There is 20 million m³ of water in a lake at the beginning of a month. Rainfall in this month is a random variable with an average of 1 million m³ and a standard deviation of 0.5 million m³. The monthly water flow entering the lake is also a random variable, with an average of 8 million m³ and a standard deviation of 2 million m³. Average monthly evaporation is 3 million m³ and standard deviation is 1 million m³. 10 million m³ of water will be drawn from the lake this month. a Calculate the mean and standard deviation of the water volume in the lake at the end of the month. b Assuming that all random variables in the problem are normally distributed, calculate the probability that the end-of-month volume will remain greater than 18 million m³.

Answers

Answer 1

a) To calculate the mean and standard deviation of the water volume in the lake at the end of the month, we need to consider the random variables involved and their properties.

Let's define:

W1: Rainfall in the month

W2: Monthly water flow entering the lake

E: Average monthly evaporation

X: Water volume drawn from the lake

V: Water volume in the lake at the end of the month

The mean and standard deviation of each random variable are given as follows:

Mean of W1 = 1 million m³

Standard deviation of W1 = 0.5 million m³

Mean of W2 = 8 million m³

Standard deviation of W2 = 2 million m³

Mean of E = 3 million m³

Standard deviation of E = 1 million m³

Volume drawn X = 10 million m³

The water volume in the lake at the end of the month can be calculated as:

V = 20 + W1 + W2 - E - X

Now, let's calculate the mean and standard deviation of V.

Mean of V:

μ(V) = μ(20 + W1 + W2 - E - X)

= μ(20) + μ(W1) + μ(W2) - μ(E) - μ(X)

= 20 + 1 + 8 - 3 - 10

= 16 million m³

Standard deviation of V:

σ(V) = sqrt(σ(20 + W1 + W2 - E - X)^2)

= sqrt(σ(20)^2 + σ(W1)^2 + σ(W2)^2 + σ(E)^2 + σ(X)^2)

= sqrt(0^2 + 0.5^2 + 2^2 + 1^2 + 0^2)

= sqrt(0.25 + 4 + 1)

= sqrt(5.25)

≈ 2.29 million m³

Therefore, the mean of the water volume in the lake at the end of the month is approximately 16 million m³, and the standard deviation is approximately 2.29 million m³.

b) To calculate the probability that the end-of-month volume will remain greater than 18 million m³, we need to use the properties of normally distributed random variables.

Let Z be a standard normal random variable (mean = 0, standard deviation = 1). We can transform the water volume V into a standard normal variable Z using the formula:

Z = (V - μ(V)) / σ(V)

Substituting the values, we have:

Z = (18 - 16) / 2.29

= 0.87

Now, we need to calculate the probability P(Z > 0.87) using the standard normal distribution table or a calculator. From the table, we find that P(Z > 0.87) is approximately 0.1922.

Therefore, the probability that the end-of-month volume will remain greater than 18 million m³ is approximately 0.1922 or 19.22%.

To know more about Probability visit-

brainly.com/question/31828911

#SPJ11


Related Questions








(8) (Binomial Probability) Now suppose you pick a number at random from 1 to 50 seven times. What is the probability that half of the numbers you pick are prime? You need to show your work for this on

Answers

To calculate the probability that half of the numbers picked at random from 1 to 50 are prime, we need to determine the probability of selecting prime numbers and non-prime numbers in equal numbers.

First, let's find the number of prime numbers between 1 and 50. The prime numbers in this range are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47. There are 15 prime numbers in total. Next, let's calculate the probability of selecting a prime number in one trial. Since there are 15 prime numbers out of 50 total numbers, the probability of selecting a prime number is 15/50 = 3/10. Now, we can use the binomial probability formula to calculate the probability of exactly half of the seven numbers being prime:

P(X = k) = (nCk) * [tex]p^k[/tex]* [tex](1 - p)^(n - k)[/tex]

where:

n is the number of trials (7),

k is the number of successes (3 since half of 7 is 3),

p is the probability of success (3/10).

[tex]P(X = 3) = (7C3) (3/10)^3 (1 - 3/10)^{(7 - 3)}[/tex]

Calculating the expression:

[tex]P(X = 3) = (35) * (0.3)^3 * (0.7)^4[/tex]

≈ 0.2508

Therefore, the probability that half of the numbers selected at random from 1 to 50 are prime is approximately 0.2508, or 25.08% rounded to two decimal places.

Learn more about binomial probability here:

https://brainly.com/question/12474772

#SPJ11

Three squares with areas of 252 cm², 175 cm², and 112 cm² are displayed on a computer monitor. What is the sum (in radical form) of the perimeters of these squares? ...

The sum of the perimeters is __ cm.
(Simplify your answer. Type an exact answer, using radicals as needed.)

Answers

The sum of the perimeters of the squares with areas 252 cm², 175 cm², and 112 cm² is __ cm (in radical form).
We get the sum of perimeter in radical form is 158.72 cm.

To find the perimeters of the squares, we need to determine the length of their sides. Since the area of a square is equal to the square of its side length, we can find the side lengths of the squares by taking the square root of their respective areas.

For the square with an area of 252 cm², the side length is √252 cm. Similarly, the side lengths of the squares with areas 175 cm² and 112 cm² are √175 cm and √112 cm, respectively.

The perimeter of a square is four times its side length, so the perimeters of the squares are 4√252 cm, 4√175 cm, and 4√112 cm.

we multiply the side length by 4 for each square and add them up: (4 * 15.87) + (4 * 13.23) + (4 * 10.58) = 63.48 + 52.92 + 42.32 = 158.72 cm.



Learn more about Perimeter click here :brainly.com/question/345835

#SPJ11

Finding A Value. Solve For A In The Triple Integral. Ƒ³0 Ƒ3 0-ª-y² ∫4 0-x-y² Dzdxdy = 14 /15

Answers

The value of A in the triple integral ∫∫∫ Ƒ dV = 14/15 is A = -15(14/15) / (16y+64y³/3).

To find the value of A in the triple integral ∫∫∫ Ƒ dV, where the limits of integration are given, and the result is equal to 14/15, we need to evaluate the integral and solve for A.

Let's compute the given triple integral step by step. We have ∫∫∫ Ƒ dV = ∫[0 to 4] ∫[0 to x] ∫[0 to -x-y²] Adzdxdy. Integrating with respect to z first, we obtain ∫[0 to 4] ∫[0 to x] -A(x+y²) dydx. Integrating with respect to y, we have ∫[0 to 4] [-A(xy+y³/3)] dx. Finally, integrating with respect to x gives [-A(x²y+xy³/3)] evaluated from 0 to 4.

Evaluating the upper limit, we get [-A(16y+64y³/3)]. Plugging in the lower limit, we have [-A(0+0)] = 0. Thus, the result of the triple integral is [-A(16y+64y³/3)]. Setting the result equal to 14/15, we have [-A(16y+64y³/3)] = 14/15. Rearranging the equation, we get -A(16y+64y³/3) = 14/15.

To solve for A, we divide both sides of the equation by (-16y-64y³/3), resulting in A = -15(14/15) / (16y+64y³/3). Therefore, the value of A in the triple integral ∫∫∫ Ƒ dV = 14/15 is A = -15(14/15) / (16y+64y³/3).

To learn more about triple integral click here:

brainly.com/question/2289273

#SPJ11

A fan blade rotates with angular velocity given by ωz(t)= γ − β
t2.
Part C If y = 4.65 rad/s and ß= 0.835 rad/s³, calculate the average angular acceleration Cav-z for the time interval t = 0 to t = 3.00 s. Express your answer in radians per second squared. 15| ΑΣ�

Answers

Average angular acceleration Cav-z for the time interval t = 0 to t = 3.00 s is -0.2266 rad/s².

Given data:ωz(t) = γ - βt² = -βt² + γWhere, β = 0.835 rad/s³y = ωz(t) = 4.65 rad/s

To find:Average angular acceleration Cav-z for the time interval t = 0 to t = 3.00 s.

Average acceleration formula is given as:Cav-z = Δω/Δt

We can calculate Δω as follows:Δω = ωf - ωi

Where,ωf = final angular velocityωi = initial angular velocity

Since the time interval is given from t = 0 to t = 3 s, initial angular velocity is:ωi = ωz(0) = γ = constant = 5.33 rad/s

Final angular velocity is given as:ωf = ωz(t) = 4.65 rad/sΔω = ωf - ωi = 4.65 - 5.33 = -0.68 rad/s

Now, we can calculate Δt = 3 - 0 = 3 s

Therefore, the average angular acceleration Cav-z is:Cav-z = Δω/Δt= -0.68/3= -0.2266 rad/s²

Answer:Average angular acceleration Cav-z for the time interval t = 0 to t = 3.00 s is -0.2266 rad/s².

Know more about angular acceleration here,

https://brainly.com/question/30237820

#SPJ11

Create a quadratic model for the data shown in the table x -1 1 2 5
y -1 -1 2 20

Answers

The quadratic model for the given data is y = 2x^2 + x - 1.

To create a quadratic model, we aim to find a quadratic equation of the form y = ax^2 + bx + c that best fits the given data points (x, y).

We have four data points: (-1, -1), (1, -1), (2, 2), and (5, 20). Substituting these values into the quadratic equation, we obtain a system of four equations:

a(-1)^2 + b(-1) + c = -1

a(1)^2 + b(1) + c = -1

a(2)^2 + b(2) + c = 2

a(5)^2 + b(5) + c = 20

Simplifying these equations, we get:

a - b + c = -1

a + b + c = -1

4a + 2b + c = 2

25a + 5b + c = 20

Solving this system of equations, we find a = 2, b = 1, and c = -1. Therefore, the quadratic model that best fits the given data is y = 2x^2 + x - 1.

Learn more about quadratic model here: brainly.com/question/25764806

#SPJ11




Find the surface area of revolution about the y-axis of y = 3 - 3x² over the interval 0 ≤ x ≤ 1

Answers

We need to find the surface area of revolution about the y-axis of y = 3 - 3x² over the interval 0 ≤ x ≤ 1.To find the surface area of revolution about the y-axis, we use the following formula;SA = ∫2πy dswhere ds = sqrt[1+ (dy/dx)²] dx is

the arc length element.The given function is y = 3 - 3x² over the interval 0 ≤ x ≤ 1Let's calculate dy/dx first;dy/dx = -6xLet's calculate the arc length element;ds = sqrt[1 + (dy/dx)²]

dx= sqrt[1 + (-6x)²] dxLet's calculate the surface area now;

SA = ∫2πy

ds= ∫₀¹2π(3 - 3x²) sqrt[1 + (-6x)²] dxIntegrating this equation by substitution;u = -6x and

du/dx = -6 dxSo,

dx = -1/6 du and

x = -u/6 when

x = 0,

u = 0 when

x = 1,

u = -6So,

SA = ∫₀⁻⁶π(3 - 3(u/6)²) sqrt[1 + u²] (-1/6)

du= (-π/2) ∫₀⁶(u² - 9) sqrt[1 + u²]

du= (-π/2)[∫₀⁶u² sqrt[1 + u²] du - 9∫₀⁶sqrt[1 + u²] du]Let's evaluate the two integrals separately;

I₁ = ∫₀⁶u² sqrt[1 +

u²] duWe use the substitution method;u = sinhθ and du = coshθ dθWhen x = 0, sinhθ = 0, θ = 0When x = 6, sinhθ = 6, θ ≈ 2.481Let's substitute;s = sinhθI₁ = ∫₀².481s² cosh³θ ds= ∫₀².481s² (cosh²θ + 1) coshθ ds= ∫₀².481s² cosh²θ coshθ ds + ∫₀².481s² coshθ dsNow we integrate by parts;dv = coshθ ds, v = sinhθI₁ = [s² sinhθ coshθ - ∫2s cosh²θ ds]₀².481 + ∫₀².481s² coshθ dsWe can solve the second integral by making another substitution;u = sinhθ, du = coshθ dθSo,θ = sinh⁻¹u and I₁ = [(u² - 1) sqrt[u² + 1] - u]₀⁶I₁ = [(36 - 1) sqrt[36 + 1] - 6] - [(0 - 1) sqrt[0 + 1] - 0]= 53√37 - 35We need to evaluate the second integral now;I₂ = ∫₀⁶sqrt[1 + u²] duWe use the substitution method;u = tanhθ, du = sech²θ dθWhen x = 0, tanhθ = 0, θ = 0When x = 6, tanhθ = 1, θ ≈ 0.881Let's substitute;t = tanhθI₂ = ∫₀⁰.881sqrt[1 + t²] sech²θ dθ= ∫₀⁰.881sqrt[1 + t²] dt= [t sqrt[1 + t²] + ln(t + sqrt[1 + t²])]₀⁰.881= ln(1 + √2) + √2Now,SA = (-π/2)[53√37 - 35 - 9(ln(1 + √2) + √2)]= 104.869We get that the surface area of revolution about the y-axis of y = 3 - 3x² over the interval 0 ≤ x ≤ 1 is 104.869. Therefore, the correct answer is 104.869.

To know more about prism visit:

https://brainly.com/question/27914026

#SPJ11

Assume the appropriate discount rate for the following cash flows is 9.89 percent per year. Year Cash Flow $2,200 2,600 4,800 5,400 4 What is the present value of the cash flows? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g, 32.16.)

Answers

The present value of the cash flows is approximately $11,754.04.

To calculate the present value of the cash flows, we need to discount each cash flow to its present value using the appropriate discount rate. The present value (PV) can be calculated using the formula:

PV = CF1 / (1 + r)^1 + CF2 / (1 + r)^2 + CF3 / (1 + r)^3 + ... + CFn / (1 + r)^n

where CF is the cash flow and r is the discount rate.

Using the given discount rate of 9.89 percent per year, we can calculate the present value as follows:

PV = 2,200 / (1 + 0.0989)^1 + 2,600 / (1 + 0.0989)^2 + 4,800 / (1 + 0.0989)^3 + 5,400 / (1 + 0.0989)^4

Calculating each term and summing them up:

PV = 2,200 / 1.0989 + 2,600 / 1.0989^2 + 4,800 / 1.0989^3 + 5,400 / 1.0989^4

PV ≈ 1,999.64 + 2,271.89 + 3,622.82 + 3,860.69

PV ≈ 11,754.04

know more about present value here:

https://brainly.com/question/28304447

#SPJ11

Suppose that X has density fun given by 8x for 0 ≤ x ≤ 1/2 f(x) = 0 elsewhere If P(x

Answers

The value of Q₁ that satisfies probability P(Q₁) = 0.25 is Q₁ = 0.25.

Given that,

that P(Q₁) = 0.25.

To find Q₁, we have to find the value of x which satisfies this equation.

The definition of P(Q₁). P(Q₁) is the probability that the random variable Q takes on a value less than or equal to Q₁.

Now, we can use the fact that f(x) = 8x for 0 ≤ x ≤ 1/2.

We know that the integral of f(x) from 0 to 1/2 is 1,

which means that the total area under the curve is 1.

So, to find P(Q₁), we need to integrate f(x) from 0 to Q₁. We get,

⇒ P(Q₁) = [tex]\int\limits^{Q_1}_0 {8x} \, dx[/tex]

⇒ P(Q₁) = 4Q₁²

Now we can set this equal to 0.25 and solve for Q₁,

⇒ 4Q₁² = 0.25

⇒   Q₁² = 0.0625

⇒     Q₁ = ±0.25

But we know that Q₁ has to be non-negative, since it represents a probability.

Therefore, Q₁ = 0.25.

So the value of Q₁ that satisfies P(Q₁) = 0.25 is Q₁ = 0.25.

Learn more about the probability visit:

https://brainly.com/question/13604758

#SPJ4

Use the definition of the derivative to find the velocity of the position of a particle given by s(t) = 2t²-t at t = 3, where s(t) is measured in meters and t is measured in seconds.

Answers

The definition of the derivative of a function s(t) is given by the limit:`f '(a) = lim_(h -> 0) (f(a + h) - f(a))/h`where `h` is the

change in the value of the variable `t`. Now, given that `s(t) = 2t² - t` is the position of the particle and we are asked to find the velocity of the particle, we need to differentiate `s(t)` with respect to `t` to obtain the velocity of the particle.`

s(t) = 2t² - t`Differentiating both sides with respect to `t`, we get:`

s'(t) = (d/dt)(2t² - t) = d/dt (2t²) - d/dt(t) = 4t - 1`Therefore, the velocity of the particle is given by the derivative of the position function

`s(t)`. At `t = 3`, we have:`

s'(3) = 4(3) - 1 = 11`Therefore, the velocity of the particle at

`t = 3` is `11 m/s`.

To know more about decimal visit:

https://brainly.com/question/29765582

#SPJ11

A text message plan costs $9 per month plus $0.45 per text. Find the monthly cost for x text messages.
The monthly cost of x messages is __ dollars. (Use integers or decimals for any numbers in the expression.)

Answers

The monthly cost for x text messages is given by the expression Cost = $9 + ($0.45 * x) dollars.

The monthly cost for x text messages is composed of two parts: a fixed cost and a variable cost. The fixed cost is a constant amount that doesn't change based on the number of text messages. In this case, the fixed cost is $9 per month.

The variable cost, on the other hand, is dependent on the number of text messages, x. For each text message sent, there is an additional cost. Here, the variable cost is $0.45 per text message.

To calculate the variable cost, we multiply the number of text messages, x, by the cost per text message ($0.45). This gives us the total variable cost for x text messages. Finally, we add the fixed cost and the variable cost together to obtain the monthly cost for x text messages. The expression for the monthly cost is given by Cost = $9 + ($0.45 * x).

For example, if x is 100 text messages, the variable cost would be ($0.45 * 100) = $45. Adding this to the fixed cost of $9, the total monthly cost would be $9 + $45 = $54.

to learn more about variable cost, click: brainly.com/question/23688502

#SPJ11

BBD Homework: Module 4 - Lab Homework Question 2, 6.5.16 HW Score: 30%, 1.5 of 5 points O Points: 0 of 1 Save Use the factorization A = QR to find the least-squares solution of Ax = b. X=0 (Simplify your answer.) 1 NI 1 2 2 - 1 1 2 2 - 1 NI 4 2 A= = 2 3 3 1 04 2 2 لیا N- 3 NI 2 NI 2 NI - 1 6 b 4 5

Answers

The least-squares solution of Ax = b is:

x = -2/3, x=8/3 , x= -4.

Therefore, X = 0 is not the least-squares solution of Ax = b.

To find the least-squares solution of Ax = b using the factorization A = QR, we need to follow these steps:

Step 1: Factorize A into QR, where Q is an orthogonal matrix and R is an upper triangular matrix.

Given A:

1 1 1

2 2 -1

1 2 2

3 3 1

4 2 2

We can find Q and R using the QR factorization algorithm (e.g., Gram-Schmidt process, Householder transformation, or Givens rotations). However, since this is a simplified answer and we are using a language model, let's assume the factorization has already been done, and we have Q and R:

Q = 1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

R = 4 4 2

0 3 2

0 0 -1

Step 2: Solve the system Rx = [tex]Q^{T}[/tex]b for x using back substitution.

Since Q is an orthogonal matrix, [tex]Q^{T}[/tex] is its transpose, and b is the given vector:

b = 4

5

6

We need to multiply [tex]Q^{T}[/tex] with b:

[tex]Q^{T}[/tex]b = (14) + (05) + (06) = 4

So the system becomes:

R×x = 4

Now we can solve this system using back substitution:

-1x3 = 4

3x2 + 2x3 = 0

4x1 + 4x2 + 2x3 = 0

From the first equation, we can solve for x3:

x3 = -4

Substituting x3 into the second equation:

3x2 + 2(-4) = 0

3x2 - 8 = 0

3x2 = 8

x2 = 8/3

Substituting x3 and x2 into the third equation:

4x1 + 4(8/3) + 2×(-4) = 0

4x1 + 32/3 - 8 = 0

4x1 + 32/3 - 24/3 = 0

4x1 + 8/3 = 0

4x1 = -8/3

x1 = -2/3

So the least-squares solution of Ax = b is:

x = -2/3

8/3

-4

Therefore, X = 0 is not the least-squares solution of Ax = b.

Learn more about orthogonal matrix here:

https://brainly.com/question/31053015

#SPJ11

Suppose parametric equations for the line segment between (0,7) and (2,5) have the form: {x(t). = a + bt {y(t): = c + dt If the parametric curve starts at (0, 7) when t = 0 and ends at (2, -5) at t = 1, then find a, b, c, and d.
a = b = c = d =

Answers

The coefficients are: a = 0, b = 2, c = 7, d = -12. the parametric equations for the line segment between (0,7) and (2,5) are: x(t) = 2t, y(t) = 7 - 12t

We can use the given information to set up a system of equations to solve for the coefficients a, b, c, and d.

Since the parametric curve starts at (0, 7) when t = 0, we know that:

x(0) = a + b(0) = a = 0

y(0) = c + d(0) = c = 7

So a = 0 and c = 7.

Similarly, since the parametric curve ends at (2, -5) when t = 1, we know that:

x(1) = a + b(1) = a + b = 2

y(1) = c + d(1) = c + d = -5

So a + b = 2 and c + d = -5.

We also know that the line segment goes through the point (0, 7) and (2, 5), so we can set up two more equations based on these points:

x(0) = 0 = a + b(0) = a

y(0) = 7 = c + d(0) = c

x(1) = 2 = a + b(1)

y(1) = -5 = c + d(1)

Substituting a = 0 and c = 7 from the earlier equations, we get:

b = 2 / 1 =2, since a + b = 2 and a = 0

d = (-5 - c) / 1 = (-5 - 7) / 1 = -12

Therefore, the coefficients are:

a = 0

b = 2

c = 7

d = -12

So the parametric equations for the line segment between (0,7) and (2,5) are:

x(t) = 2t

y(t) = 7 - 12t

We can check that these equations satisfy the given conditions:

When t = 0, x(0) = 2(0) = 0 and y(0) = 7 - 12(0) = 7, so the curve starts at (0, 7). When t = 1, x(1) = 2(1) = 2 and y(1) = 7 - 12(1) = -5, so the curve ends at (2, -5).

to learn more about parametric curve, click: brainly.com/question/15585522

#SPJ11

Given the following system of two equations: 4.0x + 7.5y = 3 2.5x + 8.0y =9 Find y. Since D2L is limited to one answer per question, there is no way to enter both x and y.

Answers

The following system of two equations: 4.0x + 7.5y = 3 2.5x + 8.0y =9, The value of y in the given system of equations is y = 0.8.

To solve the system of equations, we can use the method of substitution or elimination. Here, we'll use the method of elimination:

Multiply the first equation by 2.0 and the second equation by -4.0 to eliminate the x term:

(8.0x + 15.0y = 6)

- (10.0x + 32.0y = -36)

This simplifies to: -17.0y = -42

Dividing both sides of the equation by -17.0, we get: y = 42/17 ≈ 0.8

Therefore, the value of y in the given system of equations is y = 0.8.

Learn more about system of equations here: brainly.com/question/9351049

#SPJ11

1 of 2 12. Find an equation of the line whose slope is -5 and containing the point (1/2,-1/3) answer in Slope-Intercept Form. 13. Find an equation of the line whose slope is 8 and y-intercept is (0, 6). -3). Put your

Answers

Equation: y = -5x + 13/6 (slope-intercept form).

Equation: y = 8x + 6 (slope-intercept form).



The equation of the line with slope -5 and passing through the point (1/2, -1/3) can be found using the point-slope form of a line. The formula is y - y1 = m(x - x1), where (x1, y1) represents the given point and m represents the slope. Plugging in the values, we get y - (-1/3) = -5(x - 1/2), which simplifies to y + 1/3 = -5x + 5/2. Rearranging the equation in slope-intercept form (y = mx + b), we have y = -5x + 5/2 - 1/3, which further simplifies to y = -5x + 13/6.

The equation of the line with slope 8 and y-intercept (0, 6) can be written directly in slope-intercept form (y = mx + b). Plugging in the values, we get y = 8x + 6. Here, the slope (m) is 8, which represents the rate at which y changes with respect to x. The y-intercept (0, 6) is the point where the line crosses the y-axis, and its y-coordinate is 6. Therefore, the equation y = 8x + 6 represents a line with a slope of 8 and a y-intercept of 6. The slope indicates that for every unit increase in x, y will increase by 8 units. The y-intercept shows that when x is 0, the value of y is 6.

To learn more about intercept click here

brainly.com/question/14886566

#SPJ11

complete question

Find an equation of the line whose slope is -5 and containing the point (1/2,-1/3) answer in Slope-Intercept Form. 13. Find an equation of the line whose slope is 8 and y-intercept is (0, 6). -3).

Given a normal distribution with μ = 101 and o=20, and given you select a sample of n = 16, complete parts (a) through (d). a. What is the probability that X is less than 95? P(X

Answers

Answer: Hope it helps!!!

Step-by-step explanation:To solve this problem, we need to standardize the value of X using the formula:

z = (X - μ) / (σ / sqrt(n))

where X is the sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size.

a) To find the probability that X is less than 95, we first need to standardize the value of 95:

z = (95 - 101) / (20 / sqrt(16)) = -1.6

We can then use a standard normal distribution table or calculator to find the probability:

P(X < 95) = P(z < -1.6) = 0.0548

Therefore, the probability that X is less than 95 is 0.0548 or about 5.48%.

b) To find the probability that X is between 95 and 105, we need to standardize the values of 95 and 105:

z1 = (95 - 101) / (20 / sqrt(16)) = -1.6

z2 = (105 - 101) / (20 / sqrt(16)) = 1.6

We can then use a standard normal distribution table or calculator to find the probability:

P(95 < X < 105) = P(-1.6 < z < 1.6) = 0.8664 - 0.0548 = 0.8116

Therefore, the probability that X is between 95 and 105 is 0.8116 or about 81.16%.

c) To find the value of X such that the probability of X being less than that value is 0.05, we need to use the inverse standard normal distribution:

z = invNorm(0.05) = -1.645

We can then solve for X:

-1.645 = (X - 101) / (20 / sqrt(16))

X - 101 = -1.645 * (20 / sqrt(16))

X = 101 - 2.06

X = 98.94

Therefore, the value of X such that the probability of X being less than that value is 0.05 is 98.94.

d) To find the value of X such that the probability of X being greater than that value is 0.10, we need to use the inverse standard normal distribution:

z = invNorm(0.10) = -1.28

We can then solve for X:

-1.28 = (X - 101) / (20 / sqrt(16))

X - 101 = -1.28 * (20 / sqrt(16))

X = 101 + 1.61

X = 102.61

Therefore, the value of X such that the probability of X being greater than that value is 0.10 is 102.61.

Function f dan a defined on on [-1, 6], and f : [-1, 6] → R, a : [-1, 6] → R. f(x) and g(x) are defined like this: f(x) = {2,-1 ≤ x < 2 {1, 2 ≤ x ≤ 3
{4, 3 < x ≤ 6
a(x) = {2, -1 ≤ x < 2 1/2
{x + 1, 2 1/2 ≤ x ≤ 6
Is f ∈ R (a)?, if yes please find the integral by using integral Riemann-Stieltjes!

Answers

To determine if f ∈ R(a), we can use the Riemann-Stieltjes integral. The Riemann-Stieltjes integral is a generalization of the Riemann integral that allows us to integrate functions with respect to other functions. In this case, we are integrating f with respect to a.

The Riemann-Stieltjes integral is defined as follows:

∫_a^b f(x) d a(x) = lim_n->infty sum_i=1^n f(xi) (a(xi+1) - a(xi))

where xi is the points in the partition of [a, b], and f(xi) is the value of f at xi.

In this case, we can partition [-1, 6] into three subintervals: [-1, 2], [2, 3], and [3, 6]. The values of xi in each subinterval are as follows:

[-1, 2]: xi = -1, 1

[2, 3]: xi = 2, 2.5

[3, 6]: xi = 3, 4.5, 6

The values of f(xi) in each subinterval are as follows:

[-1, 2]: f(xi) = 2

[2, 3]: f(xi) = 1

[3, 6]: f(xi) = 4

The values of a(xi+1) - a(xi) in each subinterval are as follows:

[-1, 2]: a(xi+1) - a(xi) = 0

[2, 3]: a(xi+1) - a(xi) = 1/2

[3, 6]: a(xi+1) - a(xi) = 2

Now we can substitute these values into the Riemann-Stieltjes integral formula:

∫_{-1}^6 f(x) d a(x) = lim_n->infty sum_i=1^n f(xi) (a(xi+1) - a(xi))

= lim_n->infty (2(0) + 1(1/2) + 4(2))

= lim_n->infty (1/2 + 8)

= 9

Therefore, f ∈ R(a), and the value of the integral is 9.

Learn more about integrated functions here:- brainly.com/question/21011607

#SPJ11

A certain treatment facility claims that its patients are cured after 45 days. A study of 150 patients showed that they, on average, had to stay for 56 days there, with a standard deviation of 15 days. At a=0.01, can we claim that the mean number of days is actually higher than 45? Test using a hypothesis test. His t= 4.) H. Conclusion: P-value:

Answers

In conducting the hypothesis test, we compare the sample mean to the hypothesized mean using a t-test. The null hypothesis (H0) states that the mean number of days is equal to 45, while the alternative hypothesis (Ha) states that the mean number of days is greater than 45.

Given that the sample size is 150, the sample mean is 56 days, and the standard deviation is 15 days, we can calculate the t-value. The formula for the t-value is t = (sample mean - hypothesized mean) / (sample standard deviation / √sample size). Plugging in the values, we get t = (56 - 45) / (15 / √150) = 4.

Next, we compare the calculated t-value to the critical t-value at a significance level of 0.01 and the appropriate degrees of freedom. Since the sample size is large (150), we can use the normal distribution approximation. The critical t-value for a one-tailed test with a significance level of 0.01 is approximately 2.33.

Since the calculated t-value (4) is greater than the critical t-value (2.33), we reject the null hypothesis. Therefore, at a significance level of 0.01, we can claim that the mean number of days for patients in the treatment facility is actually higher than 45. The P-value is less than 0.01, indicating strong evidence against the null hypothesis.

Learn more about statistics here:

https://brainly.com/question/15980493

#SPJ11








Find the unit tangent vector to the curve at the specified value of the parameter. r(t) = t³i+ 6t²j, t = 2 T(2) =

Answers

Answer:

  (√5/5)i +(2√5/5)j

Step-by-step explanation:

You want the unit vector in the direction tangent to the given curve at t=2.

r(t) = t³i +6t²j

Derivative

The derivative is ...

  r'(t) = 3t²i +12tj

At t=2, this is ...

  r'(2) = 3·4i +12·2j = 12i +24j

The magnitude of this vector is |12i +24j| = 12√5, so the unit vector is ...

  T(2) = (1/√5)i +(2/√5)j = (√5/5)i +(2√5/5)j

<95141404393>

A car travelling as fast it can , may move at 40 km per hour. How long does the car take to travel 70 km?​

Answers

The car will take 1 hour and 45 minutes (or 105 minutes) to travel a distance of 70 km at its maximum speed of 40 km/h.

The following calculation can be used to calculate how long it will take the car to travel 70 km:

Time = Speed / Distance

Given that the car's top speed is 40 km/h, we may enter the values into the formula as follows:

Time equals 70 km / 40 km/h

By condensing this phrase, we discover:

Duration: 1.75 hours

Thus, driving the car at its top speed for 70 kilometres will take 1.75 hours.

Since there are 60 minutes in an hour, we may multiply this time by 60 to get minutes:

1.75 hours times 60 minutes is one hour.

Duration: 105 minutes

It's vital to remember that this calculation takes the assumption that the speed will remain constant throughout the entire trip and does not take into consideration variables like traffic, road conditions, or any stops.

for more such questions on speed

https://brainly.com/question/26046491

#SPJ8

toss two dice. predict how many times in 60 tosses you will roll an odd number and a 6.

Answers

We can predict that in 60 tosses of two dice, we will roll an odd number and a 6 about 5 times.

To predict how many times in 60 tosses you will roll an odd number and a 6 when tossing two dice, we need to first determine the probability of rolling an odd number and a 6 with one toss of a die, and then use this probability to calculate the expected number of times this outcome will occur in 60 tosses.

Let P(A) be the probability of rolling an odd number, which is 3/6 since there are three odd numbers (1, 3, 5) out of six possible outcomes when rolling a die.Let P(B) be the probability of rolling a 6, which is 1/6 since there is only one 6 out of six possible outcomes when rolling a die.

The probability of rolling an odd number and a 6 on one toss of a die is the probability of both events happening, which is P(A) × P(B) = (3/6) × (1/6) = 1/12.

To find the expected number of times this outcome will occur in 60 tosses, we multiply the probability of the outcome occurring on one toss by the number of tosses:Expected number of times = Probability of outcome × Number of tosses Expected number of times = (1/12) × 60 = 5.

Therefore, we can predict that in 60 tosses of two dice, we will roll an odd number and a 6 about 5 times.

For more such questions on tosses, click on:

https://brainly.com/question/31619715

#SPJ8

The probability of a type I error depends on the significance level of the test.

Group of answer choices

True

False

Answers

True. The probability of a Type I error is directly related to the significance level of a statistical test.

The significance level, denoted by α, is the threshold at which we reject the null hypothesis. If we set a higher significance level, such as α = 0.10, it means we are more willing to reject the null hypothesis and accept an alternative hypothesis, increasing the chance of making a Type I error. On the other hand, if we set a lower significance level, such as α = 0.01, it reduces the probability of Type I errors, as we require stronger evidence to reject the null hypothesis.

In summary, the significance level determines the probability of making a Type I error, with a higher significance level leading to a higher probability of Type I error, and a lower significance level reducing the probability of Type I error.

Know more about probability here:

https://brainly.com/question/31828911

#SPJ11

Calculate the 99%.confidence interval for the difference (mu1-mu2) of two population means given the following sampling results. Population 1: sample size=12 sample mean = 11.82, sample standard deviation = 3.27. Population 2: sample size 18, sample mean - 10.07, sample standard deviation - 1.78. Your answer: -0.99

Answers

The 99% confidence interval for the difference (μ1 - μ2) of the two population means, based on the provided sample data, is approximately (-1.084, 3.584).

To calculate the 99% confidence interval for the difference (μ1 - μ2) of two population means, we can use the following formula:

Confidence Interval = (x1 - x2) ± Z * √((s1^2 / n1) + (s2^2 / n2))

Where:

x1 and x2 are the sample means of the two populations,

s1 and s2 are the sample standard deviations of the two populations,

n1 and n2 are the sample sizes of the two populations, and

Z is the critical value corresponding to the desired confidence level.

Since the sample sizes are relatively small, we can use the t-distribution instead of the normal distribution. For a 99% confidence level, the critical value can be obtained from the t-distribution table or using software. For a two-tailed test, the critical value is approximately 2.898.

Plugging in the values into the formula, we have:

Confidence Interval = (11.82 - 10.07) ± 2.898 * √((3.27^2 / 12) + (1.78^2 / 18))

Calculating the values:

Confidence Interval = 1.75 ± 2.898 * √(0.897 + 0.173)

Simplifying:

Confidence Interval = 1.75 ± 2.898 * √1.07

Calculating the square root:

Confidence Interval = 1.75 ± 2.898 * 1.034

Calculating the product:

Confidence Interval = 1.75 ± 2.834

Calculating the upper and lower bounds:

Lower bound = 1.75 - 2.834 = -1.084

Upper bound = 1.75 + 2.834 = 3.584

Therefore, the 99% confidence interval for the difference (μ1 - μ2) of the two population means is approximately (-1.084, 3.584).

learn more about "interval ":- https://brainly.com/question/1503051

#SPJ11

You pay a fixed amount of $50 per month at the end of each month for the next 10 years. The compound interest rate is 4% pa. How much money will you have saved after 10 years? CAD 4.000 over five years a

Answers

By paying a fixed amount of $50 per month at the end of each month for the next 10 years and with a compound interest rate of 4% p.a., you will have saved approximately $7,852.47.

To calculate the total amount saved after 10 years, we can use the formula for the future value of a series of deposits:

FV = PMT × [tex][(1 + r)^n - 1] / r[/tex]

Where:

FV is the future value

PMT is the monthly deposit amount ($50)

r is the monthly interest rate (4% p.a. / 12)

n is the total number of months (10 years × 12 months/year)

Substituting the values into the formula:

FV = 50 × [(1 + 4%/12)^(10×12) - 1] / (4%/12)

Calculating this expression gives:

FV ≈ $7,852.47

Therefore, after 10 years of making monthly deposits of $50 with a compound interest rate of 4% p.a., you will have saved approximately $7,852.47. It's important to note that this calculation assumes the monthly deposits are made at the end of each month and the interest is compounded monthly.

Learn more about future value here:

https://brainly.com/question/30787954

#SPJ11

A cylindrical oil tank 8 ft deep holds 620 gallons when filled to capacity. How many gallons remain in the tank when the depth of oil is 3 Tiszt. The number of gallons remain in the tank is (Type a whole number or a decimal)

Answers

Answer:

The volume of a cylinder is given by the formula V = πr²h, where r is the radius of the base and h is the height of the cylinder. Since the volume of oil in the tank is directly proportional to the depth of the oil, we can calculate the amount of oil left in the tank when it is 3 feet deep using a simple ratio.

First, we need to convert the tank's capacity from gallons to cubic feet because our measurements are in feet. According to the U.S. liquid gallon to cubic foot conversion, 1 gallon is approximately 0.133681 cubic feet. So, the tank's total volume in cubic feet is 620 gallons * 0.133681 cubic feet/gallon.

Let's denote the total volume of the tank as V_total and the remaining volume when the tank is 3 feet deep as V_remaining.

V_total = 620 * 0.133681 cubic feet.

Given that the total height (h_total) of the tank is 8 feet and the remaining height (h_remaining) is 3 feet, we can set up the following proportion:

h_remaining / h_total = V_remaining / V_total.

By cross-multiplying and solving for V_remaining, we can find the remaining volume in the tank when it's 3 feet deep. Then, we convert this volume back to gallons by dividing by 0.133681.

Let's calculate that.

Apologies for the confusion; I made a mistake. I can't execute calculations directly in this manner. I'll carry out the calculations below instead:

The total volume of the tank in cubic feet is:

V_total = 620 gallons * 0.133681 cubic feet/gallon = 82.9022 cubic feet.

The remaining volume when the tank is 3 feet deep can be calculated with the proportion:

h_remaining / h_total = V_remaining / V_total.

After cross-multiplying and solving for V_remaining, we have:

V_remaining = (h_remaining / h_total) * V_total = (3 ft / 8 ft) * 82.9022 cubic feet = 31.0941 cubic feet.

Then, we convert this volume back to gallons by dividing by 0.133681:

V_remaining_gal = 31.0941 cubic feet / 0.133681 = 232.63 gallons.

Rounding to the nearest whole number, approximately 233 gallons remain in the tank when the depth of the oil is 3 feet.

5) Build mathematical model of the transportation problem: Entry elements of table are costs. Destination B2 B3 B4 28 A1 27 27 32 A2 15 21 20 A3 16 22 18 b 26 8 Source 3 BI 14 10 21 323324 12 13

Answers

This problem is an example of a balanced transportation problem since the total supply of goods is equal to the total demand.

The transportation problem is a well-known linear programming problem in which commodities are shipped from sources to destinations at the minimum possible cost. The initial step in formulating a mathematical model for the transportation problem is to identify the sources, destinations, and the quantities transported.
The objective of the transportation problem is to minimize the total cost of transporting the goods. The mathematical model of the transportation problem is:
Let there be m sources (i = 1, 2, …, m) and n destinations (j = 1, 2, …, n). Let xij be the amount of goods transported from the i-th source to the j-th destination. cij represents the cost of transporting the goods from the i-th source to the j-th destination.
The transportation problem can then be formulated as follows:
Minimize Z = ∑∑cijxij
Subject to the constraints:
∑xij = si, i = 1, 2, …, m
∑xij = dj, j = 1, 2, …, n
xij ≥ 0
where si and dj are the supply and demand of goods at the i-th source and the j-th destination respectively.
Using the given table, we can formulate the transportation problem as follows:
Let A1, A2, and A3 be the sources, and B2, B3, and B4 be the destinations. Let xij be the amount of goods transported from the i-th source to the j-th destination. cij represents the cost of transporting the goods from the i-th source to the j-th destination.
Minimize Z = 27x11 + 27x12 + 32x13 + 15x21 + 21x22 + 20x23 + 16x31 + 22x32 + 18x33
Subject to the constraints:
x11 + x12 + x13 = 3
x21 + x22 + x23 = 14
x31 + x32 + x33 = 10
x11 + x21 + x31 = 21
x12 + x22 + x32 = 32
x13 + x23 + x33 = 26
xij ≥ 0
In this way, we can construct a mathematical model of the transportation problem using the given table. The model can be solved using the simplex method to obtain the optimal solution.

To know more about mathematical visit:

https://brainly.com/question/15209879

#SPJ11

Use a z-table to answer the following questions. For the numbers below, find the area below the z-score: a) z < 2.14 b) z> -1.37 c) -0.49 < z < 1.72
Find the percentage of observations for each of the following a) z is less than 1.91 b) z is greater than 0.73 c) z is between -1.59 and 2.01

Answers

The transformation of System A into System B is:

Equation [A2]+ Equation [A 1] → Equation [B 1]"

The correct answer choice is option d

How can we transform System A into System B?

To transform System A into System B as 1 × Equation [A2] + Equation [A1]→ Equation [B1] and 1 × Equation [A2] → Equation [B2].

System A:

-3x + 4y = -23 [A1]

7x - 2y = -5 [A2]

Multiply equation [A2] by 2

14x - 4y = -10

Add the equation to equation [A1]

14x - 4y = -10

-3x + 4y = -23 [A1]

11x = -33 [B1]

Multiply equation [A2] by 1

7x - 2y = -5 ....[B2]

So therefore, it can be deduced from the step-by-step explanation above that System A is ultimately transformed into System B as 1 × Equation [A2] + Equation [A1]→ Equation [B1] and 1 × Equation [A2] → Equation [B2].

Read more equations:-

brainly.com/question/13763238

#SPJ11

Total Males 27,437,246 Total Females 27,231,086 Females aged 15-44 years 12,913,036 Total deaths 334,603 Maternal deaths 1,489 Deaths under 1 year 54.613 Deaths under 28 days 22. 343 Deaths due to Tuberculosis 31,650 Total live births 1.437.154 Tuberculosis cases 153,406
What is the Crude Birth Rate? 23.45/1000 36.78/1000 26.29/1000 38.00/1000

Answers

The Crude Birth Rate is estimated to be approximately 26.29/1000.

The Crude Birth Rate is calculated by dividing the total number of live births by the total population, and then multiplying by 1,000.

In this case, the total number of live births is given as 1,437,154. To calculate the Crude Birth Rate, we divide 1,437,154 by the total population, which is the sum of the total number of males and females, resulting in 27,437,246 + 27,231,086 = 54,668,332.

Multiplying this ratio by 1,000 gives us the Crude Birth Rate per 1,000 population.

So, the Crude Birth Rate can be calculated as:

(1,437,154 / 54,668,332) * 1,000 ≈ 26.29/1000

Therefore, the Crude Birth Rate is approximately 26.29 births per 1,000 population.

In summary, based on the given information, the Crude Birth Rate is estimated to be approximately 26.29/1000.

This rate represents the number of live births per 1,000 individuals in the population.

Learn more about population here:

https://brainly.com/question/28830856

#SPJ11

QUESTION 12. 1 POINT Find the area to the right of the z-score 1.40 and to the left of the z-score 1.58 under the standard normal curve. Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.3 0.9032

Answers

The area to the right of the z-score 1.40 and to the left of the z-score 1.58 under the standard normal curve is :

0.0237.


We have to calculate the area to the right of the z-score 1.40 and to the left of the z-score 1.58 under the standard normal curve.

Using the z-table, the value of the cumulative area for a z-score of 1.40 is 0.9192 and the value for a z-score of 1.58 is 0.9429. Now, we can find the area that we are interested in by taking the difference between these two values:

0.9429 - 0.9192 = 0.0237

Therefore, the area to the right of the z-score 1.40 and to the left of the z-score 1.58 under the standard normal curve is 0.0237.

Thus, out of the given options, the correct option is :

0.0237.

To learn more about z-score visit : https://brainly.com/question/25638875

#SPJ11

Let X₁,..., X, be independent and identically distributed uniform (0, 0) random n variables, where 0 >0. a) Find the maximum likelihood estimator (MLE) of 0, call it = (X₁,..., X₁). b) Find the probability density function (p.d.f) of and show that 0/0 has a beta distribution. 0 c) Show that n (₁ 1-8). converges in distribution and find the limiting distribution.

Answers

The limiting distribution of √n(ˆθ - θ) is N(0, (1/θ²) * [ln(θ/0) - (1/θ)]).

a) The maximum likelihood estimator (MLE) of θ, denoted as ˆθ, can be found by maximizing the likelihood function. In this case, since the random variables X₁, X₂, ..., Xₙ are i.i.d. uniform(0,θ), the likelihood function is given by:

L(θ) = f(X₁;θ) * f(X₂;θ) * ... * f(Xₙ;θ)

where f(x;θ) is the probability density function (p.d.f) of a uniform distribution.

Since the p.d.f. of a uniform distribution on the interval (0,θ) is 1/θ, we can write the likelihood function as:

L(θ) = (1/θ)ⁿ

To maximize the likelihood function, we can minimize the negative log-likelihood:

-n log(θ)

Taking the derivative with respect to θ and setting it to zero, we get:

d/dθ (-n log(θ)) = -n/θ = 0

Solving for θ, we find:

ˆθ = 1/X₁

Therefore, the MLE of θ is ˆθ = 1/X₁.

b) To find the probability density function (p.d.f) of ˆθ, we need to find the cumulative distribution function (c.d.f) of ˆθ and differentiate it. Since X₁ follows a uniform(0,θ) distribution, its cumulative distribution function is:

F(x) = P(X₁ ≤ x) = x/θ   for 0 ≤ x ≤ θ

The cumulative distribution function (c.d.f) of ˆθ can be found as:

F(ˆθ ≤ x) = P(1/X₁ ≤ x) = P(X₁ ≥ 1/x) = 1 - P(X₁ < 1/x)

Since X₁ is uniformly distributed on (0,θ), we have:

P(X₁ < 1/x) = 1/x    for 0 < 1/x < θ

Therefore, the cumulative distribution function (c.d.f) of ˆθ is:

F(ˆθ ≤ x) = 1 - 1/x   for 0 < x ≤ 1/θ

To find the p.d.f of ˆθ, we differentiate the c.d.f:

f(ˆθ = x) = d/dx (F(ˆθ ≤ x)) = d/dx (1 - 1/x) = 1/x²   for 0 < x ≤ 1/θ

This is the p.d.f of the distribution of ˆθ. It is known as the Beta(2,1) distribution.

c) To show that n(ˆθ - θ) converges in distribution, we can use the central limit theorem (CLT). Since the distribution of ˆθ is known to be Beta(2,1), we can find the mean and variance of ˆθ:

E(ˆθ) = E(1/X₁) = ∫(0 to θ) 1/x * (1/θ) dx = (1/θ) * ln(θ/0) = 1/θ

Var(ˆθ) = Var(1/X₁) = ∫(0 to θ) [(1/x) - (1/θ)]² * (1/θ) dx = (1/θ²) * [ln(θ/0) - (1/θ)] = (1/θ²) * [ln(θ/0) - (1/θ)]

As n tends to infinity, by the central limit theorem, we have:

√n(ˆθ - θ) → N(0, Var(ˆθ))

Substituting the mean and variance of ˆθ, we get:

√n(ˆθ - θ) → N(0, (1/θ²) * [ln(θ/0) - (1/θ)])

This is the limiting distribution of √n(ˆθ - θ).

To know more about limiting distribution, refer here:

https://brainly.com/question/14697580

#SPJ4

One angle measures 18°, and another angle measures (6d − 6)°. If the angles are complementary, what is the value of d? a) d = 2. b) d = 13. c) d = 31. d) d = 36.2.

Answers

One angle measures 18°, and another angle measures (6d − 6)°. If the angles are complementary, the value of d is 13. Therefore, option b) is correct.

Given that one angle measures 18° and another angle measures (6d - 6)°, and the angles are complementary, we can set up an equation based on the definition of complementary angles. Complementary angles add up to 90°.

So, we have the equation:

18° + (6d - 6)° = 90°

Now, we can solve this equation for d:

18° + 6d - 6 = 90°

6d + 12 = 90°

6d = 78°

d = 78° / 6

d = 13

Therefore, the value of d is 13. Among the given options, option b) d = 13 matches the value we obtained from the equation. Hence, the correct answer is b) d = 13.

Learn more about complementary angles here:

https://brainly.com/question/15380971

#SPJ11

Other Questions
COMPANY NAME GREYSON CORPORATION (500 WORDS) I reflect on the challenging problems, creative solutions, and effective practices demonstrated in the case. The student will provide a brief discussion on the learning and unlearning [i.e. how the case caused to change your opinion about aspects of project planning that you thought of in different ways before] that the case has empowered or inspired them to consider. The student will also explain how this case has inspired them to be a better project manager in the future. Consider the linear system dY AY withA= dt (1) This matrix A is of the form described in part (a), having a repeated zero eigenvalue Aside: Since det(A)= Tr(A)=0, this system is at the origin in the trace-determinant plane, and as such this matrix could arise in a bifurcation from any type of equilibrium to any other type of equilibrium. i. By expanding the system (1) in the form dx dy show that solution curves satisfy y(t) - 2(t) = c for an unknown constant c. This proves that solutions follow straight lines of the form y = 2:r + c. ii. Use the repeated eigenvalue method (using generalised eigenvectors) to find the general solution to the system (1) ii. Find the solution with initial condition 0) = 1,y0 = 4. Express your answer using the vector form of a straight line: Y(t) = a + tb for appropriate vectors a and b. writea one page essay on how Information Technology can be usedworldwide in an unethical way. Give examples Compared to other industrial nations, inflation rates in the United States are Multiple Choice O neither significantly higher nor significantly lower. O significantly higher than those in Europe and significantly lower than those in Japan. significantly higher According to a March 17, 2015 Wall Street Journal article entitled "Calls Grow for a New Microloans Model," quote: "...most agree the sector needs to innovate and evolve to better serve the poor and produce easier-to-measure benefits. The discussion varies from the need for microlenders to offer more savings and insurance options for the poor to the need for them to include more business training, healthcare and education with their loans... Considering the definitions in the Microfinance Handbook, the suggestion that MFIs should start to include more business training, healthcare and education with their loans can best be described as: a. A shift from integrated model to financial services only b. A shift from the Kiva.org model to the M-Pesa model c. A shift from financial services only to integrated model d. A shift from Micro Insurance Agency model to the Women's World Banking model 51 110 3 16 The Dahlia Flower Company has earnings of $1.40 per share. The benchmark PE for the company is 15. a. What stock price would you consider appropriate? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) b. What if the benchmark PE were 18? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) a. Stock price at a PE of 15 b. Stock price at a PE of 18 6 Should all amateur sports athletes make the same amount of moneyat the university level or should it depend on tickets sold and TVviewing rights? Mr. Kevin Dates is the owner of an expanding business operating in bakery industry located in Bridgetown, Barbados. Over the last few years business has been great. However, he believes it is time to grow and be more profitable. As such Mr. Dates has decided to invest in a new sophisticated convection oven that would boost production levels by 400% in a more efficient manner. As an astute assistant manager to Mr. Dates have asked you to analyze the following variables to assist in informing the correct decision: 1. Mr. Dates is considering investing in one of two convection ovens - Type ABC and Type XYZ; 2. The initial investment costs of ovens Type ABC and Type XYZ are both $115,000 each; 3. Over a 5 year period directly following the investment, projected revenue attributed to the Type ABC oven is $72,000 a year. While projected expenditure is $42,000 a year for the Type ABC oven; 4. This is not the same for the Type XYZ oven investment, which is projected to only have revenue and expenditure of $300,000 and $130,000 respectively in the fifth year; 5. The situation that surrounds the current oven (old) is that if it sold/traded-in under the Type ABC oven investment arrangement then Mr. Dates will receive a $14,000 profit a year on such a sale over a 5 year period; 6. Conversely with the Type XYZ oven investment the current oven if sold/traded-in will yield a $35,000 profit at the end of year 5; 7. Assume no tax is applied to the business; 8. The cost of capital for each investment is 10%. You are required to: Using an example, briefly explain to Mr. Dates what is meant by mutually exclusive investments. [5 Marks] [5 Marks] [8 Marks] [8 Marks] [8 Marks] i. ii. iii. iv. V. vi. 1| Page vii. Compute each investment's payback period. Compute each investment's Net Present Value (NPV). Compute each investment's Internal Rate of Return (IRR). Which investment should Mr. Dates accept and why? Based on the above calculations and analysis, what has caused the ranking conflict? [8 Marks] List two (2) disadvantages of using the NPV method in evaluating business investments. how is heat exchange controlled between an organism and its environment? Distribution managers select different transportation modes based on several distinct criteria. List and briefly define these criteria, and name the best and worst transportation mode for each criterion. Describe the relationship between TPS, MIS, and ESS. Temperance's net worth is $45,000. Her debt ratio is 0.5. Herlong-term assets total $75,000, and monthly expenses are $3,000.What is her liquidity ratio?5 months6 months3 months4 months Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination (If there is no solution, enter NO SOLUTION. I the system has an infinite number of solutions, express x, y, and z in terms of the parameter t.). 3x + 3y 12z = 6 x+y+ 4z= 2 2x + 5y + 20z = 10 -x+2y+ 8z = - 4 (x, y, z)=____ cananyone let me know how to find both 80% and 98%Use the following pairs of observations to construct an 80% and a 98% confidence interval for . 3 2 5 X y 1 3 6 5 4 4 The 80% confidence interval is. (Round to two decimal places as needed.) 3 (**) Learn about the recent transformation of Microsoft under the leadership of Satya Nadella using the following article and the video. Discuss the role of Microsofts leadership in transforming the organization. 1.Which of the following is included in the definition of estate planning?1. Asset management.2. Accumulation of wealth.3. Asset preservation.a. 1 only.b. 1 and 2.C. 2 and 3.d. 1, 2, and 3. What ethical framework involves believing that predetermined rights are held by both individuals and societies? Use Johnson's rule to determine the optimal sequencing for the five jobs to be processed on two machines in a fixed order (Machine 1 before Machine 2). The processing times in hours are given in the table below. [4] 764 Job Machine 1 Machine 2 2022/05 A 11 10 B 17 10 7 8 9 15 n D ma E F G 9 12 13 10 25 6 Determine the value of x in the diagram below: what is the present value of a 8-year annuity due with a $350 annual cash flow,paid semi-annually and a discount rate of 10%?