - 1.96 m/s²)

T = 78.4 N

(c/d) No time duration seems to be specified, so I'll just assume some time t before block M reaches the edge of the table (whatever that time might be), after which either block would move the same distance of

1/2 (1.96 m/s²) t

(e) Assuming block M starts from rest, its velocity at time t is

(1.96 m/s²) t

(f) After t = 1 s, block M reaches a speed of 1.96 m/s. When the string is cut, the tension force vanishes and the block slows down due to friction. By Newton's second law, we have

F = -f = Ma

The effect of friction is constant, so that f = 0.2Mg as before, and

-0.2Mg = Ma

a = -0.2g

a = -1.96 m/s²

Then block M slides a distance x such that

0² - (1.96 m/s²) = 2 (-1.96 m/s²) x

x = (1.96 m/s²) /  (2 (1.96 m/s²))

x = 0.5 m

(I don't quite understand what is being asked by the part that says "calculate the time taken to contact block M and pulley" …)

Meanwhile, block m would be in free fall, so after 1 s it would fall a distance

x = 1/2 (-9.8 m/s²) (1 s)

x = 4.9 m

What is the length of the x-component of the vector shown below?
у
6
28°

Answers

Answer:

Explanation:

6cos28

=5.3 N

What best describes a societal law

Answers

Answer:

Societal laws are based on the behavior and conduct made by society or government.

hope it helps.stay safe healthy and happy.

Determine the absolute pressure on the bottom of a swimming pool 27.0 m by 8.9 m whose uniform depth is 1.8 m . Express your answer using two significant figures.

Answers

Answer:

[tex]P=17658Pa[/tex]

Explanation:

From the question we are told that:

Dimension

 [tex]L*B=27.0*8.9[/tex]

Depth [tex]d=1.8m[/tex]

Generally the equation for Volume of water is mathematically given by

 [tex]V=L*B*D[/tex]

 [tex]V=27.0*8.9*1.8[/tex]

 [tex]V=432.54m^3[/tex]

Therefore

Force at the bottom of the Pool

 [tex]F=\rho Vg[/tex]

Where

 [tex]\rho \ density\ of \ water(1000kg/m^3)[/tex]

 [tex]F=1000*432.54m^3*9.81[/tex]

 [tex]F=4.2*10^{6}N[/tex]

Generally the equation for Pressure at the bottom is mathematically given by

 [tex]P=\frac{Forece }{Area}[/tex]

 [tex]P=\frac{4.2*10^{6}N}{27.0*8.9}[/tex]

 [tex]P=17658Pa[/tex]

An inductor of inductance 0.02H and capacitor of capatance 2uF are connected in series to an a.c. source of frequency 200 Hz- Calculate the Impedance in the circuit . TC​

Answers

Explanation:

Given:

L = 0.02 H

C = [tex]2\:\mu \text{F}[/tex]

f = 200 Hz

The general form of the impedance Z is given by

[tex]Z = \sqrt{R^2 + (X_L - X_C)^2}[/tex]

Since this is a purely inductive/capacitive circuit, R = 0 so Z reduces to

[tex]Z = \sqrt{(X_L - X_C)^2} = \sqrt{\left(\omega L - \dfrac{1}{\omega C} \right)^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{\left(2 \pi L - \dfrac{1}{2 \pi f C} \right)^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{\left[2 \pi (200\:\text{Hz})(0.02\:\text{H}) - \dfrac{1}{2 \pi (200\:\text{Hz})(2×10^{-6}\:\text{F})} \right]^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{(25.13\:\text{ohms} - 397.89\:\text{ohms})^2}[/tex]

[tex]\:\:\:\:\:\:\:=372.66\:\text{ohms}[/tex]

. Set the applied force to Force necessary to Keep the box Moving without accelerating. Restart the animation. Just before the box hits the wall, stop the animation. What can you tell me about relative magnitudes of the frictional force and the applied force

Answers

Answer:

elative magnitude of the two forces is the same and they are applied in a constant direction.

Explanation:

Newton's second law states that the sum of the forces is equal to the mass times the acceleration  

              ∑ F = m a

in this case there are two forces on the x axis

             F_applied - fr = 0

since they indicate that the velocity is constant, consequently

             F_applied = fr

the relative magnitude of the two forces is the same and they are applied in a constant direction.

20. How much charge will flow through a 2002 galvanometer
connected to a 40092 circular coil of 1000 turns on a wooden
stick 2 cm in diameter? If a magnetic field B=0.011 T parallel to
the axis of the stick is decreased suddenly to zero?

Answers

Answer:

5.76 μC

Explanation:

The induce emf, ε = -ΔΦ/Δt where ΔΦ = change in magnetic flux = NAΔB where N = number of turns of coil = 1000, A = cross-sectional area of coil = πd²/4 where d = diameter of coil = 2 cm = 2 × 10⁻² m and ΔB = change in magnetic field strength = B' - B where B' = final magnetic field = 0 T and B = initial magnetic field strength = 0.011 T. So, ΔB = 0 T - 0.011 T = -0.011 T

So, ε = -ΔΦ/Δt

ε = -NAΔB/Δt

ε = -NAΔB/Δt

Also ε = iR where i = current and R = combined resistance of circular coil and galvanometer = 200 Ω + 400 Ω = 600 Ω (since they are in series)

So, iR = -NAΔB/Δt

iΔt = -NAΔB/R

Δq = -NAΔB/R where Δq = charge = iΔt

substituting the values of the variables into the equation, we have

Δq = -1000 × π(2 × 10⁻² m)²/4 × -0.011 T/600 Ω

Δq = -1000 × 4π × 10⁻⁴ m²/4 × -0.011 T/600 Ω

Δq = 0.011π × 10⁻¹ m²T/600 Ω

Δq = 0.03456 × 10⁻¹ m²T/600 Ω

Δq = 5.76 × 10⁻⁶ C

Δq = 5.76 μC

The equations for calculating both the electric force and the gravitational force are above. Their equations are very similar. What is an important difference between these two forces?

A The electrical force is measured in coulombs; the gravitational force is measured in newtons.

B The electrical force between two charged objects will always be weaker than the gravitational force between them.

C The gravitational force decreases with the square of the distance between the objects; the electrical force increases with the square of the distance between the objects.

D Electrical forces can be attractions or repulsions; gravitational forces can only be attractions.

Answers

A, B, and C are hilarious. D is correct.

Charges can be positive or negative, so a pair of charges can be alike or opposite. But so far, we've never seen a negative mass.

g A spherical container of inner diameter 0.9 meters contains nuclear waste that generates heat at the rate of 872 W/m3. Estimate the total rate of heat transfer from the container to its surroudings ignoring radiation.

Answers

Answer: The total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.

Explanation:

Given: Inner diameter = 0.9 m

q = 872 [tex]W/m^{3}[/tex]

Now, radii is calculated as follows.

[tex]r = \frac{diameter}{2}\\= \frac{0.9}{2}\\= 0.45 m[/tex]

Hence, the rate of heat transfer is as follows.

[tex]Q = q \times V[/tex]

where,

V = volume of sphere = [tex]\frac{4}{3} \pi r^{3}[/tex]

Substitute the values into above formula as follows.

[tex]Q = q \times \frac{4}{3} \pi r^{3}\\= 872 W/m^{3} \times \frac{4}{3} \times 3.14 \times (0.45 m)^{3}\\= 332.67 W[/tex]

Thus, we can conclude that the total rate of heat transfer from the container to its surroundings ignoring radiation is 332.67 W.

Suppose the pucks start spinning after the collision, whereas they were not before. Will this affect your momentum conservation results

Answers

Answer:

No, it will not affect the results.

Explanation:

For elastic collisions in an isolated system, when a collision occurs, it means that the systems objects total momentum will be conserved under the condition that there will be no net external forces that act upon the objects.

What that means is that if the pucks start spinning after the collision, we are not told that there was any net external force acting on the puck and thus momentum will be conserved because momentum before collision will be equal to the momentum after the collision.

Container A and container B hold samples of the same ideal gas. The volume and the pressure of container A is equal to the volume and pressure of container B, respectively. If Container A has half as many molecules of the ideal gas in it as Container B does, then which of the following mathematical statements is correct regarding the absolute temperatures TA and TB in Container A and Container B. respectively?
A. TA = TB/2.
B. TA = 4TB.
C. TA = TB/4.
D. TA = 2TB.
E. TA = TB

Answers

Answer:

A. TA = TB/2.

Explanation:

Since container A has half as many molecules of the ideal gas in it as container B. Therefore, container A will have half the volume of gas as in container B:

[tex]V_A = \frac{1}{2}V_B[/tex]

Now, from Charle's Law:

[tex]\frac{V_A}{T_A}=\frac{V_B}{T_B}\\\\\frac{1}{2}\frac{V_B}{T_A}=\frac{V_B}{T_B}\\\\T_A = \frac{T_B}{2}[/tex]

Hence, the correct option is:

A. TA = TB/2.

A caris initially at rest starts moving with a constant acceleration of 0.5 m/s2 and travels a distance of 5 m. Find

(i) Final velocity

(ii)The time taken​

Answers

Answer:

(I)

[tex] { \bf{ {v}^{2} = {u}^{2} - 2as }} \\ {v}^{2} = {0}^{2} - (2 \times 0.5 \times 5) \\ {v}^{2} = 5 \\ { \tt{final \: velocity = 2.24 \: {ms}^{ - 1} }}[/tex]

(ii)

[tex]{ \bf{v = u + at}} \\ 2.24 = 0 + (0.5t) \\ { \tt{time = 4.48 \: seconds}}[/tex]

Question 7 of 10
A railroad freight car with a mass of 32,000 kg is moving at 2.0 m/s when it
runs into an at-rest freight car with a mass of 28,000 kg. The cars lock
together. What is their final velocity?
A.1.1 m/s
B. 2.2 m/s
C. 60,000 kg•m/s
D. 0.5 m/s

Answers

Answer:

a

Explanation:

you take 32,000kg ÷2.0m

A proton traveling due west in a region that contains only a magnetic field experiences a vertically upward force (away from the surface of the earth). What is the direction of the magnetic field?

Answers

South

Explanation:

The magnetic force F on a point charge moving with a velocity v in the presence of a magnetic field B is given by

[tex]\vec{\textbf{F}} = q\vec{\textbf{v}}\textbf{×}\vec{\textbf{B}}[/tex]

and according to the right-hand rule, an upward magnetic force on a proton moving westward is only possible if the magnetic field is directed southward.

measurement is essential in our life.justify the statement.​

Answers

Answer:

Measurements allow people to find their way to new places. Measurements such as miles or kilometers are used by GPS systems to give directions. Time measurements help to create schedules so tasks get done on time. Measurements are used in food as well. Ingredients in recipes have to be measured to make the dish correctly. Serving sizes are a measurement that keep people healthy by showing how much of each food you should eat.

A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.71 s. He breaks the tackle and runs straight forward another 24.0 m in 5.20 s. Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)

Answers

Answer:

Average Velocity = 3.63 m/s

Explanation:

First, we will calculate the total displacement of the quarterback, taking forward direction as positive:

Total Displacement = 15 m - 3 m + 24 m = 36 m

Now, we will calculate the total time taken for this displacement:

Total Time = 3 s + 1.71 s + 5.2 s = 9.91 s

Therefore, the average velocity will be:

[tex]Average\ Velocity = \frac{Total\ Displacement}{Total\ Time}\\\\Average\ Velocity = \frac{36\ m}{9.91\ s}[/tex]

Average Velocity = 3.63 m/s

The Lamborghini Huracan has an initial acceleration of 0.85g. Its mass, with a driver, is 1510 kg. If an 80 kg passenger rode along, what would the car's acceleration be?​

Answers

Answer:

7.9 [tex]\frac{m}{s^{2} }[/tex]

Explanation:

Take the fact that mass is inversely proportional to accelertation:

m ∝ a

Therefore m = a, but because we are finding the change in acceleration, we would set our problem up to look more like this:

[tex]\frac{m_{1} }{m_{2} } = \frac{a_{2} }{a_{1} } \\[/tex]

Using algebra, we can rearrange our equation to find the final acceleration, [tex]a_{2}[/tex]:

[tex]a_{2} = \frac{a_{1}*m_{1} }{m_{2} } \\[/tex]

Before plugging everything in, since you are being asked to find acceleration, you will want to convert 0.85g to m/s^2. To do this, multiply by g, which is equal to 9.8 m/s^2:

0.85g * 9.8 [tex]\frac{m }{s^{2} }[/tex] = 8.33 [tex]\frac{m }{s^{2} }[/tex]

Plug everything in:

7.9 [tex]\frac{m }{s^{2} }[/tex] = [tex]\frac{ 8.33\frac{m}{s^{2} }*1510kg }{1590kg}[/tex]

(1590kg the initial weight plus the weight of the added passenger)

A block of mass M is connected by a string and pulley to a hanging mass m. The coefficient of kinetic friction between block M and the table is 0.2, and also, M = 20 kg, m = 10 kg. How far will block m drop in the first seconds after the system is released?
How long will block M move during above time?
At the time, calculate the velocity of block M
Find out the deceleration of the block M, if the connected string is
removal by cutting after the first second. Then, calculate the time
taken to contact block M and pulley.

Answers

Answer:

a)  y = 0.98 t², t=1s y= 0.98 m,  

b) he two blocks must move the same distance

c) v = 1.96 m / s,  d)  a = -1.96 m / s², e)  x = 0.98 m

Explanation:

For this exercise we can use Newton's second law

Big Block

Y axis

             N-W = 0

             N = M g

X axis

             T- fr = Ma

the friction force has the expression

             fr = μ N

             fr = μ Mg

small block

             w- T = m a

             

we write the system of equations

             T - fr = M a

             mg - T = m a

we add and resolved

             mg-  μ Mg = (M + m) a

             a = [tex]g \ \frac{m - \mu M}{m+M}[/tex]

             a = [tex]9.8 \ \frac{10- 0.2 \ 20}{ 10 \ +\ 20}[/tex]

             a = 9.8 (6/30)

             a = 1.96 m / s²

a) now we can use the kinematic relations

             y = v₀ t + ½ a t²

the blocks come out of rest so their initial velocity is zero

             y = ½ a t²

             y = ½ 1.96 t²

             y = 0.98 t²

for t = 1s y = 0.98 m

       t = 2s y = 1.96 m

b) Time is a scale that is the same for the entire system, the question should be oriented to how far the big block will move.

As the curda is in tension the two blocks must move the same distance

c) the velocity of the block M

           v = vo + a t

           v = 0 + 1.96 t

for t = 1 s v = 1.96 m / s

       t = 2 s v = 3.92 m / s

d) the deceleration if the chain is cut

when removing the chain the tension becomes zero

           -fr = M a

          - μ M g = M a

          a = - μ g

          a = - 0.2 9.8

          a = -1.96 m / s²

e) the distance to stop the block is

         v² = vo² - 2 a x

        0 = vo² - 2a x

        x = vo² / 2a

        x = 1.96² / 2 1.96

        x = 0.98 m

the time to travel this distance is

        v = vo - a t

        t = vo / a

        t = 1.96 /1.96

        t = 1 s

8. If a moving object triples its speed, how much kinetic energy will it have? A. six times as much as before B. three times as much as before C. one third as much as before D. nine times as much as before ​

Answers

D

Explanation:

KE: 0.5mv²

when v is tripled v² is 9 times its original value

a baseball is thrown vertically upward with an initial velocity of 20m/s.
A,what maximum height will it attain? B,what time will elapse before it strike the ground?
C,what is the velocity just before it strike the ground?​

Answers

Answer:

Look at explanation

Explanation:

a)Only force acting on the object is gravity, so a=-g (consider up to be positive)

use: v^2=v0^2+2a(y-y0)

plug in givens, at max height v=0

0=400-19.6(H)

Solve for H

H= 20.41m

b) Use: y=y0+v0t+1/2at^2

Plug in givens

0=0+20t-4.9t^2

solve for t

t=4.08 seconds

c) v=v0+at

v=20-39.984= -19.984m/s

Four toy racecars are racing along a circular race track. The cars start at the 3-o'clock position and travel CCW along the track. Car A is constantly 2 feet from the center of the race track and travels at a constant speed. The angle Car A sweeps out increases at a constant rate of 1 radian per second.

Required:
How many radians θ does car A sweep out in t seconds?

Answers

Answer:

in t seconds, Car A sweep out t radian { i.e θ = t radian }

Explanation:

Given the data in the question;

4 toy racecars are racing along a circular race track.

They all start at 3 o'clock position and moved CCW

Car A is constantly 2 feet from the center of the race track and moves at a constant speed

so maximum distance from the center = 2 ft

The angle Car A sweeps out increases at a constant rate of 1 radian per second.

Rate of change of angle = dθ/dt = 1

Now,

since dθ/dt = 1

Hence θ = t + C

where C is the constant of integration

so at t = 0, θ = 0, the value of C will be 0.

Hence, θ = t radian

Therefore, in t seconds, Car A sweep out t radian { i.e θ = t radian }

In the figure, particle A moves along the line y = 31 m with a constant velocity v with arrow of magnitude 2.8 m/s and parallel to the x axis. At the instant particle A passes the y axis, particle B leaves the origin with zero initial speed and constant acceleration a with arrow of magnitude 0.35 m/s2. What angle between a with arrow and the positive direction of the y axis would result in a collision?

Answers

Answer:

59.26°

Explanation:

Since a is the acceleration of the particle B, the horizontal component of acceleration is a" = asinθ and the vertical component is a' = acosθ where θ angle between a with arrow and the positive direction of the y axis.

Now, for particle B to collide with particle A, it must move vertically the distance between A and B which is y = 31 m in time, t.

Using y = ut + 1/2a't² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a' = vertical component of particle B's acceleration =  acosθ.

So, y = ut + 1/2a't²

y = 0 × t + 1/2(acosθ)t²

y = 0 + 1/2(acosθ)t²

y = 1/2(acosθ)t²   (1)

Also, both particles must move the same horizontal distance to collide in time, t.

Let x be the horizontal distance,

x = vt (2)where v = velocity of particle A = 2.8 m/s and t = time for collision

Also,  using x = ut + 1/2a"t² where u = initial velocity of particle B = 0 m/s, t = time taken for collision, a" = horizontal component of particle B's acceleration =  asinθ.

So, x = ut + 1/2a"t²

x = 0 × t + 1/2(ainsθ)t²

x = 0 + 1/2(asinθ)t²

x = 1/2(asinθ)t²  (3)

Equating (2) and (3), we have

vt = 1/2(asinθ)t²   (4)

From (1) t = √[2y/(acosθ)]

Substituting t into (4), we have

v√[2y/(acosθ)] = 1/2(asinθ)(√[2y/(acosθ)])²  

v√[2y/(acosθ)] = 1/2(asinθ)(2y/(acosθ)  

v√[2y/(acosθ)] = ytanθ

√[2y/(acosθ)] = ytanθ/v

squaring both sides, we have

(√[2y/(acosθ)])² = (ytanθ/v)²

2y/acosθ = (ytanθ/v)²

2y/acosθ = y²tan²θ/v²

2/acosθ = ytan²θ/v²

1/cosθ = aytan²θ/2v²

Since 1/cosθ = secθ = √(1 + tan²θ) ⇒ sec²θ = 1 + tan²θ ⇒ tan²θ = sec²θ - 1

secθ = ay(sec²θ - 1)/2v²

2v²secθ = aysec²θ - ay

aysec²θ - 2v²secθ - ay = 0

Let secθ = p

ayp² - 2v²p - ay = 0

Substituting the values of a = 0.35 m/s, y = 31 m and v = 2.8 m/s into the equation, we have

ayp² - 2v²p - ay = 0

0.35 × 31p² - 2 × 2.8²p - 0.35 × 31 = 0

10.85p² - 15.68p - 10.85 = 0

dividing through by 10.85, we have

p² - 1.445p - 1 = 0

Using the quadratic formula to find p,

[tex]p = \frac{-(-1.445) +/- \sqrt{(-1.445)^{2} - 4 X 1 X (-1)}}{2 X 1} \\p = \frac{1.445 +/- \sqrt{2.088 + 4}}{2} \\p = \frac{1.445 +/- \sqrt{6.088}}{2} \\p = \frac{1.445 +/- 2.4675}{2} \\p = \frac{1.445 + 2.4675}{2} or p = \frac{1.445 - 2.4675}{2} \\p = \frac{3.9125}{2} or p = \frac{-1.0225}{2} \\p = 1.95625 or -0.51125[/tex]

Since p = secθ

secθ = 1.95625 or secθ = -0.51125

cosθ = 1/1.95625 or cosθ = 1/-0.51125

cosθ = 0.5112 or cosθ = -1.9956

Since -1 ≤ cosθ ≤ 1 we ignore the second value since it is less than -1.

So, cosθ = 0.5112

θ = cos⁻¹(0.5112)

θ = 59.26°

So, the angle between a with arrow and the positive direction of the y axis would result in a collision is 59.26°.

Find the refractive index of a medium
having a velocity of 1.5 x 10^8*

Answers

Explanation:

someone to check if the answer is correct

A rope, under a tension of 221 N and fixed at both ends, oscillates in a second-harmonic standing wave pattern. The displacement of the rope is given by y = (0.10 m)(sin πx/2) sin 12πt, where x = 0 at one end of the rope, x is in meters, and t is in seconds.

What are:
a. the length of the rope.
b. the speed of the waves on the rope
c. the mass of the rope
d. If the rope oscillates in a third-harmonic standing wave pattern, what will be the period of oscillation.

Answers

Answer:

sup qwertyasdfghjk

Explanation:

An audience of 2250 fills a concert hall of volume 32000 m^3. If there were no ventilation, by how much would the temperature of the air rise over a period of 2.0 h due to the metabolism of the people (70 W/person)?

Answers

246 and 64 minutes later

Two speakers in a stereo emit identical pure tones. As you move around in front of the speakers, you hear the sound alternating between loud and zero. This occurs because of

Answers

Answer:

Interference

Explanation:

When two traveling waves traveling waves along the same path are superimposed(combine). The superimposition of these two waves results in the production of a resultant wave which is defined by the net effect of the two waves. Wave interference occurs most types of waves including radio wave, light, acoustic waves and other wave types. Alternating sound between loud and Zero is heard as the two speakers emit identical pure tones because the resultant amplitude after the interference of the two sound waves is the vector sum of each of their amplitudes. A loud sound is heard, when the crest of both waves meets each other and a zero is heard if the crest of one meets the trough of the other as they cancel out.

After de Broglie proposed the wave nature of matter, Davisson and Germer demonstrated the wavelike behavior of electrons by observing an interference pattern from electrons scattering off what

Answers

Answer:

Scattering is an interaction that can happen when a given particle or wave, like an electron, impacts a target or material. Then the electron changes it's original path and leaves some energy in the process. (This is a really simplified explanation of scattering, this is a really complex phenomenon, but let's not dive into that path)

Particularly, Davisson and Germer used a beam of electrons against a target of nickel, and these scattered electrons were detected by a detector. All of that in a vacuum chamber.

Then the correct answer is a nickel target.

"After de Broglie proposed the wave nature of matter, Davisson and Germer demonstrated the wavelike behavior of electrons by observing an interference pattern from electrons scattering off a nickel target"

how did kepler discoveries contribute to astronomy

Answers

Answer:

They established the laws of planetary motion. They explained how the Sun rises and sets. They made astronomy accessible to people who spoke Italian.

Explanation:

Other Questions
Which factor contributed most to Phyllis Schlafly's position on the EqualRights Amendment (ERA)?O A. The potential for the ERA to reshape the traditional gender roles ofAmerican SocietyB. The likelihood of a significant increase in government regulationneeded to put the ERA into effectC. The heavy economic costs that would be imposed on states toenforce the ERAD. The possibility that the ERA would undo some of the gains madeby women's rights activists Which of the following is an even function? i need help in this question that is in the photo Can someone help with this problem Match the words in the left-hand column to the appropriate blank in the sentences in the right-hand column. Use each word only once.a. universal timeb. mean solar time c. standard timed. daylight saving timee. apparent solar timef, leap year1. When the Sun casts the shortest shadows of the day, it is noon according to____. 2. The time in Greenwich, England is also known as____. 3. The calendar year has 366 days during a____. 4. The Sun reaches its highest point closer to 1 p.m. than to noon when our clocks are set to____. 5. ____was invented to solve train scheduling problems caused by the fact that apparent (and mean) solar time can differ between locations separated by just a few miles. 6. The length of the solar day is usually at least a few seconds different from 24 hours, so when we use 24-hour clocks we are keeping track of_____. A basketball team is to play two games in a tournament. The probability of winning the first game is .10.1 the first game is won, the probability of winning the second game is 15. If the first game is lost, the probability of winning the second game is 25. What is the probability the first game was won if the second game is lost? Express the answer with FOUR decimal points. 2. Please present two statements about moral issues that reference two different logical fallacies.Make sure that the statement is a clear example of a logical fallacy, and that you have clearlyidentified which logical fallacy the statement is making. In doing so, you should explain what alogical fallacy is and why they should be avoided in making an argument. URGENT - HELP PLEASE how to write this essay what is lockdownwhat is lockdown On January 1, 2017, ARC Inc. issued 100 5-year bonds, with a face value of $1,000 each and a coupon rate of 10%, payable semiannually. The interest is paid on June 30 and December 31 of each year. The market rate of interest at the time that the bonds were issued was 13%, so that the bonds were sold for $892 each.1. Interest expense for the January 1June 30 period was $_____.2. Interest expense for the July1December 31 period was $_____.3. Book value of Bonds on June 30 was $_____.4. Book value of Bonds on December 31 was $_____.5. Interest payment on June 30 was $_____. A room can just store either 10 cases of soya beans drink and 8 cases of fruit juice or 4 cases of soybeans drink and 11 cases of fruit juice. How many cases of soya bean drink have the same volume as one cases of fruit juice. 6. On June 29, there are____British ships massing off Staten Island. Create a circle such that its center is point A and B is a point on the circle. Those in favor of annexing the Philippines argued that:OOOOit was a perfect location for a U.S. naval base.it would provide a new market for U.S. goods.the U.S. had a duty to help "less civilized nations, like the Philippines.All of these choices are correct. 6/9 in decimal. please help 100 points Suppose we have the following information concerning the printed magazine and digital magazine subscription markets:Printed Magazine Subscription Price0=$20 Digital Magazine Subscription Quantity0=216 Printed Magazine SubscriptionPrice1=$13.40 Digital Magazine Subscription Quantity1=208 Question:What is the cross-price elasticity of demand between printed and digital magazine subscriptions? Given 0.60 mol CO2, 0.30 mol CO, and 0.10 mol H20, what is the partial pressure of the CO if the total pressure of the mixture was 0.80 atm? of34.Which of the following were the three pillars of absolutism in tsarist Russia?orthodoxy, autocracy, nationalismautocracy, orthodoxy, isolationismautocracy, industry, serfdom0orthodoxy, industry, nationalism qualities that are important to ensure good relationships