the set of all points pxyz (, ,) that satisfy the inequality 2 22 xyz < 9 i

Answers

Answer 1

The inequality that the given set of points pxyz(,,) satisfy is 2 2 2xyz < 9i.

Since this inequality contains only one term, we can directly set the term equal to 0 and solve for the values of x, y, and z as shown below.

2 2 2xyz < 9i

Subtracting 2xyz from both sides, we get:

2 2 xyz - 2xyz < 9i

Simplifying the left-hand side, we have:2xyz(2 - 1) < 9i

Combining like terms, we get: 2xyz < 9i

Dividing both sides by 2, we get: xyz < 4.5i

Therefore, the set of all points pxyz(,,) that satisfy the inequality 2 2 2xyz < 9i is the set of all points that lie inside the sphere centered at the origin with radius 4.5i.

Learn more about Inequality:

brainly.com/question/30238989

#SPJ11


Related Questions

Express each statement using an inequality involving absolute value. A. The weatherman predicted that the temperature would be within 39 of 52°F. B. Serena will make the B team if she scores within 8 points of the team average of 92.

Answers

We can write the inequality involving absolute value to express the statement as:

|x - 52| ≤ 39  Where x is the temperature in degrees Fahrenheit.

The inequality involving absolute value to express the statements are:

A. The weatherman predicted that the temperature would be within 39 of 52°F.

We can write the inequality involving absolute value to express the statement as:

|x - 52| ≤ 39

Where x is the temperature in degrees Fahrenheit.

This absolute value inequality states that the temperature should be within 39°F of 52°F. Hence, the temperature can be 13°F or 91°F. However, if the temperature goes beyond these limits, then it is not within 39 of 52°F.B. Serena will make the B team if she scores within 8 points of the team average of 92.

We can write the inequality involving absolute value to express the statement as:

|x - 92| ≤ 8

Where x is the score obtained by Serena. This absolute value inequality states that the score obtained by Serena should be within 8 points of the team average of 92. Hence, if the average score is 92, then Serena can score between 84 and 100. However, if Serena's score goes beyond these limits, then she will not make it to the B team.

To know more about inequality visit:

https://brainly.com/question/20383699

#SPJ11

Find the derivative of f(x)=−2x+3. f (x)= (Simplify your answer.)

Answers

To find the derivative of the function f(x) = -2x + 3, we differentiate each term of the function with respect to x. The derivative represents the rate of change of the function with respect to x.

The derivative of a constant term is zero, so the derivative of 3 is 0. The derivative of -2x can be found using the power rule of differentiation, which states that if we have a term of the form ax^n, the derivative is given by nax^(n-1).

Applying the power rule, the derivative of -2x with respect to x is -2 * 1 * x^(1-1) = -2. Therefore, the derivative of f(x) = -2x + 3 is f'(x) = -2.

The derivative of f(x) represents the slope of the function at any given point. In this case, since the derivative is a constant value of -2, it means that the function f(x) has a constant slope of -2, indicating a downward linear trend.

To know more about derivatives click here: brainly.com/question/25324584

 #SPJ11

what is the area of a table with dimensions of 2.5m by 13.34 m?
a measurement is given as 3.5 +\- .2 which of the following could not be a "true" value of the given quantity?
a. 3.8
b. these all could ve true vaules
c.3.5
d.3.4
e.3.6

Answers

The area of a table with dimensions, answer is (a) 3.8 since it falls outside the given range.

The area of a table with dimensions of 2.5m by 13.34m is calculated using the formula:

[tex]$$A= lw$$[/tex]

where A represents the area, l represents the length, and w represents the width.

Substituting the given values, we have:

[tex]\[A= (2.5m)(13.34m) = 33.35 m^2\][/tex]

Therefore, the area of the table is 33.35 m².

As for the second question, since the given measurement is 3.5 ± 0.2, a true value must fall within this range.

Any value outside this range cannot be a true value of the given quantity.

Therefore, the answer is (a) 3.8 since it falls outside the given range.

To know more about area visit:

https://brainly.com/question/12147918

#SPJ11

5. Compute the volume and surface area of the solid obtained by rotating the area enclosed by the graphs of \( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \) about the line \( x=4 \).

Answers

The surface area of the solid obtained by rotating the area enclosed by the graphs of [tex]\( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \)[/tex]about the line x = 4 is 67π/3.

The graphs of the two functions are shown below: graph{x^2-x+3 [-5, 5, -2.5, 8]--x+4 [-5, 5, -2.5, 8]}Notice that the two graphs intersect at x = 2 and x = 3. The line of rotation is x = 4. We need to consider the portion of the curves from x = 2 to x = 3.

To find the volume of the solid of revolution, we can use the formula:[tex]$$V = \pi \int_a^b R^2dx,$$[/tex] where R is the distance from the line of rotation to the curve at a given x-value. We can express this distance in terms of x as follows: R = |4 - x|.

Since the line of rotation is x = 4, the distance from the line of rotation to any point on the curve will be |4 - x|. We can thus write the formula for the volume of the solid of revolution as[tex]:$$V = \pi \int_2^3 |4 - x|^2 dx.$$[/tex]

Squaring |4 - x| gives us:(4 - x)² = x² - 8x + 16. So the integral becomes:[tex]$$V = \pi \int_2^3 (x^2 - 8x + 16) dx.$$[/tex]

Evaluating the integral, we get[tex]:$$V = \pi \left[ \frac{x^3}{3} - 4x^2 + 16x \right]_2^3 = \frac{11\pi}{3}.$$[/tex]

Therefore, the volume of the solid obtained by rotating the area enclosed by the graphs of [tex]\( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \)[/tex] about the line x = 4 is 11π/3.

The formula for the surface area of a solid of revolution is given by:[tex]$$S = 2\pi \int_a^b R \sqrt{1 + \left( \frac{dy}{dx} \right)^2} dx,$$[/tex] where R is the distance from the line of rotation to the curve at a given x-value, and dy/dx is the derivative of the curve with respect to x. We can again express R as |4 - x|. The derivative of f(x) is -1, and the derivative of g(x) is 2x - 1.

Thus, we can write the formula for the surface area of the solid of revolution as:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{1 + \left( \frac{dy}{dx} \right)^2} dx.$$[/tex]

Evaluating the derivative of g(x), we get:[tex]$$\frac{dy}{dx} = 2x - 1.$$[/tex]

Substituting this into the surface area formula and simplifying, we get:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{1 + (2x - 1)^2} dx.$$[/tex]

Squaring 2x - 1 gives us:(2x - 1)² = 4x² - 4x + 1. So the square root simplifies to[tex]:$$\sqrt{1 + (2x - 1)^2} = \sqrt{4x² - 4x + 2}.$$[/tex]

The integral thus becomes:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{4x² - 4x + 2} dx.$$[/tex]

To evaluate this integral, we will break it into two parts. When x < 4, we have:[tex]$$S = 2\pi \int_2^3 (4 - x) \sqrt{4x² - 4x + 2} dx.$$[/tex]

When x > 4, we have:[tex]$$S = 2\pi \int_2^3 (x - 4) \sqrt{4x² - 4x + 2} dx.$$[/tex]

We can simplify the expressions under the square root by completing the square:[tex]$$4x² - 4x + 2 = 4(x² - x + \frac{1}{2}) + 1.$$[/tex]

Differentiating u with respect to x gives us:[tex]$$\frac{du}{dx} = 2x - 1.$$[/tex]We can thus rewrite the surface area formula as:[tex]$$S = 2\pi \int_2^3 |4 - x| \sqrt{4u + 1} \frac{du}{dx} dx.[/tex]

Evaluating these integrals, we get[tex]:$$S = \frac{67\pi}{3}.$$[/tex]

Therefore, the surface area of the solid obtained by rotating the area enclosed by the graphs of [tex]\( f(x)=-x+4 \) and \( g(x)=x^{2}-x+3 \)[/tex]about the line x = 4 is 67π/3.

Learn more about distance  here:

https://brainly.com/question/15256256

#SPJ11

Determine if \( (-6,9) \) is a solution of the system, \[ \begin{array}{l} 6 x+y=-27 \\ 5 x-y=-38 \end{array} \] No Yes

Answers

The point (-6, 9) is not a solution of the system of equations. Highlighting the importance of verifying each equation individually when determining if a point is a solution.

To determine if the point (-6, 9) is a solution of the given system of equations, we substitute the values of x and y into the equations and check if both equations are satisfied.

For the first equation, substituting x = -6 and y = 9 gives:

6(-6) + 9 = -36 + 9 = -27.

For the second equation, substituting x = -6 and y = 9 gives:

5(-6) - 9 = -30 - 9 = -39.

Since the value obtained in the first equation (-27) does not match the value in the second equation (-39), we can conclude that (-6, 9) is not a solution of the system. Therefore, the answer is "No".

In this case, the solution is not consistent with both equations of the system, highlighting the importance of verifying each equation individually when determining if a point is a solution.

Learn more about equation: brainly.com/question/29174899

#SPJ11

( x is number of items) Demand function: d(x)=157.5−0.2x 2
Supply function: s(x)=0.5x 2
Find the equilibrium quantity: Find the producers surplus at the equilibrium quantity:

Answers

The equilibrium quantity is 15.the equilibrium quantity can be found by setting the demand function equal to the supply function and solving for x.

The producer's surplus at the equilibrium quantity can be calculated by integrating the difference between the supply and demand functions over the equilibrium quantity.

To find the equilibrium quantity, we set the demand function d(x) equal to the supply function s(x): d(x) = s(x)

157.5 - 0.2x^2 = 0.5x^2

Combining like terms, we have:

0.7x^2 = 157.5

Dividing both sides by 0.7, we get:

x^2 = 225

Taking the square root, we find:

x = 15

Therefore, the equilibrium quantity is 15.

To calculate the producer's surplus at the equilibrium quantity, we need to find the integral of the difference between the supply and demand functions over the equilibrium quantity: Producer's Surplus = ∫(s(x) - d(x)) dx from 0 to 15

Using the supply function s(x) = 0.5x^2 and the demand function d(x) = 157.5 - 0.2x^2, we can evaluate the integral to find the producer's surplus at the equilibrium quantity.

To know more about function click here

brainly.com/question/28193995

#SPJ11

If the demand for a pair of shoes is given by 2p+5q=300 and the supply function for it is p−2q=30, compare the quantity demanded and the quantity supplied when the price is $90. quantity demanded......................... pairs of shoes quantity supplied.................... pairs of shoes Will there be a surplus or shortfall at this price? There will be a surplus. There will be a shortfall.

Answers

When the price is $90, the quantity demanded is 24 pairs of shoes, and the quantity supplied is 30 pairs of shoes.

To compare the quantity demanded and the quantity supplied when the price is $90, we need to solve the system of equations formed by the demand and supply functions.

Demand function: 2p + 5q = 300

Supply function: p - 2q = 30

Substituting p = 90 into both equations, we can solve for q.

For the demand function:

2(90) + 5q = 300

180 + 5q = 300

5q = 120

q = 24

For the supply function:

90 - 2q = 30

-2q = -60

q = 30

So, when the price is $90, the quantity demanded is 24 pairs of shoes, and the quantity supplied is 30 pairs of shoes.

There will be a shortfall at this price because the quantity demanded (24 pairs) is less than the quantity supplied (30 pairs).

Learn more about   price from

https://brainly.com/question/28420607

#SPJ11

Question 10: 13 Marks Let z=cosθ+isinθ. (10.1) Use de Moivre's theorem to find expressions for z n
and z n
1

for all n∈N. (10.2) Determine the expressions for cos(nθ) and sin(nθ) (10.3) Determine expressions for cos n
θ and sin n
θ (10.4) Use your answer from (10.3) to express cos 4
θ and sin 3
θ in terms of multiple angles. (10.5) Eliminate θ from the equations 4x=cos(3θ)+3cosθ
4y=3sinθ−s∈(3θ)

Answers

Using de Moivre's theorem, we can find expressions for zⁿ and z⁽ⁿ⁻¹⁾ for any positive integer n is: 4y = 3sin(θ) - (4x - 3cos(θ)) - 3sin(θ)×cos²(θ) - 3cos(θ)×sin²(θ)

To solve this question, let's break it down into smaller parts:

(10.1) Using de Moivre's theorem, we can find expressions for zⁿ and z⁽ⁿ⁻¹⁾ for any positive integer n.

de Moivre's theorem states that for any complex number z = cos(θ) + isin(θ), and any positive integer n:

zⁿ = (cos(θ) + isin(θ))ⁿ

Expanding this using the binomial theorem:

zⁿ = cosⁿ(θ) + nC1×cos⁽ⁿ⁻¹⁾(θ)×isin(θ) + nC2×cos⁽ⁿ⁻²⁾(θ)×(isin(θ))² + ... + nC(n-1)×cos(θ)×(isin(θ))⁽ⁿ⁻¹⁾ + (isin(θ))ⁿ

Simplifying the terms involving isin(θ), we get:

zⁿ = cosⁿ(θ) + i×nC1×cos⁽ⁿ⁻¹⁾(θ)×sin(θ) - nC2×cos⁽ⁿ⁻²⁾(θ)×sin²(θ) - ... - i×nC(n-1)×cos(θ)×sin⁽ⁿ⁻¹⁾(θ) + (isin(θ))ⁿ

(10.2) To determine expressions for cos(nθ) and sin(nθ), we can equate the real and imaginary parts of zⁿ to their trigonometric equivalents.

For cos(nθ), we equate the real parts:

cos(nθ) = cosⁿ(θ) - nC2×cos⁽ⁿ⁻²⁾(θ)×sin²(θ) + nC4×cos⁽ⁿ⁻⁴⁾(θ)×sin⁴(θ) - ...

For sin(nθ), we equate the imaginary parts:

sin(nθ) = nC1×cos⁽ⁿ⁻¹⁾(θ)×sin(θ) - nC3×cos⁽ⁿ⁻³⁾(θ)×sin³(θ) + nC5×cos⁽ⁿ⁻⁵⁾(θ)×sin⁵(θ) - ...

(10.3) To find expressions for cosⁿ(θ) and sinⁿ(θ), we can use the identities:

cosⁿ(θ) = (1/2ⁿ) ×(cos(nθ) + nC2×cos(n-2)θ + nC4×cos(n-4)θ + ...)

sinⁿ(θ) = (1/2ⁿ) × (nC1×cos(n-1)θ×sin(θ) + nC3×cos(n-3)θ×sin³(θ) + ...)

(10.4) Using the expressions from (10.3), we can find cos(4θ) and sin(3θ) in terms of multiple angles:

cos(4θ) = (1/2⁴) × (cos(4θ) + 4C2×cos(2θ) + 4C4×cos(0θ)) = (1/16) ×(cos(4θ) + 6×cos(2θ) + 4)

sin(3θ) = (1/2³) × (3C1×cos(2θ)×sin(θ) + 3C3×sin³(θ)) = (1/8) ×(3×cos(2θ)×sin(θ) + sin³(θ))

(10.5) To eliminate θ from the equations 4x = cos(3θ) + 3cos(θ) and 4y = 3sin(θ) - sin(3θ), we can use the trigonometric identity sin²(θ) + cos²(θ) = 1 to express sin(3θ) and cos(3θ) in terms of sin(θ) and cos(θ):

cos(3θ) = 4x - 3cos(θ)

sin(3θ) = 4y + sin(θ) - 3sin(θ)×cos²(θ) - 3cos(θ)×sin²(θ)

Now, substitute the expressions for cos(3θ) and sin(3θ) into the equation 4y = 3sin(θ) - sin(3θ):

4y = 3sin(θ) - (4x - 3cos(θ)) - 3sin(θ)×cos²(θ) - 3cos(θ)×sin²(θ)

Simplify the equation to eliminate θ and find the relationship between x and y.

Learn more about trigonometric identity her:

https://brainly.com/question/31837053

#SPJ11

A population of values has a normal distribution with μ=108.9 and σ=9.6. You intend to draw a random sample of size n=24. Find the probability that a single randomly selected value is greater than 109.1. P(X>109.1)=? Find the probability that a sample of size n=24 is randomly selected with a mean greater than 109.1. P(M>109.1)= ?Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or zscores rounded to 3 decimal places are accepted.

Answers

Given:

 μ=108.9 , σ=9.6, n=24.

Find the probability that a single randomly selected value is greater than 109.1.

P(X>109.1)=?

For finding the probability that a single randomly selected value is greater than 109.1, we can find the z-score and use the Z- table to find the probability.

Z-score formula:

z= (x - μ) / (σ / √n)

Putting the values,

 z= (109.1 - 108.9) / (9.6 / √24) 

= 0.2236

Probability,

P(X > 109.1)

= P(Z > 0.2236) 

= 1 - P(Z < 0.2236) 

= 1 - 0.5886 

= 0.4114

Therefore, P(M > 109.1)=0.4114.

Hence, the answer to this question is "P(X>109.1)=0.4114 and P(M > 109.1)=0.4114".

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

5√1-x = -2. Can you solve this step by step?

Answers

x = 21/25 is the solution of the given equation.

The equation given is 5√(1-x) = -2.

To solve the given equation step by step:

Step 1: Isolate the radical term by dividing both sides by 5, as follows: $$5\sqrt{1-x}=-2$$ $$\frac{5\sqrt{1-x}}{5}=\frac{-2}{5}$$ $$\sqrt{1-x}=-\frac{2}{5}$$

Step 2: Now, square both sides of the equation.$$1-x=\frac{4}{25}$$Step 3: Isolate x by subtracting 1 from both sides of the equation.$$-x=\frac{4}{25}-1$$ $$-x=-\frac{21}{25}$$ $$ x=\frac{21}{25}$$. Therefore, x = 21/25 is the solution of the given equation.

To learn more about solving equations: https://brainly.com/question/22688504

#SPJ11

On a Box and Whisker chart, a point that falls outside of the whisker but less than three interquartile ranges from the box edge is called an

Answers

On a Box and Whisker chart, a point that falls outside of the whisker but less than three interquartile ranges from the box edge is called an outlier.

Outliers are data points that significantly deviate from the majority of the data and may indicate unusual or extreme values. They are represented as individual points outside the whisker lines on the chart, indicating their deviation from the central distribution of the data.

Outliers can be important to identify as they can affect the overall interpretation and analysis of the data. Identifying outliers is important because they can indicate unusual or extreme values that may affect the overall analysis or interpretation of the data.

It is common to investigate and evaluate the reasons behind outliers to determine if they are genuine data points or if there were errors in measurement or data entry.

To learn more about whisker: https://brainly.com/question/28098703

#SPJ11

Find the roots of the equation: (5.1) z 4
+16=0 and z 3
−27=0 (5.2) Additional Exercises for practice are given below. Find the roots of (a) z 8
−16i=0 (b) z 8
+16i=0

Answers

Given equations are (5.1) z 4 +16=0 and z 3 −27=0.(5.1) z 4 +16=0z⁴ = -16z = 2 * √2 * i, 2 * (-√2 * i), -2 * √2 * i, -2 * (-√2 * i)Therefore, the roots of the equation are z = 2^(3/4) * i, 2^(1/4) * i, -2^(3/4) * i, -2^(1/4) * i.(5.2) z 8 −16i=0z⁸ = 16i z = 2^(1/8) * i, 2^(3/8) * i, 2^(5/8) * i, 2^(7/8) * i, -2^(1/8) * i, -2^(3/8) * i, -2^(5/8) * i, -2^(7/8) * i

Therefore, the roots of the equation are:

z = 2^(1/8) * i, 2^(3/8) * i, 2^(5/8) * i, 2^(7/8) * i, -2^(1/8) * i, -2^(3/8) * i, -2^(5/8) * i, -2^(7/8) * i. z 8 +16i=0z⁸ = -16i z = 2^(1/8) * i, 2^(3/8) * i, 2^(5/8) * i, 2^(7/8) * i, -2^(1/8) * i, -2^(3/8) * i, -2^(5/8) * i, -2^(7/8) * i

Therefore, the roots of the equation are:

z = 2^(1/8) * i, 2^(3/8) * i, 2^(5/8) * i, 2^(7/8) * i, -2^(1/8) * i, -2^(3/8) * i, -2^(5/8) * i, -2^(7/8) * i.

First of all, we need to know that a polynomial equation of degree n has n roots and they may be real or imaginary. Roots are also known as zeros or solutions of the equation.If the degree of the polynomial is n, then it can be written as an nth degree product of the linear factors, z-a, where a is the zero of the polynomial equation, and z is any complex number. Therefore, the nth degree polynomial can be factored into the product of n such linear factors, which are known as the roots or zeros of the polynomial.In the given equations, we need to find the roots of each equation. In the first equation (5.1), we have z⁴ = -16 and z³ = 27. Therefore, the roots of the equation:

z⁴ + 16 = 0 are:

z = 2^(3/4) * i, 2^(1/4) * i, -2^(3/4) * i, -2^(1/4) * i.

The roots of the equation z³ - 27 = 0 are:

z = 3, -1.5 + (3^(1/2))/2 * i, -1.5 - (3^(1/2))/2 * i.

In the second equation (5.2), we need to find the roots of the equation z⁸ = 16i and z⁸ = -16i. Therefore, the roots of the equation z⁸ - 16i = 0 are:

z = 2^(1/8) * i, 2^(3/8) * i, 2^(5/8) * i, 2^(7/8) * i, -2^(1/8) * i, -2^(3/8) * i, -2^(5/8) * i, -2^(7/8) * i.

The roots of the equation z⁸ + 16i = 0 are also the same.

Thus, we can find the roots of polynomial equations by factoring them into linear factors. The roots may be real or imaginary, and they can be found by solving the polynomial equation.

To learn more about linear factors visit:

brainly.com/question/28969245

#SPJ11

Find all the critical points of the function f(x,y)=xy+ x
5

+ y
13

. (Use symbolic notation and fractions where needed. Give your answer as point coordinates in the form (∗,∗),(∗,∗)… ) (x,y

Answers

The critical points of the function f(x, y) = xy + x^5 + y^13 can be found using the following steps:

Step 1: Compute the partial derivative of f(x, y) with respect to x and equate it to zero. That is:$$\frac{\partial f(x,y)}{\partial x}=y+5x^4=0$$Solving the above equation for y, we get:$$y=-5x^4$$

Step 2: Compute the partial derivative of f(x, y) with respect to y and equate it to zero. That is:$$\frac{\partial f(x,y)}{\partial y}=x+13y^{12}=0$$Solving the above equation for x, we get:$$x=-13y^{12}$$

Step 3: Substitute x = -13y^12 into the equation in Step 1. That is:$$y+5x^4=y+5(-13y^{12})^4=0$$Simplifying the above equation gives:$$y+5\times(13^4)\times y^{48}=0$$Solving the above equation for y, we get:$$y=-\frac{1}{13^4}$$

Step 4: Substitute y = -1/13^4 into the equation in Step 2. That is:$$x+13y^{12}=x+13(-\frac{1}{13^4})^{12}=0$$Simplifying the above equation gives:$$x=-\frac{1}{13^{48}}$$

Therefore, the critical point of the function f(x, y) = xy + x^5 + y^13 is (x, y) = (-1/13^48, -1/13^4).

To know more about critical points visit:

brainly.com/question/32622802

#SPJ11

Consider the following two systems (a) 1-2 - Ay (2x + 7y 3 -3 (b) 1-2-4y = 2 122 + 7 = 14 Find the Inverse of the common coefficient matrix of the two wysterns. form 01) Find the solutions to the two systems by using the inverse, ie, by evaluating AB were represents the right hand sides (a) and B - (4) for system (b) y Solution to system (a) = Solution to system (b):

Answers

The solution to system (a) = [-4 5y/3] and the solution to system (b) = [6 2y -8].

Therefore, Solution to system (a) = Solution to system (b): [-4 5y/3] = [6 2y -8]

Given the following two systems,(a) 1-2 - Ay (2x + 7y 3 -3(b) 1-2-4y = 2 122 + 7 = 14 Here, we need to find the inverse of the common coefficient matrix of the two systems and then solve the two systems using the inverse by evaluating AB where A represents the coefficient matrix of (a) and (b) represents the coefficient matrix of (b).

Common coefficient matrix of the two systems, A = 1 -2-7y2 3

Here, we need to find the inverse of A.

The inverse of A is given by,A-1 = 1/3 [3 -2 -7y-2 1 2y]The right-hand sides of the system (a) and (b) are given by, For system (a), B1 = -3For system (b), B2 = [12 2].

Therefore, the solutions to the two systems by using the inverse are given by, For system (a), X1 = A-1B1 = 1/3 [3 -2 -7y-2 1 2y] [-3]= [-4 5y/3]

For system (b), X2 = A-1B2 = 1/3 [3 -2 -7y-2 1 2y] [12 2]T= [ 6 2y -8].

Thus, the solution to system (a) = [-4 5y/3] and the solution to system (b) = [6 2y -8].

Therefore, Solution to system (a) = Solution to system (b): [-4 5y/3] = [6 2y -8]

To know more about: coefficient matrix

https://brainly.com/question/16355467

#SPJ11

Find the equation(s) of the tangent line(s) at the point(s) on the graph of the equation y^2 −xy+10=0, where x=−7.

Answers

The equation of the tangent line at the point (-7, 7) on the graph of the equation [tex]y^2 − xy + 10 = 0 is y = -x - 14.[/tex]

To find the equation of the tangent line at the point (-7, 7) on the given graph, we need to find the derivative of the equation with respect to x and evaluate it at x = -7.

1. Start with the equation y^2 − xy + 10 = 0.

2. Differentiate both sides of the equation with respect to x:

  2yy' - y - xy' = 0

3. Substitute x = -7 and y = 7 into the equation:

  2(7)y' - 7 - (-7)y' = 0

  14y' + 7y' - 7 = 0

  21y' - 7 = 0

  21y' = 7

  y' = 7/21

  y' = 1/3

4. The derivative y' represents the slope of the tangent line at the given point. So, the slope of the tangent line at x = -7 is 1/3.

5. Using the point-slope form of a linear equation, substitute the slope (1/3) and the point (-7, 7) into the equation:

  y - 7 = (1/3)(x + 7)

6. Simplify the equation:

  y = (1/3)x + 7/3

  y = (1/3)x + 7/3 - 7/3

  y = (1/3)x + 7/3 - 7/3

  y = (1/3)x - 14/3

Therefore, the equation of the tangent line at the point (-7, 7) on the graph of the equation [tex]y^2 − xy + 10 = 0 is y = -x - 14.[/tex]

Learn more about Differentiate here:

https://brainly.com/question/24062595

#SPJ11

if cos() = 1 7 and terminal side of angle t is in the 4th quadrant, find sin(t)

Answers

The value of sin(t) is -4√3/7.

The cosine of angle t is 1/7 and the terminal side of angle t is in the 4th quadrant, we can find sin(t) using the trigonometric identity:

sin^2(t) + cos^2(t) = 1

Substituting the value of cos(t) = 1/7, we have:

sin^2(t) + (1/7)^2 = 1

sin^2(t) + 1/49 = 1

sin^2(t) = 1 - 1/49

sin^2(t) = 48/49

Taking the square root of both sides, we get:

sin(t) = ± √(48/49)

Since the terminal side of angle t is in the 4th quadrant, where sine is negative, we have:

sin(t) = -√(48/49)

Simplifying the expression further:

sin(t) = -(√48)/7

sin(t) = -4√3/7

Therefore, the value of sin(t) is -4√3/7.

learn more about "cosine ":- https://brainly.com/question/23720007

#SPJ11

On the map, the distance between B and S is 13.25. How long it
will take to drive from B to S at an average speed of 70 mph?
Recall that distance=speedxtravel time.

Answers

The time it will take to drive from point B to point S at an average speed of 70 mph,  distance = speed × travel time. Therefore, it will take approximately 11.34 minutes to drive from point B to point S at an average speed of 70 mph.

The formula to calculate travel time is given by time = distance / speed. In this case, the distance between B and S is 13.25 miles, and the average speed is 70 mph.

Using the formula, we can calculate the travel time as follows:

time = 13.25 miles / 70 mph

Dividing 13.25 by 70, we find:

time ≈ 0.189 hours

To convert hours to minutes, we multiply the time by 60:

time ≈ 0.189 hours × 60 minutes/hour ≈ 11.34 minutes

Therefore, it will take approximately 11.34 minutes to drive from point B to point S at an average speed of 70 mph.

Learn more about distance here:

https://brainly.com/question/15256256

#SPJ11



Many baking pans are given a special nonstick coating. A rectangular cake pan is 9 inches by 13 inches by 2 inches deep. What is the area of the inside of the pan that needs to be coated?

Answers

The area of the inside of the rectangular cake pan that needs to be coated with the nonstick coating is 322 square inches.

To calculate the area of the inside of the rectangular cake pan that needs to be coated, you can use the formula for the surface area of a rectangular prism.

The formula for the surface area of a rectangular prism is given by:

Surface Area = 2(length * width + length * height + width * height)

Given the dimensions of the cake pan:

Length = 9 inches

Width = 13 inches

Height = 2 inches

Plugging these values into the formula, we get:

Surface Area = 2(9 * 13 + 9 * 2 + 13 * 2)

= 2(117 + 18 + 26)

= 2(161)

= 322 square inches

Therefore, the area of the inside of the rectangular cake pan that needs to be coated with the nonstick coating is 322 square inches.

learn more about rectangular here

https://brainly.com/question/32444543

#SPJ11

FPL supplies electricity to residential customers for a monthly customer charge of $7.24 plus 0.09 dollars per kilowatt-hour for up to 1000 kilowatt-hours. Write a linear equation that relates the monthly charge C, in dollars, to the number x of kilowatt-hours used in a month, 0≤x≤1000

Answers

The linear equation that relates the monthly charge C, in dollars, to the number x of kilowatt-hours used in a month, where 0≤x≤1000, is C = 7.24 + 0.09x.

The given information states that FPL (presumably an electricity provider) charges residential customers a monthly customer charge of $7.24 plus an additional $0.09 per kilowatt-hour for up to 1000 kilowatt-hours.

This means that there is a fixed cost of $7.24 regardless of the kilowatt-hours used, and an additional cost of $0.09 multiplied by the number of kilowatt-hours used, as long as it does not exceed 1000 kilowatt-hours.

To write a linear equation, we can express the monthly charge C as the sum of the fixed customer charge and the variable charge based on kilowatt-hours used. The equation can be written as C = 7.24 + 0.09x, where x represents the number of kilowatt-hours used. The constant term 7.24 represents the fixed customer charge, and the coefficient 0.09 represents the cost per kilowatt-hour. This equation satisfies the given conditions, and the range 0≤x≤1000 ensures that the additional charge applies only within that range.

To learn more about range here

brainly.com/question/29204101

#SPJ11

A sociologist sampled 200 people who work in computer related jobs and found that 42 of them have changed jobs in the past year. Use this information to answer questions 5-6. Construct a 99% confidence interval for the percentage of people who work in computer related jobs and have changed jobs in the past year. Interpret the 99% confidence interval created in question 5.

Answers

We have the following details:

A sociologist sampled 200 people who work in computer-related jobs and found that 42 of them have changed jobs in the past year. We need to construct a 99% confidence interval for the percentage of people who work in computer-related jobs and have changed jobs in the past year.

Formula used:

The formula for calculating the confidence interval for proportions is as follows:

Lower Limit = P - Zα/2* √(P(1-P)/n)

Upper Limit = P + Zα/2* √(P(1-P)/n)

Where

P = Sample proportion

Zα/2 = (1 - α) / 2 percentile from standard normal distribution

n = Sample size

Substituting the given values into the formula:

P = 42 / 200

= 0.21n

= 200α

= 0.01Zα/2

= 2.58 (for 99% confidence interval)

Lower Limit = 0.21 - (2.58) * √((0.21)(0.79) / 200)

= 0.132

Upper Limit = 0.21 + (2.58) * √((0.21)(0.79) / 200)

= 0.288

Therefore, the 99% confidence interval is (0.132, 0.288)

Interpretation of the 99% confidence interval:

The 99% confidence interval obtained in the above question indicates that we are 99% confident that the percentage of people who work in computer-related jobs and have changed jobs in the past year lies between 13.2% and 28.8%.

Thus, the sociologist can say with 99% confidence that the percentage of people who work in computer-related jobs and have changed jobs in the past year is between 13.2% and 28.8%.

Learn more about confidence interval here

https://brainly.com/question/20309162

#SPJ11

Use the shell method to find the volume of the solid generated by the region bounded b. \( y=\frac{x}{2}+1, y=-x+4 \), and \( x=4 \) about the \( y \)-axis.

Answers

The answer is , the volume of the solid obtained by rotating the given region about the y-axis using the shell method is 32π/3 units³.

We are given the following region to be rotated about the y-axis using the shell method:

region bounded by the graphs of the lines y = (1/2)x + 1 and y = -x + 4, and the line x = 4.

Now, we have to use the shell method to determine the volume of the solid generated by rotating the given region about the y-axis.

We have to first find the bounds of integration.

Here, the limits of x is from 0 to 4.

For shell method, the volume of the solid obtained by rotating about the y-axis is given by:

V = ∫[a, b] 2πrh dy

Here ,r = xh = 4 - y

For the given function, y = (1/2)x + 1

On substituting the given function in above equation,

r = xh = 4 - y

r = xh = 4 - ((1/2)x + 1)

r = xh = 3 - (1/2)x

Let's substitute the values in the formula.

We get, V = ∫[a, b] 2πrh dy

V = ∫[0, 4] 2π (3 - (1/2)x)(x/2 + 1) dy

On solving, we get V = 32π/3 units³

Therefore, the volume of the solid obtained by rotating the given region about the y-axis using the shell method is 32π/3 units³.

To know more about Function visit:

https://brainly.in/question/222093

#SPJ11

The volume of the solid generated by rotating the given region about the \(y\)-axis is \(40\pi\) cubic units.

To find the volume of the solid generated by rotating the region bounded by \(y = \frac{x}{2} + 1\), \(y = -x + 4\), and \(x = 4\) about the \(y\)-axis, we can use the shell method.

First, let's graph the region to visualize it:

```

  |              /

  |            /

  |          /

  |       /

  |     /

  |    /

  |  /  

---|------------------

```

The region is a trapezoidal shape bounded by two lines and the \(x = 4\) vertical line.

To apply the shell method, we consider a vertical strip at a distance \(y\) from the \(y\)-axis. The width of this strip is given by \(dx\). We will rotate this strip about the \(y\)-axis to form a cylindrical shell.

The height of the cylindrical shell is given by the difference in \(x\)-values of the two curves at the given \(y\)-value. So, the height \(h\) is \(h = \left(-x + 4\right) - \left(\frac{x}{2} + 1\right)\).

The radius of the cylindrical shell is the distance from the \(y\)-axis to the curve \(x = 4\), which is \(r = 4\).

The volume \(V\) of each cylindrical shell can be calculated as \(V = 2\pi rh\).

To find the total volume, we integrate the volume of each shell from the lowest \(y\)-value to the highest \(y\)-value. The lower and upper bounds of \(y\) are the \(y\)-values where the curves intersect.

Let's solve for these points of intersection:

\(\frac{x}{2} + 1 = -x + 4\)

\(\frac{x}{2} + x = 3\)

\(\frac{3x}{2} = 3\)

\(x = 2\)

So, the curves intersect at \(x = 2\). This will be our lower bound.

The upper bound is \(y = 4\) as given by \(x = 4\).

Now we can calculate the volume using the integral:

\(V = \int_{2}^{4} 2\pi rh \, dx\)

\(V = \int_{2}^{4} 2\pi \cdot 4 \cdot \left[4 - \left(\frac{x}{2} + 1\right)\right] \, dx\)

\(V = 2\pi \int_{2}^{4} 16 - 2x \, dx\)

\(V = 2\pi \left[16x - x^2\right] \Bigg|_{2}^{4}\)

\(V = 2\pi \left[(16 \cdot 4 - 4^2) - (16 \cdot 2 - 2^2)\right]\)

\(V = 2\pi \left[64 - 16 - 32 + 4\right]\)

\(V = 2\pi \left[20\right]\)

\(V = 40\pi\)

Therefore, the volume of the solid generated by rotating the given region about the \(y\)-axis is \(40\pi\) cubic units.

To know more about volume, visit:

https://brainly.com/question/28058531

#SPJ11

If the value of a $25,652 car decreases by 25% each year due to depreciation, how much will the car be worth after 15 years? Round your answer to the nearest dollar (whole number). Do not enter the dollar sign. For example, if the answer is $5500, type 5500 .

Answers

The value of a car that decreases by 25% each year will be worth approximately $1,308 after 15 years.

To calculate the value of the car after 15 years, we need to apply the depreciation rate of 25% per year.

After the first year, the value of the car decreases by 25%. This means the car will be worth 75% of its original value, which is 0.75 * $25,652 = $19,239.

In the second year, the car's value will decrease by another 25%. So, the value after the second year will be 75% of $19,239, which is 0.75 * $19,239 = $14,429.

We can continue this process for 15 years, applying the 25% depreciation rate each year. After 15 years, the value of the car will be approximately $1,308.

Note that the final value is rounded to the nearest dollar (whole number) as specified in the question.

Learn more about depreciation here:

https://brainly.com/question/14861580

#SPJ11

suppose 76% of people like peanut butter, 82% like jelly, and 75% like both. given that a randomly sampled person likes peanut butter, what's the probability that he also likes jelly? (round your answer to four decimal places.)

Answers

The probability that a randomly sampled person who likes peanut butter also likes jelly is approximately 0.9868 (rounded to four decimal places

To solve this problem, we can use the concept of conditional probability. We want to find the probability that a randomly sampled person likes jelly given that they like peanut butter.

Let's define the events:

A: Person likes peanut butter.

B: Person likes jelly.

We are given the following probabilities:

P(A) = 0.76 (76% like peanut butter)

P(B) = 0.82 (82% like jelly)

P(A ∩ B) = 0.75 (75% like both)

We want to find P(B|A), which represents the probability of liking jelly given that the person likes peanut butter.

Using the formula for conditional probability:

P(B|A) = P(A ∩ B) / P(A)

Substituting the given values:

P(B|A) = 0.75 / 0.76 ≈ 0.9868

know more about probability here:

https://brainly.com/question/31828911

#SPJ11

let y1 and y2 have the joint probability density function given by f(y1, y2) = 4y1y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0, elsewhere. show that cov(y1, y2) = 0.

Answers

let y1 and y2 have the joint probability density function given by f(y1, y2) = 4y1y2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, 0, The main answer is that the covariance between y1 and y2 is zero, cov(y1, y2) = 0.

To compute the covariance, we first need to calculate the expected values of y1 and y2. Then we can use the formula for covariance:

1. Expected value of y1 (E(y1)):

  E(y1) = ∫[0,1] ∫[0,1] y1 * f(y1, y2) dy1 dy2

        = ∫[0,1] ∫[0,1] y1 * 4y1y2 dy1 dy2

        = 4 ∫[0,1] y1^2 ∫[0,1] y2 dy1 dy2

        = 4 ∫[0,1] y1^2 * [y2^2/2] |[0,1] dy1 dy2

        = 4 ∫[0,1] y1^2 * 1/2 dy1

        = 2/3

2. Expected value of y2 (E(y2)):

  E(y2) = ∫[0,1] ∫[0,1] y2 * f(y1, y2) dy1 dy2

        = ∫[0,1] ∫[0,1] y2 * 4y1y2 dy1 dy2

        = 4 ∫[0,1] y2^2 ∫[0,1] y1 dy1 dy2

        = 4 ∫[0,1] y2^2 * [y1/2] |[0,1] dy1 dy2

        = 4 ∫[0,1] y2^2 * 1/2 dy2

        = 1/3

3. Covariance of y1 and y2 (cov(y1, y2)):

  cov(y1, y2) = E(y1 * y2) - E(y1) * E(y2)

              = ∫[0,1] ∫[0,1] y1 * y2 * f(y1, y2) dy1 dy2 - (2/3) * (1/3)

              = ∫[0,1] ∫[0,1] y1 * y2 * 4y1y2 dy1 dy2 - 2/9

              = 4 ∫[0,1] y1^2 ∫[0,1] y2^2 dy1 dy2 - 2/9

              = 4 * (1/3) * (1/3) - 2/9

              = 4/9 - 2/9

              = 2/9 - 2/9

              = 0

Therefore, the covariance between y1 and y2 is zero, indicating that the variables are uncorrelated in this case.

Learn more about probability  here: brainly.com/question/31828911

#SPJ11

How does the number 32.4 change when you multiply it by 10 to the power of 2 ? select all that apply.
a). the digit 2 increases in value from 2 ones to 2 hundreds.
b). each place is multiplied by 1,000
c). the digit 3 shifts 2 places to the left, from the tens place to the thousands place.

Answers

The Options (a) and (c) apply to the question, i.e. the digit 2 increases in value from 2 ones to 2 hundred, and, the digit 3 shifts 2 places to the left, from the tens place to the thousands place.

32.4×10²=32.4×100=3240

Hence, digit 2 moves from one's place to a hundred's. (a) satisfied

And similarly, digit 3 moves from ten's place to thousand's place. Now, 1000=10³=10²×10.

Hence, it shifts 2 places to the left.

Therefore, (c) is satisfied.

As for (b), where the statement: Each place is multiplied by 1,000; the statement does not hold true since each digit is shifted 2 places, which indicates multiplied by 10²=100, not 1000.

Hence (a) and (c) applies to our question.

Read more about simple arithmetic problems on

https://brainly.com/question/30194025

#SPJ4

iven f(x)=3x 3
+10x 2
−13x−20, answer the following Part 1 of 2 Factor f(x), given that −1 is a zero. f(x)=(x+1)(x+4)(3x−5) Part: 1/2 Part 2 of 2 Solve f(x)=0. Express your answers in exact simplest form. The solution set is
Previous question

Answers

1: The factored form of the function f(x) is f(x) = (x + 1)(x)(3x + 7).

2: The solutions to f(x) = 0 comprise x = -1, x = -4, x = 5/3

1: To factor f(x) given that -1 is a zero, we divide f(x) by (x + 1) using synthetic division:

   -1   |    3    10   -13   -20

          |  -3    -7    20

     ________________________

           0     3     7      0

The result is a quadratic polynomial: f(x) = (x + 1)(3x^2 + 7x + 0).

Since the last term in the synthetic division is 0, we can further factor the quadratic polynomial: f(x) = (x + 1)(x)(3x + 7).

Therefore, the factored form of f(x) is f(x) = (x + 1)(x)(3x + 7).

2: To solve f(x) = 0, we set the factored form of f(x) equal to zero and solve for x:

(x + 1)(x)(3x + 7) = 0

Setting each factor equal to zero gives us three possible solutions:

x + 1 = 0 --> x = -1

x = 0

3x + 7 = 0 --> 3x = -7 --> x = -7/3

Therefore, the solutions to f(x) = 0 are x = -1, x = 0, and x = -7/3.

You can learn more about factored form at

https://brainly.com/question/30285637

#SPJ11

let a>0 and b be integers (b can be negative). show
that there is an integer k such that b + ka >0
hint : use well ordering!

Answers

Given, a>0 and b be integers (b can be negative). We need to show that there is an integer k such that b + ka > 0.To prove this, we will use the well-ordering principle. Let S be the set of all positive integers that cannot be written in the form b + ka, where k is some integer. We need to prove that S is empty.

To do this, we assume that S is not empty. Then, by the well-ordering principle, S must have a smallest element, say n.This means that n cannot be written in the form b + ka, where k is some integer. Since a>0, we have a > -b/n. Thus, there exists an integer k such that k < -b/n < k + 1. Multiplying both sides of this inequality by n and adding b,

we get: bn/n - b < kna/n < bn/n + a - b/n,

which can be simplified to: b/n < kna/n - b/n < (b + a)/n.

Now, since k < -b/n + 1, we have k ≤ -b/n. Therefore, kna ≤ -ba/n.

Substituting this in the above inequality, we get: b/n < -ba/n - b/n < (b + a)/n,

which simplifies to: 1/n < (-b - a)/ba < 1/n + 1/b.

Both sides of this inequality are positive, since n is a positive integer and a > 0.

Thus, we have found a positive rational number between 1/n and 1/n + 1/b. This is a contradiction, since there are no positive rational numbers between 1/n and 1/n + 1/b.

Therefore, our assumption that S is not empty is false. Hence, S is empty.

Therefore, there exists an integer k such that b + ka > 0, for any positive value of a and any integer value of b.

To know more about integers visit :

https://brainly.com/question/490943

#SPJ11

Tim bought £650 at the foreign exchange desk at Gatwick Airport in the UK at a rate of R15,66 per £1. The desk also charged 2,5% commission on the transaction. How much did Tim spend to buy the pounds?​

Answers

Tim's expenditure on purchasing pounds, including the exchange rate and commission, amounted to around £666.25.

To calculate how much Tim spent to buy the pounds, we need to consider the exchange rate and the commission charged by the foreign exchange desk.

First, let's calculate the amount Tim received in the foreign currency:

Amount in foreign currency = Amount in pounds * Exchange rate

Amount in foreign currency = £650 * R15.66

Next, we need to account for the commission charged by the exchange desk. The commission is calculated as a percentage of the amount in pounds:

Commission = Commission rate * Amount in pounds

Commission = 2.5% * £650

To find out how much Tim spent in total, we need to add the commission to the amount in pounds:

Total spent = Amount in pounds + Commission

Now, let's calculate each component:

Amount in foreign currency = £650 * R15.66

Amount in foreign currency ≈ R10,179

Commission = 2.5% * £650

Commission ≈ £16.25

Total spent = £650 + £16.25

Total spent ≈ £666.25

Therefore, Tim spent approximately £666.25 to buy the pounds, taking into account the exchange rate and the commission charged by the foreign exchange desk.

For more question on expenditure visit:

https://brainly.com/question/32205564

#SPJ8

a sub sandwich shop offers 16 toppings to choose from. how many ways could a person choose a 3-topping sandwich?

Answers

There are 560 ways a person can choose a 3-topping sandwich from the 16 available toppings.

Combination problem

To determine the number of ways a person can choose a 3-topping sandwich from 16 available toppings, we can use the concept of combinations.

The formula for calculating combinations is:

C(n, r) = n! / (r! * (n - r)!)

where C(n, r) represents the number of ways to choose r items from a set of n items.

In this case, we want to find C(16, 3) because we want to choose 3 toppings from a set of 16 toppings.

Thus:

C(16, 3) = 16! / (3! * (16 - 3)!)

            = 16! / (3! * 13!)

16! = 16 * 15 * 14 * 13!

3! = 3 * 2 * 1

C(16, 3) = (16 * 15 * 14 * 13!) / (3 * 2 * 1 * 13!)

C(16, 3) = (16 * 15 * 14) / (3 * 2 * 1)

= 3360 / 6

= 560

Therefore, there are 560 ways a person can choose a 3-topping sandwich from the 16 available toppings.

More on combinations can be found here: https://brainly.com/question/28065038

#SPJ4

for a math project, tim is making a globe using a styrofoam sphere. the diameter of the sphere is 30 cm. to represent pi day, tim is writing the numbers of pi around the sphere at a distance of 12 cm from the center. to the nearest tenth of a centimeter, how long does the circle of numbers need to be?

Answers

The circumference of the sphere with a diameter of 30 cm is approximately 94.2 cm. Therefore, the circle of numbers needs to be approximately 94.2 cm long.

To calculate the length of the circle of numbers, we need to find the circumference of the styrofoam sphere. The circumference of a circle can be found using the formula C = πd, where C is the circumference and d is the diameter.

Given that the diameter of the sphere is 30 cm, we can substitute this value into the formula: C = π(30).

Using an approximation for π as 3.14, we can calculate the circumference as C ≈ 3.14(30) = 94.2 cm.

Therefore, the circle of numbers needs to be approximately 94.2 cm long to represent pi day on the styrofoam sphere.

Learn more about circumference here:

https://brainly.com/question/12548186

#SPJ11

Other Questions
6. What is the amount of usable area within trunking using a trunk that has a cross-sectional area equal to 3000 mm? A 1687.5 mm B2000mm C 1987.5 mm 1350 mm 7. What is the maximum number of cables with a diameter 6.2mm that could be installed in a 5000mm trunking? A. 84 874 C.66 D. S5 solve a maximum external load to reach the desired factor of safetyof two . on joint with 10 permanent fasrner bolts. proof load1000knbolts carry 50% external load Find the unit tangent vector of the given curve. r(t)=(10sin 33t)i+(10cos 33t)j A) T(t)=(10cos3t)i(10sin3t)i B) T(t)=(10sin3t)i(10cos3t)j C) T(t)=(90sin3t)i(90cos3t)i D) T(t)(sin3t)(cos3t)j 2. How many bits are needed to represent decimal values ranging from 0 to 12,500? Green Machine is the only greenhouse in isolated Point Barrow, Alaska, and therefore has a monopoly on the sale of fresh flowers. The manager estimates that the elasticity of demand for flowers is -0.5. Green Machine cannot be maximizing profits because Levered equity has Blank______ risk than unlevered equity. Multiple choice question. less the same greate A plane lands on a runway with a speed of 105 m/s, moving east, and it slows to a stop in 15.0 s. What is the magnitude (in m/s2) and direction of the plane's average acceleration during this time interval An analog input signal is given as xa(t)=4sin(600t)+6cos(720t)+3cos(300t) for a particular digital communication link which is being operated at 12000 bits/sec and a quantization level of 4096.Compute the-Nyquist sampling rate for xa(t)Folding frequencyCorresponding discrete time signalWill there be any alising of not? provide reason behind your response.Frequencies of the corresponding discrete time signalFundamental period of the discrete time signalCorresponding reconstructed signal ya(t) if it passes through an ideal D/A Converter.SQNRSignal PowerNoise PowerProvide the solution for all the steps from a to j, with necessary theoretical and mathematical expression. The total stopplng bistance T of a vehicle is shown befow, where T is in feet and x is the speed in mifes per hour: T=2.5x+0.5x 2Approximate the change and percent change in total stopping distance as speed changes frem x=25 to x=26 miles per hour. (flound your ancwers to one decimal place. Compared to the speed of the heavier cooler, what is the speed of the light cooler after both coolers move the same distance d? My friend and I plan a day of ice fishing out on a frozen lake. We each pack our own cooler full of supplies to be pushed out to our fishing spot. Initially both coolers are at rest and one has four times the mass of the other. In parts A and B we each exert the same horizontal force F on our coolers and move them the same distance d, from the shore towards the fishing hole. Friction may be ignored. your company is launching a new meditation app. they want to work directly with a specific media outlet and guarantee a fixed number of impressions within the wellness section of the publisher's site. dan goldman, a member of the levi-strauss family who made his own name as a prosecutor in the trump impeachment trial. In a ________ discrimination case, the employer puts forth only the legitimate business reason, but the complainant asserts that the prohibited reason is the true cause for the action. Use the terms & names list to complete each sentence online or on your own paper.A. slash-and-burnB. RenaissanceC. AztecD. NdongoE. MuslimF. sedentary societyG. ReformationH. SaharaI. South AtlanticCurrentJ. printing pressK. Black DeathJ. ProtestantA ____ has permanent villages or towns. A girl's skinfold measurements are: Triceps =14 mm, and Medial Calf =21 mm. Estimate this girl's percent fat. Round the final answer to one decimal place. 20.4% 23.8% 26.5% 28.2% Consider an RC circuit made up of resistor Rc, capacitor C2, and voltage source E. Using the above values of Rc,C2, and E : Determine the function qC2(t) in this electric circuit. RC=1kC2=100FE=5 V what is unique about the acid fast bacteria that requires the long steam step for the primary stain in this procedure? how many different hands can be formed if each hand contains 5 spades, 4 hearts, 2 clubs, and 2 diamonds? the+annual+interest+rate+is+5%.+cash+flows+of+$100+are+repeating+once+a+year,+for+several+years.+clearly,+this+is+an+annuity!+but+there+are+different+ways+to+calculate+its+value. Write the first five terms of the sequence. (Assume that \( n \) begins with 1 \[ a_{n}=8 n-15 \]