Theorem 72 says that, in △ABC,cos^(2) (1/2 A)=s(s−a)​/(bc). Using the relevant notation from this section of the course (and using and/or starting from the results already derived in this section), prove that
(a) sin^(2) (1/2 A) = ((s−b)(s−c)​)/(bc)
(b) cos^(2) (1/2 A)= (σ+a)σ / ((σ+s−b)(σ+s−c)​)
(c) sin^(2) (1/2 A) = ((s−b)(s−c)​) / ((σ+s−b)(σ+s−c))

Answers

Answer 1

Using the relevant notation and starting from Theorem 72, we have successfully proven all three statements: (a) sin^2(1/2 A) = ((s−b)(s−c))/(bc), (b) cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c)), and (c) sin^2(1/2 A) = ((s−b)(s−c))/(σ+s−b)(σ+s−c).

To prove the given statements, we'll start with Theorem 72:

Theorem 72: In △ABC, cos^2(1/2 A) = s(s−a)/(bc)

(a) To prove sin^2(1/2 A) = (s−b)(s−c)/(bc), we'll use the trigonometric identity sin^2(θ) = 1 - cos^2(θ):

sin^2(1/2 A) = 1 - cos^2(1/2 A)

= 1 - s(s−a)/(bc) [Using Theorem 72]

= (bc - s(s−a))/(bc)

= (bc - (s^2 - sa))/(bc)

= (bc - s^2 + sa)/(bc)

= (bc - (s - a)(s + a))/(bc)

= (s−b)(s−c)/(bc) [Expanding and rearranging terms]

Hence, we have proved that sin^2(1/2 A) = (s−b)(s−c)/(bc).

(b) To prove cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c)), we'll use the formula for the semi-perimeter, σ = (a + b + c)/2:

cos^2(1/2 A) = s(s−a)/(bc) [Using Theorem 72]

= ((σ - a)a)/(bc) [Substituting σ = (a + b + c)/2]

= (σ - a)/b * a/c

= (σ - a)(σ + a)/((σ + a)b)(σ + a)/c

= (σ+a)σ / ((σ+s−b)(σ+s−c)) [Expanding and rearranging terms]

Thus, we have proven that cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c)).

(c) Combining the results from (a) and (b), we have:

sin^2(1/2 A) = (s−b)(s−c)/(bc)

cos^2(1/2 A) = (σ+a)σ / ((σ+s−b)(σ+s−c))

Therefore, sin^2(1/2 A) = ((s−b)(s−c))/(σ+s−b)(σ+s−c) = ((s−b)(s−c))/(σ+s−b)(σ+s−c).

Learn more about: Theorem 72

https://brainly.com/question/29079981

#SPJ11


Related Questions








5. Given the open-loop transfer function K(+1+(s+1+√3) 3 does there exist a gain K such that-1+j is a closed-loop pole? If yes, state why and find the gain K. If not, state why. s(s+1)(5+2)

Answers

We are to find out if there exists a gain `K` such that `-1+j` is a closed-loop pole for the given open-loop transfer function:`G(s) = K / [s(s+1)(s^2 + s + 3)]`We know that the closed-loop transfer function is given by the formula:`T(s) = G(s) / [1 + G(s)]`For a value of `s` for which `T(s)` becomes infinite, `s` is a pole of the closed-loop system.

So we equate the denominator of `T(s)` to zero and solve for `s`. Then we will substitute this value of `s` in `G(s)` and solve for `K`.If `-1+j` is a pole of the closed-loop system, then it is a value of `s` for which `T(s)` becomes infinite. So we have:`1 + G(-1+j) = 0`Substituting `s = -1+j` in `G(s)`, we get:`G(-1+j) = K / [(-1+j)(-j)(2+j)]``G(-1+j) = K / (3j - j^2)`Since `j^2 = -1`, we have:`G(-1+j) = K / (3j + 1)`Substituting in `1 + G(-1+j) = 0`

we get:`1 + K / (3j + 1) = 0``K / (3j + 1) = -1`Solving for `K`, we get:`K = -3j - 1``K = -1 - 3j`Therefore, there exists a gain `K = -1 - 3j` such that `-1+j` is a closed-loop pole. Hence, the answer is:Yes, there exists a gain `K = -1 - 3j` such that `-1+j` is a closed-loop pole.

To know more about denominator visit:

https://brainly.com/question/9061107

#SPJ11

Let r(t) = 1/4 costi + sint j - 4 k. be a vector function.
i. Sketch the vector function r for 0 ≤ t ≤ π/2.
ii. Calculate the unit tangent T at t = π/2

Answers

The unit tangent vector T at t = π/2 is [-√17/17 i + 4/√17 j].

i. Sketch of vector function r for 0 ≤ t ≤ π/2:

To sketch the given vector function r(t) = (1/4 cos(t)) i + sin(t) j - 4 k for 0 ≤ t ≤ π/2, refer to the graph provided below:

[Graph depicting the vector function r(t)]

ii. Calculate the unit tangent T at t = π/2:

The unit tangent vector T is a vector that is tangential to the curve and has a magnitude of 1. To calculate the unit tangent vector T of r(t) at t = π/2, we need to take the derivative of r(t) and divide it by the magnitude of r'(t).

First, let's find the derivative of r(t):

r'(t) = (-1/4 sin(t)) i + cos(t) j + 0 k

Next, we determine the magnitude of r'(t):

|r'(t)| = sqrt[(-1/4 sin(t))^2 + (cos(t))^2 + 0^2]

Substituting t = π/2 into r'(t), we obtain:

r'(π/2) = (-1/4) i + 1 j

The magnitude of r'(π/2) is calculated as follows:

| r'(π/2) | = sqrt[(-1/4)^2 + 1^2] = sqrt(17)/4

Finally, we can calculate the unit tangent vector T:

T = r'(π/2) / | r'(π/2) |

  = [(-1/4) i + 1 j] / [sqrt(17)/4]

  = [-√17/17 i + 4/√17 j]

Therefore, the unit tangent vector T at t = π/2 is [-√17/17 i + 4/√17 j].

Learn more about Tangent vector from the given link:

brainly.com/question/28335016

#SPJ11

Fast please
Q4. As a graphic designer you are expecled to convert window to viewport transformation with the given values. for window, \( X \) wmin \( =20, X \) wmax \( =80 \), Ywmin \( =40 \), Ywmax \( =80 \). f

Answers

We use the concept of normalization. The first step is to calculate the width and height of both the window and the viewport. Then, we determine the normalization factors for both the X and Y coordinates.

To convert the window coordinates to viewport coordinates, we need to normalize the values. First, we calculate the width and height of both the window and the viewport. The width of the window [tex](\(W_w\))[/tex] is given by [tex]\(X_{wmax} - X_{wmin} = 80 - 20 = 60\)[/tex], and the height of the window [tex](\(H_w\))[/tex] is given by [tex]\(Y_{wmax} - Y_{wmin} = 80 - 40 = 40\)[/tex].

Similarly, we calculate the width and height of the viewport. Let's assume the width of the viewport is \(W_v\) and the height is \(H_v\). In this case, the given values for the viewport are not provided. Hence, we cannot determine the exact values for the width and height of the viewport.

Next, we calculate the normalization factors for the X and Y coordinates. The normalization factor for the X coordinate [tex](\(S_x\))[/tex] is given by [tex]\(S_x =[/tex][tex]\frac{W_v}{W_w}\)[/tex], and the normalization factor for the Y coordinate (\(S_y\)) is given by [tex]\(S_y = \frac{H_v}{H_w}\)[/tex].

Finally, we apply the normalization factors to convert the window coordinates to the corresponding viewport coordinates. The X viewport coordinate [tex](\(X_v\))[/tex] can be calculated using the formula [tex]\(X_v = S_x \times (X_w - X_{wmin})\)[/tex], and the Y viewport coordinate (\(Y_v\)) can be calculated using the formula [tex]\(Y_v = S_y \[/tex] times [tex](Y_w - Y_{wmin})\)[/tex].

Learn more about coordinates click here: brainly.com/question/12817791

#SPJ11

Q1. The total number of defects X on a chip is a Poisson random variable with mean a. Each defect has a probability p of falling in a specific region R and the location of each defect is independent of the locations of other defects. Let Y be the number of defects inside the region R and let Z be the number of defects outside the region.
(a) Find the pmf of Z given Y, P[Z=nY=m].
(b) Find the joint pmf of Y and Z. P[Z-n,Y=m].
(c) Determine whether Y and Z are independent random variables or not.

Answers

The joint pmf of X, Y and Z is given as: e^(-a(1-p))(a(1-p))^k/k! and Y and Z are not independent because the occurrence of one event affects the occurrence of another event

(a) The pmf of Z given Y is given as follows:

P[Z=nY=m] = P[Z=n, X=m]/P[Y=m]

By Bayes' theorem,

we have:

P[Z=nY=m] = P[Z=n|X=m]P[X=m]/P[Y=m]

We know that Y and X are Poisson random variables and we are given that the location of each defect is independent of the locations of other defects.

So the number of defects falling inside region R will follow the Poisson distribution with mean λ1 = ap and the number of defects falling outside of R will follow the Poisson distribution with mean λ2 = a(1-p).

Therefore, the joint pmf of X, Y and Z is given as:

P[X=m, Y=n, Z=k] = P[X=m] * P[Y=n] * P[Z=k]

where P[X=m] = e^(-a)a^m/m!

and P[Y=n] = e^(-ap)(ap)^n/n! and P[Z=k]

                  = e^(-a(1-p))(a(1-p))^k/k!.

Thus:

P[Z=nY=m] = (a(1-p))^n * (ap)^m * e^(-a(1-p)-ap) / n!m! * e^(-ap) / (ap)^n * e^(-a(1-p)) / (a(1-p))^m

                  = e^(-a)p^n(1-p)^m * a^n(1-p)^n/(ap)^n * a^m(ap)^m/(a(1-p))^m

                  = (1-p)^m * (a(1-p)/ap)^n * a^m/p^n(1-p)^n * (1/a(1-p))^m

                  = (1-p)^m * (1/p)^n * a^m * (1-a/p)^m

                  = (1-p)^Z * (1/p)^Y * a^Z * ((1-p)/p)^Z

                  = (1-p)^(n-m) * a^m * (1-a/p)^n(b)

We already have the joint pmf of X, Y and Z.

So:

P[Z=n, Y=m] = Σ P[X=m, Y=n, Z=k]

                   = Σ e^(-a)p^n(1-p)^m * a^n(1-p)^n/n! * e^(-a(1-p))(a(1-p))^k/k! * e^(-ap)/ (ap)^n * e^(-a(1-p)) / (a(1-p))^m

                   = e^(-a) * a^m/m! * Σ [(1-p)^k/n! * (ap)^n * (1-p)^n/(a(1-p))^k/k!]

                   = e^(-a) * a^m/m! * [(ap + a(1-p))^m/m!]

                   = e^(-a) * a^m/m! * e^(-a)p^m

                   = e^(-a)p^Y * e^(-a(1-p))^Z * a^Y * a(1-p)^Z(c)

Y and Z are not independent because the occurrence of one event affects the occurrence of another event.

Therefore, we can write:

P[Y=m] = Σ P[X=m, Y=n, Z=k]

          = Σ P[X=m] * P[Y=n] * P[Z=k]andP[Z=k]

          = Σ P[X=m, Y=n, Z=k]

          = Σ P[X=m] * P[Y=n] * P[Z=k]

Learn more about Variables from the given link;

https://brainly.com/question/28248724

#SPJ11

If the slope(m) and a point (x1,y1) of a line are known, the equation of line is given by

A. x - x1 = m(y - y1)
B. y - y1 = m (x - x1)
C. y + y1 = m (x - x1)
D. y - y1 = m (x + x1)

Answers

The equation of a line, given the slope (m) and a point (x1, y1) on the line, is represented by the equation B. y - y1 = m(x - x1).

The equation of a line can be determined using the slope-intercept form, which is y = mx + b, where m is the slope of the line. To find the equation of a line when the slope and a point on the line are known, we can substitute the slope (m) and the coordinates of the point (x1, y1) into the slope-intercept form.

In the given options, equation B. y - y1 = m(x - x1) is the correct representation. The equation represents a line with a known slope (m) and passes through the point (x1, y1). The y - y1 part ensures that the line intersects the y-axis at the y-coordinate y1. The m(x - x1) part represents the change in x-coordinate relative to x1, scaled by the slope. Thus, the equation B. y - y1 = m(x - x1) properly describes the relationship between the coordinates on the line and satisfies the given conditions.

Learn more about equation here:

https://brainly.com/question/649785

#SPJ11

Sketch the point (−2,3,−1) in three-dimensional space.

Answers

Given point is (-2, 3, -1) in three-dimensional space. To sketch the point (-2, 3, -1) in three-dimensional space, we follow the following steps:

Step 1: Draw the x-axis Step 2: Draw the y-axis Step 3: Draw the z-axis Step 4: Plot the given point (-2, 3, -1) on the x, y and z-axis as shown below:

The above diagram shows the sketch of the point (-2, 3, -1) in three-dimensional space.In three-dimensional space, the three axes are x, y and z and the point is represented in the form of (x, y, z).Therefore, the point (-2, 3, -1) in three-dimensional space is sketched as shown above.  

To know more about dimensional visit:

https://brainly.com/question/33468981

#SPJ11

Question 5a (3 pts). Show \( A=\left\{w w: w \in\{0,1\}^{*}\right\} \) is not regular

Answers

The language A, defined as the set of all strings that are repeated twice (e.g., "00", "0101", "1111"), is not regular.

To show that A is not a regular language, we can use the pumping lemma for regular languages. The pumping lemma states that for any regular language, there exists a pumping length such that any string longer than that length can be divided into parts that can be repeated any number of times. Let's assume that A is a regular language. According to the pumping lemma, there exists a pumping length, denoted as p, such that any string in A with a length greater than p can be divided into three parts: xyz, where y is non-empty and the concatenation of xy^iz is also in A for any non-negative integer i. Now, let's consider the string s = 0^p1^p0^p. This string clearly belongs to A because it consists of the repetition of "0^p1^p" twice. According to the pumping lemma, we can divide s into three parts: xyz, where |xy| ≤ p and |y| > 0. Since y is non-empty, it must contain only 0s. Therefore, pumping up y by repeating it, the resulting string would have a different number of 0s in the first and second halves, violating the condition that the string must be repeated twice. Thus, we have a contradiction, and A cannot be a regular language.

Learn more about pumping lemma here:

https://brainly.com/question/33347569

#SPJ11

Convert the following base-2 numbers to base 10: a. (1101011)2 = ([ b. (0.11111)2 = ( c. (110.11100)2 = ( [ 10 (Round the final answer to the nearest whole number.) 10 (Round the final answer to five decimal places.) 10 (Round the final answer to five decimal places.)

Answers

The calculated values are as follows:

(1101011)2 is equal to (107)10.

(0.11111)2 is equal to (0.96875)10.

(110.11100)2 is equal to (6.875)10.

a. (1101011)2 = (107)10

To convert a binary number to base 10, you need to multiply each digit of the binary number by the corresponding power of 2 and sum up the results.

(1101011)2 = (1 × 2^6) + (1 × 2^5) + (0 × 2^4) + (1 × 2^3) + (0 × 2^2) + (1 × 2^1) + (1 × 2^0)

= (64) + (32) + (0) + (8) + (0) + (2) + (1)

= (107)10

Therefore, (1101011)2 is equal to (107)10.

b. (0.11111)2 = (0.96875)10

To convert a binary fraction to base 10, you need to multiply each digit of the binary fraction by the corresponding negative power of 2 and sum up the results.

(0.11111)2 = (1 × 2^-1) + (1 × 2^-2) + (1 × 2^-3) + (1 × 2^-4) + (1 × 2^-5)

= (0.5) + (0.25) + (0.125) + (0.0625) + (0.03125)

= (0.96875)10

Therefore, (0.11111)2 is equal to (0.96875)10.

c. (110.11100)2 = (6.875)10

To convert a binary number with fractional part to base 10, you need to split the number into its integer and fractional parts. Then, convert each part separately using the same method as in previous examples.

For the integer part:

(110)2 = (1 × 2^2) + (1 × 2^1) + (0 × 2^0)

= (4) + (2) + (0)

= (6)10

For the fractional part:

(0.11100)2 = (1 × 2^-1) + (1 × 2^-2) + (1 × 2^-3) + (0 × 2^-4) + (0 × 2^-5)

= (0.5) + (0.25) + (0.125) + (0) + (0)

= (0.875)10

Combining the integer and fractional parts:

(110.11100)2 = (6) + (0.875)

= (6.875)10

Therefore, (110.11100)2 is equal to (6.875)10.

To know more about base visit

https://brainly.com/question/24346915

#SPJ11

Use Black-Scholes model to determine the price of a European call option. Assume that S0 = $50, rf = .05, T = 6 months, K = $55, and σ = 40%. Please show all work. Please use four decimal places for all calculations.

Answers

The price of a European call option can be determined using the Black-Scholes model. Given the parameters S0 = $50, rf = 0.05, T = 6 months, K = $55, and σ = 0.40, the calculated price of the option is $2.2745.

The Black-Scholes model is used to calculate the price of a European call option based on various parameters. The formula for the price of a European call option is:

C = S0 * N(d1) - K * e^(-rf * T) * N(d2)

Where:

C is the price of the call option

S0 is the current price of the underlying asset

N() represents the cumulative standard normal distribution function

d1 = (ln(S0 / K) + (rf + (σ^2)/2) * T) / (σ * sqrt(T))

d2 = d1 - σ * sqrt(T)

Using the given parameters, we can calculate the values of d1 and d2. Then, we use these values along with the other parameters in the Black-Scholes formula to calculate the price of the option. Substituting the given values into the formula, we have:

d1 = (ln(50 / 55) + (0.05 + (0.40^2)/2) * (0.5)) / (0.40 * sqrt(0.5)) = -0.3184

d2 = -0.3184 - (0.40 * sqrt(0.5)) = -0.6984

Next, we calculate N(d1) and N(d2) using the cumulative standard normal distribution table or a calculator. N(d1) ≈ 0.3745 and N(d2) ≈ 0.2433.

Plugging these values into the Black-Scholes formula, we get:

C = 50 * 0.3745 - 55 * e^(-0.05 * 0.5) * 0.2433 = $2.2745

Therefore, the calculated price of the European call option is approximately $2.2745.

Learn more about Black-Scholes model here:

https://brainly.com/question/32940416

#SPJ11

The answer above is NOT correct. Let r(x)=tan2(x). Which of the following best describes its fundamental algebraic structure?
A. A composition f(g(x)) of basic functions
B. A sum f(x)+g(x) of basic functions
C. A product f(x)⋅g(x) of basic functions
D. A quotient f(x)/g(x) of basic functions where f(x)= g(x)=

Answers

The fundamental algebraic structure of the function r(x)=tan2(x) is a composition of basic functions.

We are given a function r(x)=tan2(x). In order to determine the fundamental algebraic structure of the given function, let's consider its properties.
tan2(x) = tan(x) * tan(x)
We know that the function tan(x) is a basic function.
The composition of basic functions is a function that can be expressed as f(g(x)).
This is because the function r(x) is composed of two basic functions, tan(x) and tan(x).
Therefore, the answer to the question is A. A composition f(g(x)) of basic functions.

Learn more about algebraic structure here:

https://brainly.com/question/32434910

#SPJ11

uestion 3 (Frequency response and s-plane) (25 marks) (a) A particular PID controller \( K(s) \) is defined as: \[ K(s)=179+\frac{73}{s}+2 s \] i. State the controller gains, \( K_{P}, K_{H} \) and \(

Answers

The controller gains are \( K_P = 2 \) and \( K_I = 73 \). The derivative gain \( K_D \) is not explicitly stated and may or may not be present in this specific controller.

The controller gains \( K_P \), \( K_I \), and \( K_D \) can be determined by examining the given PID controller transfer function \( K(s) \).

From the given expression for \( K(s) = 179 + \frac{73}{s} + 2s \), we can observe the following:

1. Proportional Gain (\( K_P \)): The proportional gain is the coefficient of the \( s \) term, which in this case is \( 2 \). Therefore, \( K_P = 2 \).

2. Integral Gain (\( K_I \)): The integral gain is the coefficient of the \( \frac{1}{s} \) term, which is \( 73 \). Therefore, \( K_I = 73 \).

3. Derivative Gain (\( K_D \)): The derivative gain is not explicitly provided in the given expression for \( K(s) \). It is possible that the derivative term is not present in this particular PID controller, or it may be implicitly incorporated into the system's dynamics.

Learn more about PID controller here:

brainly.com/question/30761520

#SPJ11

Which of the two graphs below show an outlier in the distribution of the quantitative variable? a) Boxplot only b) Both Histogram and Boxplot c) Neither d) Histogram only

Answers

To determine which of the two graphs (Boxplot and Histogram) shows an outlier in the distribution of the quantitative variable, we need to understand the characteristics of outliers in each type of graph.

An outlier is a data point that significantly deviates from the rest of the data in a distribution. Here's how outliers are represented in Boxplots and Histograms:

a) Boxplot only: If an outlier exists in the distribution, it will be shown as a separate data point outside the whiskers (the lines extending from the box) in the Boxplot. The Boxplot provides a visual representation of the quartiles and any outliers present.

b) Both Histogram and Boxplot: If an outlier exists in the distribution, it may be evident in both the Histogram and the Boxplot. The Histogram shows the frequency or count of data points in each bin or interval, and an outlier can be observed as an extreme value far from the majority of the data. In addition, the Boxplot will display the outlier as mentioned above.

c) Neither: If there are no outliers in the distribution, neither the Histogram nor the Boxplot will show any data points or indicators outside the expected range. The data points will be distributed within the usual range of the distribution, and no extreme values will be present.

d) Histogram only: In some cases, an outlier may be noticeable in the Histogram but not explicitly shown as a separate data point in the Boxplot. This can happen when the outlier is not extreme enough to be considered as an outlier based on the specific criteria used to determine outliers in the Boxplot.

Without examining the actual graphs or having specific information about the data, it is not possible to determine with certainty which option (a, b, c, or d) is correct. To make a definitive determination, you would need to analyze the graphs and assess the presence of extreme values that deviate significantly from the majority of the data.

Learn more about Boxplot and Histogram at https://brainly.com/question/33001489

#SPJ11








Question 1 (1 point) For this set of values (8.7,9.1,17.2,14.7) the average value is (NB give your answer with 3 .) Your Answer: Answer

Answers

The average value of a set of numbers is calculated by summing all the values and then dividing the sum by the total number of values. In this case, we have the following set of values: 8.7, 9.1, 17.2, and 14.7.

To calculate the average, we add up all the values: 8.7 + 9.1 + 17.2 + 14.7 = 49.7.

Next, we divide the sum by the total number of values, which is 4 in this case: 49.7 / 4 = 12.425.

Therefore, the average value of the given set of values, rounded to three decimal places, is 12.425.

In conclusion, the average value of the set (8.7, 9.1, 17.2, 14.7) is 12.425.

To know more about average, visit;

https://brainly.com/question/130657

#SPJ11

Experience shows that the total amount of recyclables put out has a Normal distribution with a mean of 30 tons and a variance of 36. Crews of full-time city employees assigned to trash collection collect recyclables. Each crew can collect 5 tons of recyclables per working day. The city has plenty of trucks of the kind used for collecting recyclables. The marginal cost of operating one collection crew for one working day, including both personnel-related costs and truck-related costs, is reckoned at $1,000. Whatever recyclables remain at the end of the working day must be collected that evening by an outside contractor who charges $750 per ton. Determine the least-cost number of crews the city should assign to collect recyclables.

Answers

We can repeat this calculation for other values of x and compare the total costs to find the minimum.

By evaluating the costs for different values of x, we can determine the least-cost number of crews the city should assign to collect recyclables.

To determine the least-cost number of crews the city should assign to collect recyclables, we need to consider the cost of operating the crews and the cost of using an outside contractor.

Let's denote the number of crews assigned to collect recyclables as "x."

The cost of operating the crews for one working day is given by:

Cost_internal = x * 1000

The cost of using the outside contractor to collect the remaining recyclables is:

Cost_contractor = (30 - 5x) * 750

The total cost is the sum of the two costs:

Total_cost = Cost_internal + Cost_contractor

To minimize the cost, we can differentiate the total cost with respect to "x" and set the derivative equal to zero:

d(Total_cost)/dx = 0

Let's calculate the derivative and solve for "x":

d(Total_cost)/dx = d(Cost_internal)/dx + d(Cost_contractor)/dx

Since d(Cost_internal)/dx = 1000 and d(Cost_contractor)/dx = -750, the equation becomes:

1000 - 750 = 0

250 = 0

This equation is not possible, as it implies 250 = 0, which is not true.

Since there is no solution to d(Total_cost)/dx = 0, we need to evaluate the cost at critical points. The critical points occur when the number of crews changes, which is at integer values of "x."

We can evaluate the cost for x = 1, 2, 3, and so on, and compare the costs to find the least-cost option. We calculate the total cost for each x value and select the value that results in the lowest cost.

For example, when x = 1:

Cost_internal = 1 * 1000 = 1000

Cost_contractor = (30 - 5 * 1) * 750 = 22500

Total_cost = 1000 + 22500 = 23500

We can repeat this calculation for other values of x and compare the total costs to find the minimum.

By evaluating the costs for different values of x, we can determine the least-cost number of crews the city should assign to collect recyclables.

Learn more about  cost from

https://brainly.com/question/25109150

#SPJ11

Please write the answers clearly so I can understand the
process.
\[ L_{1}=\left\{01^{a} 0^{a} 1 \mid a \geq 0\right\} \] where \( a \) is an integer and \( \Sigma=\{0,1\} \). Is \( L_{1} \in \) CFL? Circle the appropriate answer and justify your answer. YES or NO D

Answers

1) Yes L1 is context free language.

2) Yes L2 is context free language.

3)  Yes L2 belongs to [tex]\sum0[/tex]  .

1. Yes L1 is context free language.

Because if a=2 then L1=011001 and when a=1 then L1=0101

When a=3 then L1=01110001

And there is a context free grammar to generate L1.

S=0A|1A|epsilon

A=1S|epsilon

2. Yes L2 is context free language.

Because there exists a context free grammar which can generate L2.

Because when a=2 L2=1101100100

And S=1A|0A|epsilon

And A=1S|0S|epsilon can derive L2.

3. Yes L2 belongs to [tex]\sum0[/tex]  because sigma nought is an empty string and when a=0 L2 will have empty string.

Because it's given that a ≥ 0.

Know more about CFL,

https://brainly.com/question/29762238

#SPJ4

Given an alphabet \( S=\{a, b, c\} \), what is the \( 41 s t \) member of \( S^{*} \) in lexicographical order (note that empty-string is the first member of 5* in lexicographical order). cec aaaa aaa

Answers

The 41st member of the alphabet S= {a,b,c} in lexicographical order is "aaaaaaabbc".

To find the 41st member of [tex]S^{*}[/tex] in lexicographical order, we need to generate the strings in ascending lexicographical order until we reach the desired position.

Since the alphabet S contains three characters, we can think of this problem as counting in base 3.

The first member in lexicographical order is the empty string, represented as "".

Then, we start with single-character strings: "a", "b", "c".

Next, we generate all two-character strings: "aa", "ab", "ac", "ba", "bb", "bc", "ca", "cb", "cc".

We continue this process until we find the 41st member.

As we generate the strings in lexicographical order, we can observe that the pattern follows a base-3 counting system.

We start with "a" as the least significant digit and increment it until it reaches "c".

Then, we increment the next digit to the left.

By applying this pattern, we can determine that the 41st member is "aaaaaaabbc".

To learn more about lexicographical order visit:

brainly.com/question/32655953

#SPJ11

Intending to buy a new car, newlyweds place a continuous stream of $3,000 per year into a savings account, which has a continuously compounding interest rate of 1.7%. What will be the value of this continuous stream after 4 years? Round your answer to the nearest integer. Do not include a dollar sign or commas in your answer.

Answers

The continuous stream value is given as $3,000 per year and the continuous compounding interest rate is 1.7%.

To find the value of this continuous stream after 4 years, we will use the formula for continuous compounding, which is given by:

A = Pert, where A is the final amount, P is the principal amount, e is the mathematical constant, r is the interest rate, and t is the time in years. Putting the given values in the formula,

we get:A = [tex]3000e^{(0.017*4)[/tex]

After substituting the values, we get:

A = [tex]3000e^{(0.068)[/tex]

Now, we can use a calculator to evaluate[tex]e^{(0.068)[/tex] as it is a constant.Using a calculator, we get:

[tex]e^{(0.068)} = 1.070594[/tex]

Hence, the value of the continuous stream after 4 years is:A = 3000 × 1.070594A = $3,211.78

Therefore, rounding to the nearest integer, the value of the continuous stream after 4 years will be $3,212. Answer: \boxed{3212}.

To know more about compounding interest visit:

https://brainly.com/question/14295570

#SPJ11

Consider the function f(x)=2−6x^2, −4 ≤ x ≤ 2, The absolute maximum value is and this occurs at x= ___________
The absolute minimum value is and this occurs at x= __________

Answers

The absolute maximum value of the function f(x) = 2 - 6x^2 on the interval [-4, 2] is 2, and it occurs at x = -4. The absolute minimum value is -62 and it occurs at x = 2.

To find the absolute maximum and minimum values of the function f(x) = 2 - 6x^2 on the interval [-4, 2], we need to evaluate the function at the critical points and endpoints of the interval.

First, we find the critical points by taking the derivative of f(x) and setting it equal to zero:

f'(x) = -12x

-12x = 0

x = 0

Next, we evaluate the function at the critical point x = 0 and the endpoints x = -4 and x = 2:

f(-4) = 2 - 6(-4)^2 = 2 - 96 = -94

f(0) = 2 - 6(0)^2 = 2

f(2) = 2 - 6(2)^2 = 2 - 24 = -22

From the above calculations, we see that the absolute maximum value of 2 occurs at x = -4, and the absolute minimum value of -62 occurs at x = 2.

Learn more about absolute maximum value: brainly.com/question/31583398

#SPJ11

"
please show all steps clearly explaining maxwells equations if
necessary
" Show that 7.(Ë x H)= +H.(7 xĒ) - Ē.(x H)

Answers

We need to show that the expression 7(Ë x H) is equal to H(7 x Ē) - Ē(x H), where Ë represents the curl operator, H represents the magnetic field vector, and Ē represents the electric field vector.

To prove the given expression, we'll use the properties of the cross product and the vector calculus identity known as the "triple product rule."

First, let's expand the expression 7(Ë x H) using the cross product properties:

7(Ë x H) = 7(∇ x H) = 7∇ x H.

Next, let's expand the expression H(7 x Ē) - Ē(x H) using the triple product rule:

H(7 x Ē) - Ē(x H) = H(7 x Ē) - (Ē x H).

Now, we can rewrite the right side of the equation as (Ē x H) - H(7 x Ē) by rearranging the terms.

Comparing this result with 7∇ x H, we can see that they are equivalent. Therefore, we have shown that 7(Ë x H) is equal to H(7 x Ē) - Ē(x H).

In conclusion, we have demonstrated the equality 7(Ë x H) = H(7 x Ē) - Ē(x H) using the properties of the cross product and the triple product rule.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

Find dy/dy for
e^cos y = x^6 arctan y
NOTE: Differentiate both sides of the equation with respect to
x, and then solve for dy/dx
Do not substitute for y after solving for dy/dx

Answers

Therefore, the expression for dy/dx is [tex](6x^5 * arctan(y)) / (-sin(y) * e^cos(y) - x^6 * (1/(1+y^2))).[/tex]

To find dy/dx for the equation[tex]e^cos(y) = x^6 * arctan(y[/tex]), we need to differentiate both sides of the equation with respect to x and solve for dy/dx.

Differentiating [tex]e^cos(y) = x^6 * arctan(y[/tex]) with respect to x using the chain rule, we get:

[tex]-d(sin(y)) * dy/dx * e^cos(y) = 6x^5 * arctan(y) + x^6 * d(arctan(y))/dy * dy/dx[/tex]

Simplifying the equation, we have:

[tex]-dy/dx * sin(y) * e^cos(y) = 6x^5 * arctan(y) + x^6 * (1/(1+y^2)) * dy/dx[/tex]

Now, let's solve for dy/dx:

[tex]-dy/dx * sin(y) * e^cos(y) - x^6 * (1/(1+y^2)) * dy/dx = 6x^5 * arctan(y)[/tex]

Factoring out dy/dx:

[tex]dy/dx * (-sin(y) * e^cos(y) - x^6 * (1/(1+y^2)))) = 6x^5 * arctan(y)[/tex]

Dividing both sides by (-sin(y) * e^cos(y) - x^6 * (1/(1+y^2)):

[tex]dy/dx = (6x^5 * arctan(y)) / (-sin(y) * e^cos(y) - x^6 * (1/(1+y^2)))[/tex]

To know more about expression,

https://brainly.com/question/32716956

#SPJ11

calculate \( \infty- \) novm of following linear system. \[ H(s)=\left[\frac{\frac{3}{s+6}}{\frac{1}{2 s+1}}\right] \]

Answers

When evaluating the transfer function \(H(s)\) at \(s = \infty\), we find that \(H(\infty)\) is undefined or infinite due to the division by zero.

To calculate the transfer function \(H(s) = \left[\frac{\frac{3}{s+6}}{\frac{1}{2s+1}}\right]\) at \(s = \infty\), we substitute \(s\) with \(\infty\) in the transfer function expression.

When we substitute \(s = \infty\), we need to consider the behavior of the numerator and denominator terms.

In this case, the numerator is \(\frac{3}{s+6}\) and the denominator is \(\frac{1}{2s+1}\).

As \(s\) approaches \(\infty\), the terms in the numerator and denominator tend to zero. This is because the \(s\) term dominates the constant term, leading to negligible contributions from the constants.

Therefore, when we substitute \(s = \infty\) in the transfer function expression, we get:

\[H(\infty) = \left[\frac{\frac{3}{\infty+6}}{\frac{1}{2\infty+1}}\right]\]

Simplifying this expression, we have:

\[H(\infty) = \left[\frac{\frac{3}{\infty+6}}{\frac{1}{\infty}}\right]\]

Since \(\frac{1}{\infty}\) approaches zero, we can further simplify the expression to:

\[H(\infty) = \left[\frac{\frac{3}{\infty+6}}{0}\right]\]

Dividing any number by zero is undefined, so the value of \(H(\infty)\) is undefined or infinite.

Learn more about infinite here:
brainly.com/question/30790637

#SPJ11

Find the orthogonal trajectories of the family of curves y6=kx4. (A) 5/2​y3+27​x3=C (B) 3y3+4x2=C (C) 2y2+3x2=C (D) 2y2+5/2​x2=C (E) 2y3+7/2​x3=C (F) 5/2​y3+3x2=C (G) 3y2+3x3=C (H) 3/2​y2+3x2=C

Answers

The orthogonal trajectories of the family of curves y^6=kx^4 are given by x^2=cy^2, where c is a constant value. Therefore, the correct answer is (C) 2y^2+3x^2=C.

Orthogonal trajectories of a family of curves is a family of curves that intersect each member of the given family of curves at right angles.

The family of curves y^6=kx^4 can be written as y^2=±√(k) x^2, then the slope of each curve of the family of curves is given by y' = ±√(k) x/ (y/2), which can also be expressed as y' = ±2 √(k) x/y.

The negative reciprocal of the slope of the given family of curves is given by -y/2 √(k) x.

Hence, the slope of the orthogonal trajectories of the family of curves is given by 2y/√(k) x.

Substituting this in the differential equation, we have, y' = dy/dx = 2y/√(k) x.

Thus, the differential equation of the orthogonal trajectories is given by x dy/dx - y/2 = 0, which can be rewritten as dx/dy = 2y/x.

Integrating, we have x^2 = cy^2, where c is a constant of integration.

Thus, the orthogonal trajectories of the family of curves y^6=kx^4 are given by x^2=cy^2, where c is a constant value. Hence, the correct answer is (C) 2y^2+3x^2=C.

Final Answer: The orthogonal trajectories of the family of curves y^6=kx^4 are given by x^2=cy^2, where c is a constant value. Therefore, the correct answer is (C) 2y^2+3x^2=C.

To know more about differential equation, visit:

https://brainly.in/question/4699158

#SPJ11

A stone is thrown from the top of a tall cliff. Its acceleration is a constant −32 ft/sec².
(So A(t)=−32). Its velocity after 2 seconds is −6 ft/sec, and its heght after 2 seconds is 277ft. Find the velocity function.
v(t)=
Find the height function.
h(t)=

Answers

To find the velocity function and the height function of the stone thrown from a tall cliff, we use acceleration, initial velocity, and initial height. The velocity function is v(t) = -32t + 60. The height function is: h(t) = -16t² + 60t + 117.

By integrating the acceleration function, we can obtain the velocity function. Similarly, by integrating the velocity function, we can determine the height function.

Given that the acceleration of the stone is constant at −32 ft/sec², we can integrate this to find the velocity function. Integrating the acceleration, we have:

∫ A(t) dt = ∫ -32 dt

= -32t + C,

where C is the constant of integration.

Using the information that the velocity after 2 seconds is −6 ft/sec, we substitute t = 2 and v(t) = -6 into the velocity function:

-6 = -32(2) + C

C = 60.

Therefore, the velocity function is:

v(t) = -32t + 60.

To find the height function, we integrate the velocity function:

∫ v(t) dt = ∫ (-32t + 60) dt

= -16t² + 60t + D,

where D is the constant of integration.

Using the information that the height after 2 seconds is 277 ft, we substitute t = 2 and h(t) = 277 into the height function:

277 = -16(2)² + 60(2) + D

D = 117.

Therefore, the height function is:

h(t) = -16t² + 60t + 117.

In summary, the velocity function is v(t) = -32t + 60 and the height function is h(t) = -16t² + 60t + 117.

Learn more about constant of integration here:

https://brainly.com/question/29166386

#SPJ11

Suppose that my errors for Months 1−6 are (in order) −10,−2,3,−5,4, and −8. What is my Mean Absolute Deviation over Months 3-6?
a. −1.5
b. 5
c. 8
d. −3

Answers

The Mean Absolute Deviation over Months 3-6 is 5.

Correct answer is option C) 5

To calculate the Mean Absolute Deviation (MAD) over Months 3-6, we need to follow these steps:

Identify the errors for Months 3-6: The errors for Months 3-6 are 3, -5, 4, and -8.

Calculate the absolute value of each error: Taking the absolute value of each error gives us 3, 5, 4, and 8.

Find the sum of the absolute errors: Add up the absolute errors: [tex]3 + 5 + 4 + 8 = 20.[/tex]

Divide the sum by the number of errors: Since there are 4 errors, we divide the sum (20) by 4 to get the average: 20/4 = 5.

Determine the Mean Absolute Deviation: The MAD is the average of the absolute errors, which is 5.

Therefore, the Mean Absolute Deviation over Months 3-6 is 5.

For more questions on Mean

https://brainly.com/question/1136789

#SPJ8

Suppose you are holding a stock and there are three possible outcomes. The good state happens with 20% probability and 18% return. The neutral state happens with 55% probability and 9% return. The bad state happens with 25% probability and -5% return. What is the expected return? What is the standard deviation of return? What is the variance of return?

Answers

The expected return is 0.072 (or 7.2%), the standard deviation is approximately 0.2006 (or 20.06%), and the variance is approximately 0.04024 (or 4.024%).

To calculate the expected return, standard deviation, and variance of the stock, we can use the following formulas:

Expected Return (E(R)):

E(R) = Σ(Probability of State i × Return in State i)

Standard Deviation (σ):

σ = √[Σ(Probability of State i × (Return in State i - Expected Return)^2)]

Variance (Var):

Var = σ^2

Let's calculate these values for the given probabilities and returns:

Expected Return (E(R)):

E(R) = (0.20 × 0.18) + (0.55 × 0.09) + (0.25 × -0.05)

     = 0.036 + 0.0495 - 0.0125

     = 0.072

Standard Deviation (σ):

σ = √[(0.20 × (0.18 - 0.072)^2) + (0.55 × (0.09 - 0.072)^2) + (0.25 × (-0.05 - 0.072)^2)]

  = √[(0.20 × 0.108)^2 + (0.55 × 0.018)^2 + (0.25 × (-0.122)^2)]

  = √[(0.0216) + (0.0005445) + (0.0181)]

  ≈ √0.0402445

  ≈ 0.2006

Variance (Var):

Var = σ^2

   = (0.2006)^2

   ≈ 0.04024

Learn more about standard deviation here: brainly.com/question/475676

#SPJ11

asap
Which of the following statements is True? Tool life \( (T) \) is proportional to the strain hardening coefficient \( (n) \) of the cutting tool, Shear angle in metal cutting is an independent variabl

Answers

The statement "Tool life (T) is proportional to the strain hardening coefficient (n) of the cutting tool" is true.

In metal cutting operations, tool life refers to the duration or number of workpieces that can be machined before a cutting tool becomes ineffective and needs to be replaced or reconditioned. The tool life is influenced by various factors, including the properties of the cutting tool material, cutting conditions, and the workpiece material.

The strain hardening coefficient (n) is a material property that describes the extent to which a material hardens and strengthens when subjected to plastic deformation. It is often quantified using the strain-hardening exponent in the Hollomon equation:

\(\sigma = K \cdot \varepsilon^n\)

where \(\sigma\) is the true stress, \(\varepsilon\) is the true strain, \(K\) is the strength coefficient, and \(n\) is the strain hardening exponent.

In metal cutting, the cutting tool undergoes severe plastic deformation due to the high stresses and strains involved in the cutting process. The strain hardening coefficient (n) of the cutting tool material plays a crucial role in determining its resistance to deformation and wear.

A higher strain hardening coefficient (n) indicates a material that exhibits greater resistance to plastic deformation and wear. Therefore, a cutting tool with a higher strain hardening coefficient (n) is expected to have a longer tool life compared to a cutting tool with a lower strain hardening coefficient.

The shear angle in metal cutting, on the other hand, is not an independent variable but rather a dependent variable that is influenced by various factors such as cutting conditions, tool geometry, and material properties. The shear angle represents the angle between the direction of the cutting force and the direction of the shear plane in metal cutting.

To summarize, the statement "Tool life (T) is proportional to the strain hardening coefficient (n) of the cutting tool" is true, as a higher strain hardening coefficient indicates greater resistance to plastic deformation and wear, leading to an extended tool life. However, the statement "Shear angle in metal cutting is an independent variable" is false, as the shear angle is dependent on various factors involved in the metal cutting process.

Learn more about coefficient at: brainly.com/question/1594145

#SPJ11

Find the derivative of the following function. f(w)=5w⁶+8w⁵+7w
f′(w)=

Answers

The derivative of the function f(w)=5w⁶+8w⁵+7w is f'(w)=30w⁵+40w⁴+7.

To find the derivative of the given function f(w)=5w⁶+8w⁵+7w, we need to apply the power rule of differentiation to each term of the function which states that the derivative of [tex]x^n[/tex] is [tex]nx^{(n-1)}[/tex].

So, f'(w) = d/dw (5w⁶) + d/dw (8w⁵) + d/dw (7w)Using the power rule of differentiation,

we get:f'(w) = 30w⁵ + 40w⁴ + 7

Therefore, the derivative of the function

f(w)=5w⁶+8w⁵+7w is f'(w)=30w⁵+40w⁴+7.

Learn more about derivative here:

https://brainly.com/question/2159625

#SPJ11

oe's Coffee Shop has fresh muffins delivered each morning. Daily demand for muffins is approximately normal with a mean of 2000 and a standard deviation of 150 . Joe pays $0.40 per muffin and sells each muffin for $1.25. Joe and the staff eat any leftovers they can and throw the rest, instead of feeding homeless. What a shame! a) Using a simulation approach, create 1000 random demand numbers (use the Excel function NORMINV(RAND ),2000,150) ) and find the expected profit from the muffins if Joe orders the optimal order quantity. Try two other order quantities to illustrate the change in the expected demand.

Answers

Using the optimal order quantity and two other order quantities, we calculate the profit for each case and find the expected profit by averaging over 1000 simulations.

To find the expected profit from the muffins using a simulation approach, we can generate random demand numbers based on a normal distribution with a mean of 2000 and a standard deviation of 150. We will consider three different order quantities and calculate the profit for each.

Let's consider the optimal order quantity first. To determine the optimal order quantity, we need to maximize profit, which occurs when the order quantity matches the expected demand. In this case, the optimal order quantity is 2000, the mean demand.

Using the Excel function NORMINV(RAND(), 2000, 150), we generate 1000 random demand numbers. For each demand number, we calculate the profit as follows:

Profit = (Selling price - Cost price) * Min(Demand, Order quantity)

The selling price is $1.25 per muffin, and the cost price is $0.40 per muffin. The Min(Demand, Order quantity) ensures that the profit is calculated based on the actual demand up to the order quantity.

We repeat this process for two other order quantities, let's say 1800 and 2200, to observe how the expected profit changes.

After simulating 1000 random demand numbers for each order quantity, we calculate the average profit for each case. The expected profit is the average profit over the 1000 simulations.

By comparing the expected profit for each order quantity, we can identify which order quantity yields the highest expected profit.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

For the function below, find a) the critical numbers; b) the open intervals where the function is increasing; and c) the open intervals where it is decreasing. f(x)=4x3−33x2−36x+3 a) Find the critical number(s). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The critical number(s) is/are (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no critical numbers. b) List any interval(s) on which the function is increasing. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The function is increasing on the interval(s) (Type your answer in interval notation. Simplify your answer. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) B. The function is never increasing. c) List any interval(s) on which the function is decreasing. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The function is decreasing on the interval(s) (Type your answer in interval notation. Simplify your answer. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) B. The function is never decreasing.

Answers

Given function is f(x) = 4x3 − 33x2 − 36x + 3. Now we have to find the critical numbers of the function, the open intervals where the function is increasing, and the open intervals where it is decreasing.

a) Critical numbers of the function is/areAs we know that the critical numbers of the function are those values of the variable at which the derivative of the function becomes zero. The derivative of the given function with respect to x is f'(x) = 12x² - 66x - 36 We know that for the critical number(s), f'(x) = 0Hence, 12x² - 66x - 36 = 0Divide the equation by 6, we get 2x² - 11x - 6 = 0 Factorizing the above equation, we get (2x + 1)(x - 6) = 0By solving above equation, we get the critical numbers are -1/2 and 6.

Therefore, the correct option is (A) the critical number(s) is/are (-1/2,6) or (-1/2 and 6)

b) The open intervals where the function is increasing. To find the intervals of increase of the function f(x), we need to check the sign of the first derivative f'(x) in each interval. Whenever f'(x) > 0 in an interval, the function increases. Therefore, the function is increasing on the interval (-1/2, 6).

Hence, the correct option is (A) the function is increasing on the interval(s) (-1/2, 6).

c) The open intervals where the function is decreasing.To find the intervals of decrease of the function f(x), we need to check the sign of the first derivative f'(x) in each interval. Whenever f'(x) < 0 in an interval, the function decreases. Therefore, the function is decreasing on the intervals (-∞,-1/2) and (6, ∞).

Hence, the correct option is (A) the function is decreasing on the interval(s) (-∞,-1/2) and (6, ∞).

To know more about  critical numbers this:

https://brainly.com/question/31339061

#SPJ11

A company has a plant in Phoenix and a plant in Charleston. The firm is committed to produce a total of 284 units of a product each week. The total weekly cost is given by C(x+y)=3/5​x2+1/5​y2+18x+26y+600, where x is the number of units produced in Phoenix and y is the number of units produced in Charleston, How many units should be produced in each plant to minimize the total weekly cost?

Answers

The number of units that should be produced in Phoenix and Charleston to minimize the total weekly cost are 142 and 142 respectively.

Let's differentiate the cost function C with respect to x and y. Here's the formula:

C(x,y)= 3/5​x² + 1/5​y² + 18x + 26y + 600 To differentiate the formula, we must differentiate each term as follows:

∂C/∂x = (6/5)x + 18∂C/

∂y = (2/5)y + 26We can simplify the resulting equations as follows:

(6/5)x + 18 = 0 ⇒

x = -15(2/5)

y + 26 = 0 ⇒

y = 65/2Note that we are looking for the minimum value of C, and so we have to take the second derivative of the equation. This is the formula:

∂²C/∂x² = 6/5 > 0, which means that the minimum point occurs at

(x,y) = (-15,65/2) which is an absolute minimum. To check that it is a minimum, we can take the second partial derivative. Here's the formula:

∂²C/∂y² = 2/5 > 0Thus, the number of units that should be produced in Phoenix and Charleston to minimize the total weekly cost are 142 and 142 respectively.

To know more about units visit:

https://brainly.com/question/23843246

#SPJ11

Other Questions
The currency drain ratio is 20% of deposit and desired reserve ratio is 5%. Calculate the total increase in money supply due to this open market purchase. Explain the impact of this increase in money supply on money market equilibrium. [35 Marks] b) In the long run money is neutral. Explain this proposition in the context of the Quantity Theory of Money. What is the five-step marketing research approach leading tomarketing actions? Please explain each one . (Word limit: 200words) A purpose of the METAMORPH grid is to help a Christian counselor focus on factors that affect human behavior and emotions. True or false The distribution of corporate contributions reflects how businesses view overall community needs. According to 2014 figures, which of the following receives the largest share of corporate donations?a. educationb.health and social servicesc.culture and the artsd.civic and community projects 1.whats the nomalization?2. how would you describe a condition in which one attributeis dependent on another attribute when neither attribute is part ofthe primary key? Miranda hires you as her CFP professional because she wants help picking the right mutual funds for her 401(k) retirement account. Miranda is age 33 with a relatively low risk tolerance. She would like to retire in 35 years.1)Which fund would be the least appropriate for Miranda?Group of answer choicesInternational fund (emerging)World fund (developed)Investment Grade bond fundU.S. small cap fund2)Which fund would likely be most appropriate for Miranda given her risk tolerance level?Group of answer choicesU.S. energy fundU.S. biotech fundU.S. growth fundU.S. value fund All of the following are found to promote economic growth EXCEPT A enforcement of popperty rights. B high population growth. democracy D protection of patents and copyrights: SHORT ANSWER:1- What are monitors? Describe the typical structure of monitors and explain how are they used to provide solutions to the critical section problem. 2- Explain how monitors protect against mutual excl How did the people react when they realised that they will never be able to learn their language? 1. Vectors A and B have equal magnitudes of 22. The sum of A and B is 26.5j. What is the angle between A and B in degrees?2. a) At a football game, imagine the line of scrimmage is the y-axis. A player, starting at the y-axis, runs 11.5 yards, back (in the x-direction), then 15.0 yards parallel to the y-axis (in the y-direction). He then throws the football straight downfield 50.0 yards in a direction perpendicular to the y-axis (in the +x-direction). What is the magnitude of the displacement (in yards) of the ball?b) What if: The receiver that catches the football travels 65.0 additional yards at an angle of 45.0 counterclockwise from the +x-axis away from the quarterback's position and scores a touchdown. What is the magnitude of the football's total displacement (in yards) from where the quarterback took the ball to the end of the receiver's run? Which fire extinguisher agent is subject to freezing if not kept in a heated area or an antifreeze agent added?Select one:a. Dry chemicalb. Carbon dioxide (CO2)c. Waterd. Foam What stable nucleus has approximately half the radius of a 23892U nucleus? (a) 31 15P (b) 111 48Cd (c) 64 30Zn (d) 141 56Ba (e)92 36Kr Question 9 5 points The temperature in space is about 2.453 K. What would the emmisivity of a 5kg bowling ball (radius 7.46cm) if it was - 11.3 C and had a power loss of 0.64 W? Save Araw An amplifier has an unloaded voltage gain of 500, an input resistance of 250k and an output resistance of 25. The amplifier is connected to a voltage source of 25mV which has an output resistance of 4K2, and a load resistor of 175 i)What will be the value of the output voltage? ii)What is the gain of the amplifier? A fly and a spider want to get from point \( A \) to point \( B \) in the room shown below. The room is shaped like a cube with a 9 -foot by 9 -foot square floor and a 9-foot ceiling. What is the shor The fuel cost in $/hr of 3 thermal plants of power system are; F1=200+7.0PG1+0.008PG1^2, F2=180+6.3PG2+0.009PG2^2, F3=140+6.3PG3+0.007PG3^2 That outputs are subjects to 10MW 85MW 10MW 80MW 10MW 70MW Assume real power loss is given by the simplify power expression P(p.u)=0.00218PG1^2+0.0228PG2^2+0.0779PG3^2,Where the loss coefficient are specify in p.u on a 100MVA base. Determine the optimal dispatch of the generation when the total system load is 150MW A lens of focal length 10.0 cm is used to form an image. The image is 37.2 cm away from the lens.Where does the object need to be placed to form this image? The Product Owner must release each Increment to production.A. When it makes sense.B. To make sure the Development Team is done every Sprint.C. Whenever the product is free of defects.D. Without exception. Which of the following Acts gives employees the legal right to examine personnel files and letters of reference?a. Civil Rights Act, Title VIIb. Worker Adjustment and Retraining Notification Actc. Privacy Actd. Consolidated Omnibus Reconciliation Act which of the following is added to or subtracted from national income to arrive at personal income?