This problem is an example of over-damped harmonic motion. A mass m = 2 kg is attached to both a spring with spring constant k = 36 N/m and a dash-pot with damping constant c = 18 N. s/m. The ball is started in motion with initial position = -5 m and initial velocity vo = 5 m/s. Determine the position function (t) in meters. x(t) = li Graph the function x(t).

Answers

Answer 1

By substituting these values in equation (1), we get x(t) = (7 + √15) / 2 e^(-9 + √15)t + (-7 + √15) / 2 e^(-9 - √15)tGraph of function x(t):

Given: A mass m = 2 kg is attached to both a spring with spring constant k = 36 N/m and a dash-pot with damping constant c = 18 N. s/m.

The ball is started in motion with initial position = -5 m and initial velocity vo = 5 m/s.

To find: Position function (t) and Graph of the function x(t).

Solution: Mass m = 2 kg Spring constant k = 36 N/m Damping constant c = 18 N. s/m Initial position x0 = -5 m  Initial velocity v0 = 5 m/s As the problem states that the given system is over-damped, so the general solution for the position function is given asx(t) = C1e^(r1t) + C2e^(r2t)where r1 and r2 are the roots of the characteristic equation obtained from the given differential equation.

Damping force Fd = cv(x) where v(x) is the velocity of the mass Now applying the 2nd law of motion, i.e., F net = ma - Fd - Fs = ma using the above formulas for Fd and Fs, we get: ma + cv(x) + kx = 0where x is the displacement of the mass from its equilibrium position.

Using the auxiliary equation:mr² + cr + k = 0r = (-c ± √(c² - 4mk)) / 2mwhere c > √4mkThe two roots are:r1,2 = -c / 2m ± √((c / 2m)² - (k / m)) = -9 ± √15Thus,x(t) = C1e^(-9 + √15)t + C2e^(-9 - √15)t......(1)

To find the value of constants C1 and C2, we apply the given initial conditions. x(0) = -5 and v(0) = 5.dx/dt = -9 + √15)C1e^(-9 + √15)t + (-9 - √15)C2e^(-9 - √15)t From the initial conditions, x(0) = -5 = C1 + C2v(0) = 5 = (-9 + √15)C1 + (-9 - √15)C2Solving these two equations we get,C1 = (7 + √15) / 2 and C2 = (-7 + √15) / 2

Now substituting these values in equation (1), we get x(t) = (7 + √15) / 2 e^(-9 + √15)t + (-7 + √15) / 2 e^(-9 - √15)tGraph of function x(t):

to know more about velocity visit :

https://brainly.com/question/29519833

#SPJ11

Answer 2

To graph the function x(t), plot the position values for different values of t within the given range. The x-axis represents time (t) and the y-axis represents the position (x).

To determine the position function (t) for the over-damped harmonic motion, we first need to find the roots of the characteristic equation. The characteristic equation for the given system is:

ms² + cs + k = 0

Substituting the values, we have:

2s² + 18s + 36 = 0

The roots of this equation can be found using the quadratic formula:

s = (-b ± √(b² - 4ac)) / (2a)

Plugging in the values a = 2, b = 18, and c = 36, we get:

s = (-18 ± √(18² - 4236)) / (2*2)

= (-18 ± √(324 - 288)) / 4

= (-18 ± √36) / 4

The roots are:

s₁ = (-18 + 6) / 4 = -3/2

s₂ = (-18 - 6) / 4 = -6

Since we have two distinct real roots, the general solution for the position function (t) is:

[tex]x(t) = C_1e^{(s_1t)} + C_2e^{(s_2t)[/tex]

To determine the values of C₁ and C₂, we use the initial conditions provided:

x(0) = -5 and x'(0) = 5

Plugging in these values, we have:

-5 = C₁ + C₂

5 = -3/2C₁ - 6C₂

Solving these equations, we find:

C₁ = -7/4

C₂ = 3/4

Substituting these values back into the general solution, we obtain:

[tex]x(t) = (-7/4)e^{(-3/2t)} + (3/4)e^{(-6t)[/tex]

This is the position function (t) for the given system.

To graph the function x(t), plot the position values for different values of t within the given range. The x-axis represents time (t) and the y-axis represents the position (x).

To know more about quadratic formula, visit:

https://brainly.com/question/22364785

#SPJ11


Related Questions

sin(2x³) x2 Approximate justify your result. within 0.0001 if x = 1/3 using its Mac expansion and

Answers

The approximate value of sin(2x³) - x², using its Maclaurin expansion and x = 1/3, is approximately -0.0800.

The Maclaurin series expansion of sin(x) is given by the equation sin(x) = x - (x³/3!) + (x⁵/5!) - (x⁷/7!) + ... . To find the value of sin(2x³) - x², we substitute 2x³ in place of x in the Maclaurin series expansion of sin(x). Thus, we have sin(2x³) = (2x³) - ((2x³)³/3!) + ((2x³)⁵/5!) - ((2x³)⁷/7!) + ... .

Now, we substitute x = 1/3 into the expression. We have sin(2(1/3)³) = (2(1/3)³) - ((2(1/3)³)³/3!) + ((2(1/3)³)⁵/5!) - ((2(1/3)³)⁷/7!) + ... .

Simplifying this expression, we get sin(2(1/3)³) = (2/27) - ((2/27)³/3!) + ((2/27)⁵/5!) - ((2/27)⁷/7!) + ... .

To approximate the value within 0.0001, we can stop the calculation after a few terms. Evaluating the expression, we find that sin(2(1/3)³) ≈ 0.0741 - 0.0001 - 0.0043 + 0.0002 = -0.0800.

Therefore, the approximate value of sin(2x³) - x², using its Maclaurin expansion and x = 1/3, is approximately -0.0800, satisfying the given accuracy requirement.

Learn more about Maclaurin series here:

https://brainly.com/question/31745715

#SPJ11

A Toyota Prius starts with a positive velocity of 10 mph and provides an acceleration which is inversely proportional to the velocity of the car. There is a tail wind of 20 mph and the acceleration due to air resistance is proportional to the difference between the tail wind and the velocity of the Prius. A tailwind means the direction of the wind is in the same direction as the travel direction of the car. Choose the differential equation which models the velocity of the Prius from the options below. Assume A> 0 and B> 0. Time F Attempt 10 Min

Answers

The chosen differential equation is: dv/dt = A / (v + B) - (v - 20) / B

The differential equation that models the velocity of the Prius in this scenario can be chosen as:

dv/dt = A / (v + B) - (v - 20) / B

Explanation:

- The term A / (v + B) represents the acceleration provided by the Prius, which is inversely proportional to its velocity.

- The term (v - 20) / B represents the acceleration due to air resistance, which is proportional to the difference between the tailwind (20 mph) and the velocity of the Prius.

Therefore, the chosen differential equation is: dv/dt = A / (v + B) - (v - 20) / B

Learn more about inversely proportional here:

https://brainly.com/question/32890782

#SPJ11

Find an equation of the tangent line to the curve at the point (1, 1). y = ln(xe²³) y =

Answers

The equation of the tangent line to the curve y = ln(xe²³) at (1, 1) is y = 24x - 23. The slope is determined by evaluating the derivative at the given point.

The equation of the tangent line to the curve y = ln(xe²³) at the point (1, 1) can be found by taking the derivative of the equation and substituting the x-coordinate of the given point.

First, we find the derivative of y = ln(xe²³) using the chain rule. The derivative is given by dy/dx = 1/x + 23.

Next, we substitute x = 1 into the derivative to find the slope of the tangent line at (1, 1). Thus, the slope is 1/1 + 23 = 24.

Finally, using the point-slope form of a line, we can write the equation of the tangent line as y - 1 = 24(x - 1), which simplifies to y = 24x - 23.

Learn more about Equation click here : brainly.com/question/13763238

#SPJ11

d. da /x² - 4x +3 IVF

Answers

By chain rule of differentiation,d/ dx ([tex]x^2[/tex] - 4x + 3) = (2x - 4)

The given expression is:d/ dx ([tex]x^2[/tex] - 4x + 3)

Calculus' fundamental idea of differentiation entails figuring out how quickly a function changes. Finding a function's derivative with regard to its independent variable is the process at hand. The derivative shows how the function's value is changing at each particular position by displaying the slope of the function at that location.

With the aid of differentiation, we can examine the behaviour of functions, spot crucial locations like maxima and minima, and comprehend the contours of curves. Numerous domains, including physics, engineering, economics, and others where rates of change are significant, can benefit from it. Power rule, product rule, chain rule, and more strategies for differentiating products are available.

To differentiate the given expression we apply the chain rule of differentiation. Here the outside function is d/ dx and the inside function is (x² - 4x + 3).

Therefore, by chain rule of differentiation,d/ dx (x² - 4x + 3) = (2x - 4)

Learn more about differentiation here:

https://brainly.com/question/31490556


#SPJ11

find the average rate of change of the function from x1 to x2 calculator

Answers

To find the average rate of change of a function from x1 to x2, you need to calculate the difference in the function's values at x1 and x2, and divide it by the difference in the x-values. The formula for average rate of change is (f(x2) - f(x1)) / (x2 - x1).



The average rate of change measures the average rate at which a function is changing over a given interval. To calculate it, you subtract the function's values at the starting point (x1) and ending point (x2), and then divide it by the difference in the x-values. This gives you the average rate of change for the interval from x1 to x2.

Example: Let's say we have a function f(x) = 2x + 3. To find the average rate of change from x1 = 1 to x2 = 4, we substitute these values into the formula: (f(4) - f(1)) / (4 - 1). Simplifying, we get (11 - 5) / 3 = 6 / 3 = 2. Therefore, the average rate of change of the function from x1 = 1 to x2 = 4 is 2.

To know more about Function visit.

https://brainly.com/question/30721594

#SPJ11

Is the following statement true for each alphabet and each symbol a that belongs to it? (aUb) =a Ub

Answers

The statement (a U b) = a U b is true for all symbols a and b, regardless of the set to which they belong, which implies that the statement is true for every alphabet and every symbol that belongs to it. Consequently, the given statement is true for each alphabet and each symbol a that belongs to it.

Yes, the given statement is true for each alphabet and each symbol a that belongs to it.

Let's see why this is true:

A set is a collection of unique elements that is denoted by capital letters such as A, B, C, etc. Elements are enclosed in braces, e.g., {1, 2, 3}.

The union of two sets is a set of elements that belong to either of the two sets. A∪B reads as A union B. A union B is the combination of all the elements from sets A and B.

(A∪B) means the union of sets A and B. It consists of all the elements in set A and all the elements in set B. The elements of set A and set B are combined without any repetition.

A set is said to be a subset of another set if all its elements are present in the other set. It is denoted by ⊆. If A is a subset of B, then B ⊇ A.

The union of a set A with a set B is denoted by A U B, and it contains all elements that are in A or B, or in both. Let a be a symbol belonging to the alphabet set. The given statement is (a U b) = a U b which means the set containing a and b is the same as the set containing b and a, where a and b are elements of an arbitrary set.

Suppose a is an element of set A and b is an element of set B. Then (a U b) means the union of A and B and it contains all the elements of A and all the elements of B. The order of the elements in a set does not matter, so (a U b) = (b U a) = A U B.

The statement (a U b) = a U b is true for all symbols a and b, regardless of the set to which they belong, which implies that the statement is true for every alphabet and every symbol that belongs to it. Consequently, the given statement is true for each alphabet and each symbol a that belongs to it.

to know more about subset visit ;

https://brainly.com/question/23454979

#SPJ11

Sellane Appliances received an invoice dated September 17 with terms 4/10 EO.M. for the items listed below. 6 refrigerators at $1020 each less 25% and 6% 5 dishwashers at $001 each less 16%, 12.6%, and 3% (a) What is the last day for taking the cash discount? (b) What is the amount due if the invoice is paid on the last day for taking the discount? (c) What is the amount of the cash discount if a partial payment is made such that a balance of $2500 remains outstanding on the invoice? CHO (a) The last day for taking the cash discount is September 27 (Type a whole number.) (b) The amount due is 5 (Round to the nearest cent as needed.) (c) The cash discount is $ (Round to the nearest cent as needed)

Answers

c) the cash discount, if a partial payment is made such that a balance of $2500 remains outstanding on the invoice, is $5333.84.

To determine the last day for taking the cash discount, we need to consider the terms "4/10 EO.M." This means that a cash discount of 4% is offered if payment is made within 10 days from the invoice date, and the net amount is due at the end of the month (EO.M.).

(a) The last day for taking the cash discount is September 27. Since the invoice is dated September 17, we count 10 days from that date, excluding Sundays and possibly other non-business days.

(b) To calculate the amount due if the invoice is paid on the last day for taking the discount, we need to determine the total amount after applying the discounts. Let's calculate the amounts for refrigerators and dishwashers separately:

For refrigerators:

6 refrigerators at $1020 each = $6120

25% discount = $6120 * 0.25 = $1530

6% discount = ($6120 - $1530) * 0.06 = $327.60

Total amount for refrigerators after discounts = $6120 - $1530 - $327.60 = $4262.40

For dishwashers:

5 dishwashers at $1001 each = $5005

16% discount = $5005 * 0.16 = $800.80

12.6% discount = ($5005 - $800.80) * 0.126 = $497.53

3% discount = ($5005 - $800.80 - $497.53) * 0.03 = $135.23

Total amount for dishwashers after discounts = $5005 - $800.80 - $497.53 - $135.23 = $3571.44

The total amount due for the invoice is the sum of the amounts for refrigerators and dishwashers:

Total amount due = $4262.40 + $3571.44 = $7833.84

(b) The amount due, if the invoice is paid on the last day for taking the discount, is $7833.84.

(c) To calculate the cash discount if a partial payment is made such that a balance of $2500 remains outstanding on the invoice, we subtract the outstanding balance from the total amount due:

Cash discount = Total amount due - Outstanding balance

Cash discount = $7833.84 - $2500 = $5333.84

To know more about subtract visit:

brainly.com/question/13619104

#SPJ11

Find the least common multiple of these two expressions. 14yu and 8x

Answers

The (LCM) least common multiple of these two expressions is 56yu.

To find the least common multiple (LCM) of two expressions 14yu and 8x,

we need to find the prime factorization of each expression.

The prime factorization of 14yu is: 2 × 7 × y × u

The prime factorization of 8x is: 2³ × x

LCM is the product of all unique prime factors of each expression raised to their highest powers.

So, LCM of 14yu and 8x = 2³ × 7 × y × u = 56yu

The LCM of the given expressions is 56yu.

learn more about factorization here

https://brainly.com/question/25829061

#SPJ11

The accompanying figure shows the graph of y=x² shifted to two new positions. Enter equations for the new graphs. Enter the equation for position (a). Enter the equation for position (b). E

Answers

Using the given graph figure, we can say that:

Equation for position a is: y = x² + 3

Equation for position B is: y = x² - 5

What is the equation after shifting of graph?

To shift a function left by b units we will add inside the domain of the function's argument to get: f(x + b) shifts f(x) b units to the left.

Shifting to the right works the same way, f(x - b) shifts f(x) by b units to the right.

To translate the function up and down, you simply add or subtract numbers from the whole function.

If you add a positive number (or subtract a negative number), you translate the function up.

If you subtract a positive number (or add a negative number), you translate the function down.

Looking at the given graph, we can say that:

Equation for position a is: y = x² + 3

Equation for position B is: y = x² - 5

Read more about graph shift at: https://brainly.com/question/4025726

#SPJ4

According to data from an aerospace company, the 757 airliner carries 200 passengers and has doors with a mean height of 1.83 cm. Assume for a certain population of men we have a mean of 1.75 cm and a standard deviation of 7.1 cm. a. What mean doorway height would allow 95 percent of men to enter the aircraft without bending? 1.75x0.95 1.6625 cm b. Assume that half of the 200 passengers are men. What mean doorway height satisfies the condition that there is a 0.95 probability that this height is greater than the mean height of 100 men? For engineers designing the 757, which result is more relevant: the height from part (a) or part (b)? Why?

Answers

Based on the normal distribution table, the probability corresponding to the z score is 0.8577

Since the heights of men are normally distributed, we will apply the formula for normal distribution which is expressed as

z = (x - u)/s

Where x is the height of men

u = mean height

s = standard deviation

From the information we have;

u = 1.75 cm

s = 7.1 cm

We need to find the probability that the mean height of 1.83 cm is less than 7.1 inches.

Thus It is expressed as

P(x < 7.1 )

For x = 7.1

z = (7.1 - 1.75 )/1.83 = 1.07

Based on the normal distribution table, the probability corresponding to the z score is 0.8577

P(x < 7.1 ) = 0.8577

Read more about P-value from z-scores at; brainly.com/question/25638875

#SPJ4

. Write 4. Show that as a linear combination of 10 1 2 {=}} 0 2 {}} -8 -5 -8 is a linear independent set.

Answers

10 1 2 {=}} 0 2 {}} -8 -5 -8 is not a linearly independent set.

Let us first arrange the given vectors horizontally:[tex]$$\begin{bmatrix}10 & 1 & 2 & 0 & 2 & -8 & -5 & -8\end{bmatrix}$$[/tex]

Now let us row reduce the matrix:[tex]$$\begin{bmatrix}10 & 1 & 2 & 0 & 2 & -8 & -5 & -8 \\ 0 & -9/5 & -6/5 & 0 & -6/5 & 12/5 & 7/5 & 4/5 \\ 0 & 0 & 2/3 & 0 & 2/3 & -4/3 & -1/3 & -1/3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{bmatrix}$$[/tex]

Since there are no pivots in the last row of the row-reduced matrix, we can conclude that the set of vectors is linearly dependent.

This is because the corresponding homogeneous system, whose coefficient matrix is the above row-reduced matrix, has infinitely many solutions.

Hence, 10 1 2 {=}} 0 2 {}} -8 -5 -8 is not a linearly independent set.

To know more about linear independent set, visit:

https://brainly.com/question/12902801

#SPJ11

How many permutations of letters HIJKLMNOP contain the string NL and HJO? Give your answer in numeric form

Answers

Therefore, the required number of permutations can be calculated by multiplying the number of permutations of all the letters with the number of arrangements of NL and HJO, which is:P (12) × P (10) × P (2)= 12! × 10! × 2!= 4790016000 × 3628800 × 2= 34526336000000

Hence, the required answer in numeric form is:34526336000000.We are supposed to find out how many permutations of letters HIJKLMNOP contain the sting  NL and HJO. Firstly, we need to find out how many ways are there to arrange the letters HIJKLMNOP, this can be calculated as follows:Permutations of n objects = n!P (12) = 12!Now, we need to find out how many permutations contain the string NL and HJO.

Since we need to find the permutations with both the strings NL and HJO, we will have to treat them as single letters, which would give us 10 letters in total.Hence, number of ways we can arrange these 10 letters (i.e., HIJKLMNOP, NL and HJO) can be calculated as follows:P (10) = 10!Now, in this arrangement of 10 letters, NL and HJO are considered as single letters, so we need to consider the number of arrangements they can make as well, which can be calculated as follows:P (2) = 2!

to know more about  string, visit

https://brainly.com/question/30392694

#SPJ11

| Attempt 1 of Unlimited Determine whether the two sets are equal by using Venn diagrams. (An B)' and 'n B The two sets are equal. The two sets are not equal. 6 B 9 2.3 Section Exercise 31.32 & & C

Answers

To determine whether the sets (A ∩ B)' and B are equal, we can use Venn diagrams. The Venn diagram representations of the two sets will help us visualize their elements and determine if they have the same elements or not.

The set (A ∩ B)' represents the complement of the intersection of sets A and B, while B represents set B itself. By using Venn diagrams, we can compare the two sets and see if they have the same elements or not.

If the two sets are equal, it means that they have the same elements. In terms of Venn diagrams, this would mean that the regions representing (A ∩ B)' and B would overlap completely, indicating that every element in one set is also in the other.

If the two sets are not equal, it means that they have different elements. In terms of Venn diagrams, this would mean that the regions representing (A ∩ B)' and B do not overlap completely, indicating that there are elements in one set that are not in the other.

To determine the equality of the sets (A ∩ B)' and B, we can draw the Venn diagrams for A and B, shade the region representing (A ∩ B)', and compare it to the region representing B. If the shaded region and the region representing B overlap completely, then the two sets are equal. If there is any part of the region representing B that is not covered by the shaded region, then the two sets are not equal.

Learn more about Venn here:

https://brainly.com/question/17041038

#SPJ11

Product, Quotient, Chain rules and higher Question 2, 1.6.3 Part 1 of 3 a. Use the Product Rule to find the derivative of the given function. b. Find the derivative by expanding the product first. f(x)=(x-4)(4x+4) a. Use the product rule to find the derivative of the function. Select the correct answer below and fill in the answer box(es) to complete your choice. OA. The derivative is (x-4)(4x+4) OB. The derivative is (x-4) (+(4x+4)= OC. The derivative is x(4x+4) OD. The derivative is (x-4X4x+4)+(). E. The derivative is ((x-4). HW Score: 83.52%, 149.5 of Points: 4 of 10

Answers

The derivative of the function f(x) = (x - 4)(4x + 4) can be found using the Product Rule. The correct option is OC i.e., the derivative is 8x - 12.

To find the derivative of a product of two functions, we can use the Product Rule, which states that the derivative of the product of two functions u(x) and v(x) is given by u'(x)v(x) + u(x)v'(x).

Applying the Product Rule to the given function f(x) = (x - 4)(4x + 4), we differentiate the first function (x - 4) and keep the second function (4x + 4) unchanged, then add the product of the first function and the derivative of the second function.

a. Using the Product Rule, the derivative of f(x) is:

f'(x) = (x - 4)(4) + (1)(4x + 4)

Simplifying this expression, we have:

f'(x) = 4x - 16 + 4x + 4

Combining like terms, we get:

f'(x) = 8x - 12

Therefore, the correct answer is OC. The derivative is 8x - 12.

To learn more about product rules visit:

brainly.com/question/847241

#SPJ11

If a = (3,4,6) and b= (8,6,-11), Determine the following: a) a + b b) -4à +86 d) |3a-4b| Question 3: If point A is (2,-1, 6) and point B (1, 9, 6), determine the following a) AB b) AB c) BA

Answers

The absolute value of the difference between 3a and 4b is √1573. The values of a + b = (11, 10, -5), -4a + 86 = (74, 70, 62), and |3a - 4b| = √1573.

Given the vectors a = (3,4,6) and b = (8,6,-11)

We are to determine the following:

(a) The sum of two vectors is obtained by adding the corresponding components of each vector. Therefore, we added the x-component of vector a and vector b, which resulted in 11, the y-component of vector a and vector b, which resulted in 10, and the z-component of vector a and vector b, which resulted in -5.

(b) The difference between -4a and 86 is obtained by multiplying vector a by -4, resulting in (-12, -16, -24). Next, we added each component of the resulting vector (-12, -16, -24) to the corresponding component of vector 86, resulting in (74, 70, 62).

(d) The absolute value of the difference between 3a and 4b is obtained by subtracting the product of vectors b and 4 from the product of vectors a and 3. Next, we obtained the magnitude of the resulting vector by using the formula for the magnitude of a vector which is √(x² + y² + z²).

We applied the formula and obtained √1573 as the magnitude of the resulting vector which represents the absolute value of the difference between 3a and 4b.

Therefore, the absolute value of the difference between 3a and 4b is √1573. Hence, we found that

a + b = (11, 10, -5)

-4a + 86 = (74, 70, 62), and

|3a - 4b| = √1573

To know more about the absolute value, visit:

brainly.com/question/17360689

#SPJ11

Let f(x, y) = 2-√x² - 9. a) Find f(5,-3000.5276931). b) Find the range. c) Find and graph the domain. Let f(x, y) = √√4x² - 3y². a) Find fx. b) Find fy. c) Find fxy. d) Find fyx. e) Find fxyx Let f(x, y) = √√4x² - 3y². a) Find fx. b) Find fy. c) Find fxy. d) Find fyx. e) Find fxyx

Answers

For the function f(x, y) = 2-√x² - 9, we can find the value of f(5, -3000.5276931), which is approximately -12.5276931. The range of this function is (-∞, -9], and the domain is all real numbers except for x = 0.

a) To find f(5, -3000.5276931), we substitute the given values into the function:

f(5, -3000.5276931) = 2-√(5)² - 9

= 2-√25 - 9

= 2-5 - 9

= -3 - 9

= -12

b) The range of the function is the set of all possible values that f(x, y) can take. In this case, since we have a square root expression, the range is limited by the square root. The square root of a non-negative number can only yield a non-negative value, so the range is (-∞, -9]. This means that f(x, y) can take any value less than or equal to -9, including -9 itself.

c) The domain of the function is the set of all valid inputs that x and y can take. In this case, there are no restrictions on the values of x, but the square root expression must be defined. The square root of a negative number is undefined in the real number system, so we need to ensure that the expression inside the square root is non-negative. Thus, the domain of the function is all real numbers except for x = 0, since √x² is not defined for negative x.

For the second part of the question, the same function f(x, y) = √√4x² - 3y² will be analyzed:

a) To find fx, we differentiate f(x, y) with respect to x while treating y as a constant:

fx = (√√4x² - 3y²)' = (1/2) * (√4x² - 3y²)' * (√4x² - 3y²)'

= (1/2) * (1/2) * (4x² - 3y²)^(-1/2) * (4x² - 3y²)'

= (1/4) * (4x² - 3y²)^(-1/2) * (8x)

b) To find fy, we differentiate f(x, y) with respect to y while treating x as a constant:

fy = (√√4x² - 3y²)' = (1/2) * (√4x² - 3y²)' * (√4x² - 3y²)'

= (1/2) * (-3) * (4x² - 3y²)^(-3/2) * (-2y)

= 3y * (4x² - 3y²)^(-3/2)

c) To find fxy, we differentiate fx with respect to y:

fxy = (fx)'y = ((1/4) * (4x² - 3y²)^(-1/2) * (8x))'y

= (1/4) * (-1/2) * (4x² - 3y²)^(-3/2) * (-6y)

= (3/8) * y * (4x² - 3y²)^(-3/2)

d) To find fyx, we differentiate fy with respect to x:

fyx = (fy)'x = (3y * (4x² - 3y²)^(-3/2))'x

= 3y * ((-3/2) * (4x² - 3y²)^(-5/2) * (8x))

= (-9/2) * y * x * (4x² - 3y²)^(-5/2)

e) To find fxyx, we differentiate fxy with respect to x:

fxyx = (fxy)'x = ((3/8) * y * (4x² - 3y²)^(-3/2))'x

= (3/8) * y * ((-3/2) * (4x² - 3y²)^(-5/2) * (8x))

= (-9/4) * y * x * (4x² - 3y²)^(-5/2)

Learn more about differentiate here:

https://brainly.com/question/24898810

#SPJ11

Given the equation (ye3xy+y2-y(x-2))dx+(xe3xy+2xy+1/x)dy=0, x not equal to 0
A) show that this equation is exact
B) Solve the differential equation

Answers

Show that this equation is exact:In order to prove that the given equation is exact, we need to check whether the equation satisfies the criterion for exactness, which is given by the equation∂Q/∂x = ∂P/∂y where P and Q are the coefficients of dx and dy respectively.

Hence, we obtain∂F/∂y = x² + 1/(3y) + ln|x| + C′ = Q(x, y)Therefore, the solution of the given differential equation isF(x, y) = y ∫e3xy dx + y²x − yx² + C(y)= y e3xy/3 + y²x − yx² + C(y)where C(y) is a constant of integration.

To solve a differential equation, we have to prove that the given equation is exact, then find the function F(x,y) and substitute the values of P and Q and integrate with respect to x and then differentiate the function obtained with respect to y, equating it to Q.

Then we can substitute the constant and get the final solution in the form of F(x,y).

Summary: Here, we first proved that the given equation is exact. After that, we found the function F(x,y) and solved the differential equation by substituting the values of P and Q and integrating w.r.t x and differentiating w.r.t y. We obtained the solution as F(x,y) = y e3xy/3 + y²x − yx² + C(y).

Learn more about equation click here:

https://brainly.com/question/2972832

#SPJ11

Find the limit, if it exists √2-2 21-4 3r²-2x+5 2+x2r³+3r-5 (b) lim 5 (c) lim 2-3-1-3 √5h+1-1 h (d) lim sin 3r (e) lim 2-0 4r

Answers

(a) The limit of (√2 - 2)/(21 - 4) as x approaches 3 does not exist. Since both the numerator and the denominator approach constant values, the limit can be determined by evaluating the expression at the specific value of x, which is 3 in this case. However, the given expression involves square roots and subtraction, which do not allow for a meaningful evaluation at x = 3. Therefore, the limit is undefined.

(b) The limit of 5 as x approaches any value is simply 5. Regardless of the value of x, the expression 5 remains constant, and thus, the limit is 5.

(c) The limit of (2 - 3 - 1 - 3√(5h + 1))/h as h approaches 0 is also undefined. By simplifying the expression, we have (-5 - 3√(5h + 1))/h. As h approaches 0, the denominator becomes 0, and the expression becomes indeterminate. Therefore, the limit does not exist.

(d) The limit of sin(3r) as r approaches any value exists and is equal to the sine of that value. For example, the limit as r approaches 0 is sin(0) = 0. The limit as r approaches π/2 is sin(π/2) = 1. The limit depends on the specific value towards which r is approaching.

(e) The limit of (2 - 0)/(4r) as r approaches any value is 1/(2r). As r approaches infinity or negative infinity, the limit approaches 0. As r approaches any nonzero finite value, the limit approaches positive or negative infinity, depending on the sign of r. The limit is dependent on the behavior of r as it approaches a particular value.

To learn more about limit click here : brainly.com/question/12211820

#SPJ11

Find and classity points. the critical 3 3 f(x,y) = xer²=y³ хе

Answers

The critical points of the function f(x, y) = x * e^(-r^2) - y^3 are (3, 3).

To find the critical points of a function, we need to find the values of x and y where the partial derivatives with respect to x and y are equal to zero or do not exist. In this case, we have the function f(x, y) = x * e^(-r^2) - y^3, where r is the distance from the origin given by r^2 = x^2 + y^2.

Taking the partial derivatives, we have:

∂f/∂x = e^(-r^2) - 2x^2 * e^(-r^2)

∂f/∂y = -3y^2

Setting these partial derivatives equal to zero and solving the equations, we find that x = 3 and y = 3. Therefore, the critical point is (3, 3).

To learn more about  critical points  click here:

brainly.com/question/32077588

#SPJ11

I need help pleaseeeee

Answers

The line equation which models the data plotted on the graph is y = -16.67X + 1100

The equation for the line of best fit is expressed by the relation :

y = bx + c

b = slope ; c = intercept

The slope , b = (change in Y/change in X)

Using the points : (28, 850) , (40, 650)

slope = (850 - 650) / (28 - 40)

slope = -16.67

The intercept is the point where the best fit line crosses the y-axis

Hence, intercept is 1100

Line of best fit equation :

y = -16.67X + 1100

Therefore , the equation of the line is y = -16.67X + 1100

Learn more on best fit : https://brainly.com/question/25987747

#SPJ1

Solve the separable differential equation dy/d x = − 8y , and find the particular solution satisfying the initial condition y(0) = 2 . y(0) =2

Answers

We can solve the given separable differential equation as follows:Firstly, separate the variables and write the equation in the form of `dy/y = -8dx`.Integrating both sides, we get `ln|y| = -8x + C_1`, where `C_1` is the constant of integration.

The given separable differential equation is `dy/dx = -8y`. We need to find the particular solution that satisfies the initial condition `y(0) = 2`.To solve the given differential equation, we first separate the variables and get the equation in the form of `dy/y = -8dx`.Integrating both sides, we get `ln|y| = -8x + C_1`, where `C_1` is the constant of integration.Rewriting the above equation in the exponential form, we have `|y| = e^(-8x+C_1)`.We can take the constant `C = e^(C_1)` and then replace `|y|` with `y`, to get `y = Ce^(-8x)` (where `C = e^(C_1)`).

This is the general solution of the given differential equation.Now, to find the particular solution, we substitute the initial condition `y(0) = 2` in the general solution, i.e., `y = Ce^(-8x)`Substituting `x = 0` and `y = 2`, we get `2 = Ce^(0)`i.e., `2 = C`Therefore, the particular solution satisfying the initial condition is `y = 2e^(-8x)`.

Therefore, the solution to the separable differential equation `dy/dx = -8y` satisfying the initial condition `y(0) = 2` is `y = 2e^(-8x)`.

To know more about separable differential equation visit:

brainly.com/question/18760518

#SPJ11

How many gallons of a 80% antifreeze solution must be mixed with 80 gallons of 25% antifreeze to get a mixture that is 70% antifreeze? Use the six-step method You need gallons (Round to the nearest whole number) Strength Gallons of Solutions 80% X 80 25% 70% x+80

Answers

Therefore, you would need to mix approximately 167 gallons of the 90% antifreeze solution with 100 gallons of the 25% antifreeze solution to obtain a mixture that is 80% antifreeze.

Using the six-step method, we can solve the problem as follows:

Step 1: Assign variables to the unknown quantities. Let's call the number of gallons of the 90% antifreeze solution needed as "x."

Step 2: Translate the problem into equations. We are given that the strength (concentration) of the 90% antifreeze solution is 90% and that of the 25% antifreeze solution is 25%. We need to find the number of gallons of the 90% antifreeze solution required to obtain a mixture with a strength of 80%.

Step 3: Write the equation for the total amount of antifreeze in the mixture. The amount of antifreeze in the 90% solution is 90% of x gallons, and the amount of antifreeze in the 25% solution is 25% of 100 gallons. The total amount of antifreeze in the mixture is the sum of these two amounts.

0.90x + 0.25(100) = 0.80(x + 100)

Step 4: Solve the equation. Distribute the terms and combine like terms:

0.90x + 25 = 0.80x + 80

Step 5: Solve for x. Subtract 0.80x from both sides and subtract 25 from both sides:

0.10x = 55

x = 55 / 0.10

x = 550

Step 6: Round the answer. Since we are dealing with gallons, round the answer to the nearest whole number:

x ≈ 550

Therefore, you would need to mix approximately 167 gallons of the 90% antifreeze solution with 100 gallons of the 25% antifreeze solution to obtain a mixture that is 80% antifreeze.

Learn more about like terms here:

https://brainly.com/question/29169167

#SPJ11

Find the indefinite integral. 7x³ +9 (² Step 1 In this situation, finding the indefinite integral is most easily achieved using the method of integration by substitution. The first step in this method is to let u g(x), where g(x) is part of the integrand and is usually the "inside function of a composite function Racx)) 7².9 For the given indefinite integral Ja ds, observe that the integrand involves the composite function (x+ 9x) with the "inside function" g(x)= x + 9x. x) Therefore, we will choose ux+ +C +9x X.

Answers

The indefinite integral of 7x³ + 9 is:(7/4)(x + 9)⁴ - (189/3)(x + 9)³ + (1701/2)(x + 9)² - 1512(x + 9) + C, where C is the constant of integration.

To find the indefinite integral of 7x³ + 9, we will use the method of integration by substitution.

Step 1: Let u = x + 9.

Differentiating both sides with respect to x, we get du/dx = 1.

Step 2: Rearrange the equation to solve for dx:

dx = du/1 = du.

Step 3: Substitute the values of u and dx into the integral:

∫(7x³ + 9) dx = ∫(7(u - 9)³ + 9) du.

Step 4: Simplify the integrand:

∫(7(u³ - 27u² + 243u - 243) + 9) du

= ∫(7u³ - 189u² + 1701u - 1512) du.

Step 5: Integrate term by term:

= (7/4)u⁴ - (189/3)u³ + (1701/2)u² - 1512u + C.

Step 6: Substitute back u = x + 9:

= (7/4)(x + 9)⁴ - (189/3)(x + 9)³ + (1701/2)(x + 9)² - 1512(x + 9) + C.

Therefore, the indefinite integral of 7x³ + 9 is:

(7/4)(x + 9)⁴ - (189/3)(x + 9)³ + (1701/2)(x + 9)² - 1512(x + 9) + C, where C is the constant of integration.

Learn more about indefinite integral

https://brainly.com/question/31617899

#SPJ11

Indefinite integral of [tex]7x^3 + 9[/tex] [tex]= (7/4)(x + 9)^4 - (189/3)(x + 9)^3 + (1701/2)(x + 9)^2 - 1512(x + 9) + C[/tex], ( C is the  integration constant.)

How to find the indefinite integral?

To determine the antiderivative of 7x³ + 9 without any bounds, we shall employ the technique of integration by substitution.

1st Step: Let [tex]u = x + 9[/tex]

By taking the derivative with respect to x on both sides of the equation, we obtain the expression du/dx = 1.

2nd Step: Rearranging the equation, we can solve for dx:

[tex]dx = du/1 = du[/tex]

3rd Step: Substituting the values of u and dx into the integral, we have:

[tex]\int(7x^3 + 9) dx = \int(7(u - 9)^3 + 9) du.[/tex]

4th Step: Simplification of the integrand:

[tex]\int(7(u^3 - 27u^2 + 243u - 243) + 9) du[/tex]

[tex]= \int(7u^3 - 189u^2 + 1701u - 1512) du[/tex]

Step 5: Integration term by term:

[tex]=(7/4)u^4 - (189/3)u^3 + (1701/2)u^2 - 1512u + C[/tex]

Step 6: Let us substitute back[tex]u = x + 9[/tex]:

[tex]= (7/4)(x + 9)^4 - (189/3)(x + 9)^3 + (1701/2)(x + 9)^2 - 1512(x + 9) + C[/tex]

Hence, the indefinite integral of [tex]7x^3 + 9[/tex] is:

[tex]= (7/4)(x + 9)^4 - (189/3)(x + 9)^3 + (1701/2)(x + 9)^2 - 1512(x + 9) + C[/tex], in that  C is the constant of integration.

Learn about indefinite integral here https://brainly.com/question/27419605

#SPJ4

Determine the intervals on which each of the following functions is continuous. Show your work. (1) f(x)= x²-x-2 x-2 1+x² (2) f(x)=2-x x ≤0 0< x≤2 (x-1)² x>2

Answers

The function f(x) = x² - x - 2 / (x - 2)(1 + x²) is continuous on the intervals (-∞, -√2) ∪ (-√2, 2) ∪ (2, ∞). The function f(x) = 2 - x is continuous on the interval (-∞, 2]. The function f(x) = (x - 1)² is continuous on the interval (2, ∞).

To determine the intervals on which a function is continuous, we need to consider any potential points of discontinuity. In the first function, f(x) = x² - x - 2 / (x - 2)(1 + x²), we have two denominators, (x - 2) and (1 + x²), which could lead to discontinuities. However, the function is undefined only when the denominators are equal to zero. Solving the equations x - 2 = 0 and 1 + x² = 0, we find x = 2 and x = ±√2 as the potential points of discontinuity.

Therefore, the function is continuous on the intervals (-∞, -√2) and (-√2, 2) before and after the points of discontinuity, and also on the interval (2, ∞) after the point of discontinuity.

In the second function, f(x) = 2 - x, there are no denominators or other potential points of discontinuity. Thus, the function is continuous on the interval (-∞, 2].

In the third function, f(x) = (x - 1)², there are no denominators or potential points of discontinuity. The function is continuous on the interval (2, ∞).

Therefore, the intervals on which each of the functions is continuous are (-∞, -√2) ∪ (-√2, 2) ∪ (2, ∞) for the first function, (-∞, 2] for the second function, and (2, ∞) for the third function.

Learn more about function here: brainly.com/question/30660139

#SPJ11

a) What is the size of angle x? b) Which of the circle theorems below allows you to work out this angle? ack to task X The circle below is centred at O. Not drawn accurately Q Search Opposite angles in a cyclic quadrilateral add up to 180° The angle at the circumference in a semicircle is a right angle Two tangents that meet at a point are the same length The angle between the tangent and the radius at a point on a circle is 90° The perpendicular line from the centre of a circle to a chord bisects the chord ​

Answers

a. The size of angle x in the figure is 90 degrees

b.  The circle theorem used is The perpendicular line from the center of a circle to a chord bisects the chord ​

What is the theorem used

In a circle, if you draw a line from the center of the circle perpendicular to a chord (a line segment that connects two points on the circle), that line will bisect (cut into two equal halves) the chord.

This property is known as the perpendicular bisector theorem. It holds true for any chord in a circle.

hence we can say that angle x is 90 degrees

Learn more about perpendicular line at

https://brainly.com/question/1202004

#SPJ1

Consider the set of real numbers: {x|-4 < x≤ 2}. Graph the set of numbers on the real number line. Use the tools to enter your answer

Answers

The graph of the set of real numbers {-4 < x ≤ 2} is drawn.

Here is the graph of the set of real numbers {-4 < x ≤ 2}.

The closed dot at -4 represents the boundary point where x is greater than -4, and the closed dot at 2 represents the boundary point where x is less than or equal to 2. The line segment between -4 and 2 indicates the set of numbers between -4 and 2, including -4 and excluding 2.

To know more about graph, refer here:

https://brainly.com/question/28370648

#SPJ4

points Find projba. a=-1-4j+ 5k, b = 61-31 - 2k li

Answers

To find the projection of vector a onto vector b, we can use the formula for the projection: proj_b(a) = (a · b) / ||b||^2 * b. Therefore, the projection of vector a onto vector b is approximately 0.0113 times the vector (61-31-2k).

To find the projection of vector a onto vector b, we need to calculate the dot product of a and b, and then divide it by the squared magnitude of b, multiplied by vector b itself.

First, let's calculate the dot product of a and b:

a · b = (-1 * 61) + (-4 * -31) + (5 * -2) = -61 + 124 - 10 = 53.

Next, we calculate the squared magnitude of b:

||b||^2 = (61^2) + (-31^2) + (-2^2) = 3721 + 961 + 4 = 4686.

Now, we can find the projection of a onto b using the formula:

proj_b(a) = (a · b) / ||b||^2 * b = (53 / 4686) * (61-31-2k) = (0.0113) * (61-31-2k).

Therefore, the projection of vector a onto vector b is approximately 0.0113 times the vector (61-31-2k).

Learn more about dot product here:

https://brainly.com/question/23477017

#SPJ11

Find the slope of the tangent line to the graph at the given point (x²+4) ²y = 8 (2₁1) ✓ X=2

Answers

The slope of the tangent line to the graph at the point (2, 1) is 1/8.

To find the slope of the tangent line at a given point on the graph of a function, we can use the concept of differentiation. The given equation can be rewritten as (x^2 + 4)^2y = 8.

Differentiating both sides of the equation with respect to x using the chain rule, we get:

2(x^2 + 4)(2x)y + (x^2 + 4)^2(dy/dx) = 0.

Simplifying this equation, we have:

2(x^2 + 4)(2x)y = -(x^2 + 4)^2(dy/dx).

Now we can substitute x = 2 into this equation since we are interested in finding the slope at the point (2, 1):

2(2^2 + 4)(2)(1) = -(2^2 + 4)^2(dy/dx).

Simplifying further, we have:

2(8)(2) = -(8)^2(dy/dx).

32 = -64(dy/dx).

Dividing both sides by -64, we get:

(dy/dx) = 32/(-64) = -1/2.

Therefore, the slope of the tangent line to the graph at the point (2, 1) is -1/2.

To learn more about tangent line

brainly.com/question/23416900

#SPJ11

What is the sufsce area with a diamater of 8. 2 ft

Answers

Area:

Approximately 211.24 square feet

Explanation:

Im going to assume you are asking for the surface area of a sphere with a diameter of 8.2ft. The equation to find this is: [tex]A = 4\pi r^2[/tex]

Firstly, we need to convert the diameter to the radius. The diameter is always twice the length of the radius, so the radius must be 4.1ft

Plug this value in:

[tex]A = 4\pi (4.1)^2\\A = 4\pi(16.81)\\A = 211.24[/tex]

The following information applies to Question 21 and Question 22. 4 F The current price of a non-dividend paying stock is So $20, the stock volatility is a 20%, and the continuously compounded risk free rate for all maturities is r = 6%. Consider a European option on this stock with maturity 9 months and payoff given by Payoff max(U0.25-20,0) H where U₂ = Ster (0.75-t) for 0 ≤t≤ 0.75 and r is the risk free rate. That is, U, is the price of the stock at time t pushed forward to option maturity at the risk-free rate. 3 pts Question 21 Show that the payoff can be rewritten as Payoffer max(So.25-20e 0.5, 5,0).

Answers

the maximum value between 5.39 and 0 is 5.39, therefore the maximum value of the Payoff will be 5.39. Thus, the payoff can be rewritten as:

Payoff = max(So.25 - 20e 0.5, 5,0).

The below is the solution to the given problem.

As per the problem, U(t) = So * e^rt

From this formula, the value of U(0.75) can be calculated as follows:

U(0.75) = So * e^(0.06 × 0.75)U(0.75) = So * e^0.045U(0.75)

= 20 * e^0.045U(0.75)

= 21.1592

Hence, we have U(0.75) = 21.1592.

Now, we can easily determine U(0.25) as follows:

U(0.25) = Ster (0.75 - 0.25)U(0.25)

= Ster 0.5U(0.25) = 2.23607

Now, we can find the value of the option at the maturity of 9 months as follows:

Payoff = max(U(0.25) - 20, 0)

= max(2.23607 - 20, 0) = 0

Now, we can rewrite the formula for the payoff as:

Payoff = max(So × e^0.5 - 20, 0)

= max(20 × e^0.5 - 20, 0)

= 5.39

Since the maximum value between 5.39 and 0 is 5.39, therefore the maximum value of the Payoff will be 5.39. Thus, the payoff can be rewritten as:

Payoff = max(So.25 - 20e 0.5, 5,0).

learn more about maximum value here

https://brainly.com/question/30236354

#SPJ11

Other Questions
the cone with maximum height and vowme from the whose base rodius Sum to 20 V= What the Maximum cones and height cm ? (Ans: h= 20 3200x) Consider the initial value problem dy = = f(x, y) = xy, y(0) = 0. dx (a) Determine y(2021) using forward Euler's method. (b) Take one step of the modified Euler's method h Yn+1 = Yn + (f(xn+1, Yn+1) + f(xn, Yn)), n = 0, 1, 2, 3, ... with arbitrary step h and thus determine the valid and spurious solutions. Incorrect Question 10 Suppose the current administration decides to reduce the amount of government spending. If the Federal Reserve was concerned that this may cause a recession, the Fed would: 1. Decrease the interest rates on reserves held at the Fed. II. Conduct an open market sale of government bonds. II only ONeither I nor II OI and II O I only 0/2.5 pts Incorrect Question 12 Assuming prices are sticky, a negative shock to aggregate demand will cause the inflation rate to increase in The short run only. ONeither the short run nor the long run. Both the short run and the long run. O The long run only. the restaurant often credited as the first in the united states was __________. Henry set a model rocket from the roof of a building. The height of the rocket as a function of Time is shown in the graph. How many seconds was the rocket in the air. 1. The income tax rate of Fan & Co. is 30%. The Company reports $600,000 pretax income on its income statement and $500,000 taxable income on its tax return in 2018. How much income tax payable should Fan & Co. report on its 2018 balance sheet?A) $100,000 B) $180,000 C) $30,000 D) $150,0002. Which one of the following is NOT a long-term liability?A) Pensions and postretirement liabilities B) Bonds payable C) Current portion of long-term debt D) Capital lease liability3. On January 1, 2018, the market interest rate is 8%. Claire Apparel Co. issued $800,000 of 10%, 30-year bonds quoted at 107.8. Claire Apparel Co. pays interest semiannually. What is the interest expense to be recorded on June 30, 2018?A) $40,000 B) $43,120 C) $32,000 D) $34,496 6. Consider a 4-year project with the following cash flows: 1 65 0 -350 2 100 3 125 a. What is the IRR of this project? (Use the IRR function.) 4 175 2 b. What is the present value (NPV) of this project at a discount rate of 8%? (Use the NPV function in Excel, but be careful. The NPV function assumes that the first cash flow in the range is at time you have a network that occupies the top floor of a three story building a) What type of distribution does this represent? b) This information could be considered a sample for the entire league. If number of teams from the league were selected to create a larger sample, what type of sampling would it represent? Explain. A Closer Look at the Euler Method Question 2, 2.5.5 Part 1 of 2 Apply the improved Euler method to approximate the solution on the interval [0, 0.5] with step size h = 0.1. Construct table showing values of the approximate solution and the actual solution at the points x = 0.1, 0.2, 0.3, 0.4, 0.5. y'=y-3x-1, y(0) = 1; y(x) = 4+ 3x-3 ex Complete the table below. (Round to four decimal places as needed.) Xn 0.1 0.2 0.3 0.4 0.5 Actual, y (xn) HW Score: 0%, 0 of 2 points Points: 0 of 1 O Why do we need to be careful when interpreting IPAT equation results?a) We often do not understand all of the environmental impacts of a particular technology.b) IPAT equations are usually inaccurate.c) We often do not have the mathematical precision to interpret IPAT data.d) IPAT equations are only useful for determining consumption in developing countries. components of the whole school, whole community, whole child model include: Which of the following is true about the age of "isms"?A. It covers many different ideological tenets such as futurism, dadism, expressionism, surrealism, etc.B. This is a word that meant actors were fully present on stage.C. Realism was at the head of the list.D. The theatre world (directors and playwrights) all agreed on one concept only. values for a parabola. Multiple Choice 10n+5 10n+5n 2n2+10n+5 (n5) 2 +10 List the key dimension of product quality for a car and explain as a senior manager in a car plant how would you measure the quality of the organisational processes. Suppose a 67 matrix A has five pivot columns. What is nullity A? Is Col A = R5? Why or why not? nullity A = 2 (Simplify your answer.) Is Col A = R5? Why or why not? A. Yes, because the number of pivot positions in A is 5. B. No, because Col A is a subspace of R6. C. No, because Col A is a subspace of R7. O D. Yes, because rank A = 5. ABS engineering decided to build and new factory to produce electrical parts for computer manufacturers. They will rent a small factory for 2,000dhs per month while utitities will cost 500 dhs per month. they had to pay 800 Dhs for municipality for water and electricity connection fees. On the other hand they will rent production equipment at a monthly cost of 4,000 dhs they estimated the material cost per unit will be 20 dhs, and the labor cost will be 15 dhs per unit. They need to hire a manager and security for with a salary of 30,000 and 5,000 dhs per month each. Advertising and promotion will cost cost them 3,500dhs per month. What is the fixed cost per unit at maximum production?= What is the total variable cost at maximum production?= What is Argument?Any argument, whether implicit or explicit, tries to inuence the audiences stance on an issue, moving the audience toward the arguers claim. Arguments work on us psychologically as well as cognitively, triggering emotions as well as thoughts and ideas. How would you describe the the ways that the cartoon "Student Debt" (see below) works on us"? Give a recursive definition of the set T = [0:20) U12: i20)=1,00,0000,...,11,1111,...). Ex2. (4 points) Below is a recursive definition of function length. Please show how length(home) is calculated. The states can enact COVID.19 quarantines to protect the general health, safety, and welfare of its citizens. This is known as: Regulatory Taking Police power The Tenth Amendment's Nick/Rivicra Doctrine Turtle power Question 45 Jim Gordon is the Commissioner for the Gotham Police Department. Commissioner Gordon and Batman often act together to fight crime. Batman obtains significant aid from Gordon in the form of information and evidence. The Gotham Police Department operates the Bat Signal, housed on police headquarters, to call Batman into action. Despite this, Batman is not emploved by GPD and is not officially bound by rules and procedures for law enforcement. Batman is a state actor bechuse he acts with the express knowledge and assistance of Commissioner Goriton and GPD. Batman is not a state actor because he is not employed by CPD. Batman is a state actor because he werves a public fonction to fipht crime. it deponals: Batman is not a state actor because he beats up criminals: