I don’t think I got the right answer?
Answer:
it's third option the one who says 10 units up
In order to test for the significance of a regression model involving 4 independent variables and 47 observations, the numerator and denominator degrees of freedom (respectively) for the critical value of F are Select one: a. 3 and 43 b. 4 and 43 c. 4 and 42 d. 3 and 42
Answer:
c. 4 and 42
Step-by-step explanation:
Given
[tex]p = 4[/tex] -- independent variables
[tex]n = 47[/tex] ---- observations
Required
The numerator and denominator degrees of freedom
The denominator degrees of freedom is:
[tex]df =n - p - 1[/tex]
[tex]df =47 - 4 - 1[/tex]
[tex]df =42[/tex]
For the numerator, we have:
[tex]df = p[/tex]
[tex]df = 4[/tex]
question:
A sequence is defined by the recursive function f(n + 1) = –10f(n).
If f(1) = 1, what is f(3)?
3
–30
100
–1,000
the answer is 100
Answer:
100
Step-by-step explanation:
f(1) = 1
f(2) = -10×f(1) = -10 × 1 = -10
f(3) = -10×f(2) = -10 × -10 × f(1) = -10 × -10 × 1 = 100
f(n) = -10 to the power of n-1
Answer:
c - 100
Step-by-step explanation:
The mean temperature for the first 4 days in January was 1°C.
The mean temperature for the first 5 days in January was -1°C.
What was the temperature on the 5th day?
Answer:
The temperature on the 5th day was of -9ºC.
Step-by-step explanation:
Mean of a data-set
The mean of a data-set is the sum of all values in the data-set divided by the number of values.
The mean temperature for the first 4 days in January was 1°C.
This means that during the first 4 days, the sum of the temperatures was 4*1 = 4ºC.
The mean temperature for the first 5 days in January was -1°C.
First 4 days: Sum of 4º
5th day: Temperature of x.
The mean is -1, so:
[tex]-1 = \frac{4 + x}{5}[/tex]
[tex]x + 4 = -5[/tex]
[tex]x = -9[/tex]
The temperature on the 5th day was of -9ºC.
sec x tanx( 1- sin^2 x) = __x
Answer:
sin(x)
Step-by-step explanation:
sec x tanx(1 - sin^2 x)
1 - sin^2 x = cos^2 x
sec(x)tan(x)cos^2(x)
[tex]\frac{1}{cos(x)}[/tex] * [tex]\frac{sin(x)}{cos(x)}[/tex] * cos^2(x)
[tex]\frac{sin(x)cos^2(x)}{cos^2(x)}[/tex]
sin(x)
What do you know to be true about the values of p and ?
p"
q
601
454
45
A. p> 9
B. p<9
C. p= 9
D. Can't be determined
three friends, akira,bruno and carmela pooled thier money to start a lemonade stand. akria contributes $25, bruno contributed $20 and carmela contributed $35. after a month, thier lemoneade stand had earned 2000, and they want to distribute this money in the same ratio as the money that was invested. how many dollars will brouno recieve
plz explian
9514 1404 393
Answer:
$500
Step-by-step explanation:
Bruno's fraction of the total contribution was ...
Bruno / Total = $20/($25 +20 +35) = 20/80 = 1/4
Then Bruno's share of the earnings is this same fraction, so is ...
(1/4) × ($2000) = $500
Matthew participates in a study that is looking at how confident students at SUNY Albany are. The mean score on the scale is 50. The distribution has a standard deviation of 10 and is normally distributed. Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale
Answer:
The percentage of people that could be expected to score the same as Matthew or higher on this scale is:
= 93.3%.
Step-by-step explanation:
a) Data and Calculations:
Mean score on the scale, μ = 50
Distribution's standard deviation, σ = 10
Matthew scores, x = 65
Calculating the Z-score:
Z-score = (x – μ) / σ
= (65-50)/10
= 1.5
The probability based on a Z-score of 1.5 is 0.93319
Therefore, the percentage of people that could be expected to score the same as Matthew or higher on this scale is 93.3%.
In a survey, 24 people were asked how much they spent on their child's last birthday gift. The results were roughly bell-shaped with a mean of $42 and standard deviation of $2. Construct a confidence interval at a 98% confidence level.
Answer:
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 24 - 1 = 23
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 23 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.98}{2} = 0.99[/tex]. So we have T = 2.5
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.5\frac{2}{\sqrt{24}} = 1.02[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 42 - 1.02 = $40.98.
The upper end of the interval is the sample mean added to M. So it is 42 + 1.02 = $43.02.
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
Which answers describe the shape below? Check all that apply.
A. Trapezoid
B. Parallelogram
C. Rhombus
D. Rectangle
E. Quadrilateral
F. Square
Answer:
B, C, and E
Step-by-step explanation:
Can someone help me with this problem
9514 1404 393
Answer:
x = 30°
Step-by-step explanation:
The lines will be parallel if and only if the sum of the marked angles is 180°:
4x +2x = 180°
6x = 180° . . . . . collect terms
x = 30° . . . . . . . divide by 6
What is the inequality shown?
Answer:
2<X ,this is because opened and facing towards x
and
–3≤X this is because the circle is closed and also facing towards x
A survey was held to find the time taken by students to reach school from
their homes. Each student was asked to choose from 5, 10, 15, 20, or 25
minutes.
Number of
Minutes 5 10 15 20 25
Number of
Students
11
8
2
3
6
What is the mode for the data set?
A. 5 min b. 10 min c. 20 min d. 25 min
Hello,
in France, the mode is the value having the greater repetition
mode= 5 (repetition=11)
On Friday Evelyn sold 9 dresses and 20 pairs of pants. On Saturday she sold twice as many dresses and 10 more pants than Friday. How many dresses did Evelyn sell on Friday and Saturday?
Answer: 27 Dresses and 50 Pants
Step-by-step explanation:
If she sold 9 pairs of pants and
9 x 2 = 18
18 + 9 = 27
20 + 10 = 30
30 + 20 = 50
Evelyn sold 9 dresses and 20 pairs of pants on Friday, and on Saturday, she sold 18 dresses and 30 pairs of pants.
Evelyn's sales of dresses and pants over two days, Friday and Saturday. We'll use some mathematical expressions and reasoning to find out how many dresses Evelyn sold on each day.
Let's start by assigning some variables to represent the number of dresses and pants Evelyn sold on Friday and Saturday. We'll use "F" for Friday and "S" for Saturday. So, let [tex]D_F[/tex] be the number of dresses sold on Friday, [tex]D_S[/tex] be the number of dresses sold on Saturday, [tex]P_F[/tex] be the number of pants sold on Friday, and [tex]P_S[/tex] be the number of pants sold on Saturday.
According to the problem, on Friday, Evelyn sold 9 dresses, which can be expressed as:
[tex]D_F[/tex] = 9
She also sold 20 pairs of pants on Friday:
[tex]P_F[/tex] = 20
Now, let's move on to Saturday's sales. It says she sold twice as many dresses as Friday, which means the number of dresses on Saturday is double that of Friday's sales:
[tex]D_S = 2 * D_F[/tex]
Additionally, she sold 10 more pairs of pants on Saturday compared to Friday:
[tex]P_S = P_F + 10[/tex]
We already know that [tex]D_F = 9[/tex], so we can find the number of dresses sold on Saturday by substituting this value into the equation for [tex]D_S[/tex]:
[tex]D_S = 2 * 9 = 18[/tex]
Next, we'll calculate the number of pants sold on Saturday using the given information. Since [tex]P_F = 20[/tex], we can find [tex]P_S[/tex]:
[tex]P_S = 20 + 10 = 30[/tex]
So, to summarize, Evelyn sold 9 dresses and 20 pairs of pants on Friday, and on Saturday, she sold 18 dresses and 30 pairs of pants.
To know more about Equation here
https://brainly.com/question/15977368
#SPJ2
find the length of side AB
Answer:
AB = 5.6 cm
Step-by-step explanation:
Reference angle (θ) = 62°
Hypotenuse = 12 cm
Adjacent = AB
Apply the trigonometric ratio formula, CAH, which is:
Cos θ = Adj/Hyp
Plug in the values
Cos 62° = AB/12
12*Cos 62° = AB
5.63365876 = AB
AB = 5.6 cm (1 decimal place)
Solve the inequality. |X+19|<7
Answer:
x<-12
Step-by-step explanation: hope this helps!
What is the solution to the following inequality X/-2 > 5
Answer:
x < -10
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightEquality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityStep-by-step explanation:
Step 1: Define
Identify
x/-2 > 5
Step 2: Solve for x
[Multiplication Property of Equality] Multiply -2 on both sides: x < -10[tex]\large {\mathsf {\red{\underbrace {\overbrace{\blue{ {\pink}{Answєr}}}}}}} \: [/tex]
x > - 10
[tex] \large \mathtt \green{Step-by-step \: explanation : }[/tex]
[tex] \small \sf \frac{x}{ - 2} > 5 \\ [/tex]
Solve for x
[tex] \small \sf \frac{x}{ - 2} > 5 \\ [/tex]
common denominator is 2
[tex]\small \sf ➪ \frac{2x}{ - 2} >2 \times 5 \\ [/tex]
[tex]\small \sf ➪ \frac{ \cancel{2}x}{ - \cancel{ 2}} >2 \times 5 \\ [/tex]
➪ - x > 2 × 5
➪ - x > 10
multiply by - 1
➪ - x × - 1 > 10 × - 1
x > - 10
What's the lateral area of the following cone?
11 cm
10 cm
511.23 cm
55 cm?
110.02 cm?
189.75 cm?
Answer:189.75
Step-by-step explanation:
The lateral area of the cone for the height of 11 cm and diameter 10 cm is given by option D. 189.75 cm²
To calculate the lateral area of a cone, find the curved surface area.
The lateral area of a cone can be calculated using the formula:
Lateral Area = π × r × l
where:
π is the mathematical constant pi (approximately 3.14159)
r is the radius of the base of the cone
l is the slant height of the cone
Height (h) = 11 cm
Diameter (d) = 10 cm
First, we need to find the radius (r) and the slant height (l).
The radius (r) is half of the diameter:
r
= d / 2
= 10 cm / 2
= 5 cm
The slant height (l) can be found using the Pythagorean theorem:
l² = r² + h²
l² = 5² + 11²
l² = 25 + 121
l² = 146
l = √146
≈ 12.083 cm
Now, calculate the lateral area:
Lateral Area = π × r × l
Lateral Area = 3.14159 × 5 cm × 12.083 cm
Lateral Area ≈ 189.75 cm²
Therefore, the lateral area of the cone is approximately 189.75 cm². The correct answer is C) 189.75 cm²
learn more about lateral area here
brainly.com/question/30196078
#SPJ2
how do you find the angle?
7 women can bake 100 cookies in 14 days. How many would it take for 4 women to bake 240 cookies?
Answer:
it would take 30 and a half days to make 240 cookies
A river is 212 mile long. What is the length of the river on a map, if the scale is 1 inch : 50 miles?
Answer:
4.24 inches
Step-by-step explanation:
1 inch / 50 miles = x / 212 miles Cross multiply
1 inch * 212 miles = 50 miles * x Divide by 50 miles
1 inch * 212 miles / 50 miles = x
x = 4.24 inches.
How much is 0.24 of an inch?
0.24 * 50 = 12
So 0.24 inches represents 12 miles.
There are two points of the form (x,-4) that have a distance of 10 units from the point (3,2). Give the x value for one of those points.
Answer:
x = - 5
Step-by-step explanation:
[tex]Let \ (x _ 1 , y _ 1 ) \ and \ (x _ 2 , y _ 2 ) \ be \ the \ points. \\\\The \ distance \ between \ the \ points \ be ,\ d = \sqrt{(x_2 - x_1)^2 + ( y _ 2 - y_1)^2}[/tex]
Given : d = 10 units
And the points are ( x , - 4) and ( 3 , 2 ).
Find x
[tex]d = \sqrt{( 3 - x)^2 + ( -4 - 2)^2} \\\\10 = \sqrt{( 3 - x)^2 + ( -6)^2} \\\\10^2 = [ \ \sqrt{( 3 - x)^2 + 36} \ ]^2 \ \ \ \ \ \ \ \ \ [ \ squaring \ both \ sides \ ] \\\\100 = ( 3 - x )^2 + 36\\\\100 - 36 = ( 3 - x )^ 2\\\\( 3 - x ) = \sqrt{64}\\\\3 - x = \pm 8\\\\3 - x = 8 \ and \ 3 - x = - 8\\\\-x = 8 - 3 \ and \ -x = - 8 - 3\\\\-x = 5 \ and \ -x = - 11\\\\x = - 5 \ and \ x = 11\\\\[/tex]
Check which value of x satisfies the distance between the points.
x = 11
[tex]d = \sqrt{(3-11)^2 + (-2--4)^2} = \sqrt{(-8)^2 + (-2+4)^2}= \sqrt{64+4} = \sqrt {68} \ units[/tex]
does not satisfy.
x = - 5:
[tex]d = \sqrt{ (3 -- 5)^2 + ( - 4 - 2)^2} = \sqrt{8^2 + 6^2} = \sqrt{100} =10 \ units[/tex]
Therefore , x = - 5
Which problem has a greater (bigger) answer? Solve both, choose the one that has the bigger answer and explain (1-2 sentences) how you found your
answer.
1) (2 + 3) (5 + 5)
2)2 + 3 x 5 + 5 =
may y’all help me please and thank you?
Answer:
F
Step-by-step explanation:
4.85-4.15=0.7 divided by 2 = 0.35+4.15=4.5*25 cause 30-20=10 divided by 2=5+20=25*4.5=112. closest to that is 120
For which equation is (4, 3) a solution?
y=x+3
y=3 x-4
y= 2 x-5
y= 2 x-1
please say how you got your answer
Answer:
y = 2x - 5
Step-by-step explanation:
We can use trial and error to solve this.
4 = x and 3 = y
y = x + 3: 4 + 3 = 7 ≠ 3 (not what we want)
y = 3x + 4: (3 x 4) - 4 = 8 ≠ 3 (not what we want)
y = 2x - 5: (2 x 4) - 5 = 3 (what we want)
y = 2x - 1: (2 x 4) - 1 = 7 ≠ 3 (not what we want)
The answer is y = 2x - 5
The mean of 19 numbers is 1600. If 2000 is added in the number. Find the new mean
Answer:
Here's your answer .
hope it helps you
Suppose that two teams play a series of games that end when one of them has won i games. Suppose that each game played is, independently, won by team A with probability p. Find the expected number of games that are played when i = 2. Also show that this number is maximized when p= 21.
Answer:
a) E(x) = -2p^2 + 2p + 2
b) Number is maximized when p = 1/2
Step-by-step explanation:
Determine the Expected number of games when ( i ) = 2
The number of possible combinations that both teams win two games :
AA, BB, ABB, ABA, BAA, BAB = 6 combinations
P( team A winning ) = p
P( team B wins ) = 1 - p
Attached below is the detailed solution on the expected number of games
expected number of games ; E(x) = -2p^2 + 2p + 2
ii) Number is maximized when p = 1/2
In this exercise we will use the knowledge of probability and combination, so we have what will be:
a)[tex]E(x) = -2p^2 + 2p + 2[/tex]
b)[tex]p = 1/2[/tex]
Organizing the information given in the statement as:
Expected number of games when ( i ) = 2A)The number of possible combinations that both teams win two games :
[tex]AA, BB, ABB, ABA, BAA, BAB = 6 \ combinations\\P( team\ A \ winning ) = p\\P( team \ B \ wins ) = 1 - p\\E(x) = -2p^2 + 2p + 2[/tex]
B) To calculate the maximum number we must solve the quadratic equation, like this:
[tex]p=1/2[/tex]
See more about probability at brainly.com/question/795909
please help me solve this math
Answer:
d
Step-by-step explanation:
A sample of students was asked what political party do they belong. which of the following types of graphical display would be appropriate for the sample?
A. Stemplot.
B. Pie chart.
C. Scatterplot.
D. All of the above.
Answer:
B. Pie chart.
Step-by-step explanation:
In this question, the students are asked what political party they belong. The best display format would be one in which the graph can be divided into parts, or percents, according to the percentage of students belonging to each political party. The graph that best describes this, distributing a group into parts, is a pie chart, and thus, the correct answer is given by option b.
Scatterplot is used when two variables correlate together, that is, there is a relationship between them, which we don't have between the number, or proportion of students belonging to each political party. Stemplot are used when there is a high number of quantitative data, which we do not have here.
Write an equation that represents the line.
Use exact numbers