Answer:
y = -x.
Step-by-step explanation:
The slope of the line (m) = -1. ( because of the -x in y = -x - 5)
y - y1 = m (x - x1) where (x1, y1) is a point on the line, so we get;
y - 2 = -1(x - (-2))
y - 2 = -x + -1 * +2
y - 2 = -x - 2
y = -x.
prove that
[tex]2 \tan30 \div 1 + tan ^{2} 30 = sin60[/tex]
prove that
.
Step-by-step explanation:
2tan 30° / 1 + tan² 30° =
2(⅓√3) /1 + (⅓√3)² =
⅔√3 / 1+ ⅓ =
⅔√3 / 4/3 =
2/4 √3 =
½√3 = sin 60° (proven)
The accompanying data represent the homework scores for material for a random sample of students in a college algebra course.
36
47
54
58
60
66
66
68
69
70
72
75
77
77
78
78
78
79
79
79
79
79
80
82
84
85
86
86
86
87
89
89
91
92
92
93
93
94
96
99
(a) Construct a relative frequency distribution with a lower class limit of the first class equal to 30 and a class width of 10.
(b) What is the probability a randomly selected student fails the homework (scores less than 70)? (The standard deviation is 13.64)
Simplify your answer to two decimal places.
Answer:
[tex]\begin{array}{ccc}{Class} & {Frequency} & {Relative\ Frequency} &{30-39} & {1} & {0.025} & {40-49} & {1} & {0.025} & {50 - 59} & {2} & {0.050} & {60 - 69} & {5} & {0.125} & {70 - 79} & {13} & {0.325} & {80 - 89} & {10} & {0.250} & {90 - 99} & {8} & {0.200} &{Total} & {40} & {1}\ \end{array}[/tex]
[tex]P(x < 70) = 0.225[/tex]
Step-by-step explanation:
Given
[tex]Lower = 30[/tex]
[tex]Width = 10[/tex]
Solving (a): The relative frequency table
First, we construct the frequency table using the given parameters.
[tex]\begin{array}{cc}{Class} & {Frequency} &{30-39} & {1} & {40-49} & {1} & {50 - 59} & {2} & {60 - 69} & {5} & {70 - 79} & {13} & {80 - 89} & {10} & {90 - 99} & {8} & {Total} & {40}\ \end{array}[/tex]
The relative frequency (RF) is calculated as:
[tex]RF = \frac{Frequency}{Total}[/tex]
Using the above formula to calculate the relative frequency, the relative frequency table is:
[tex]\begin{array}{ccc}{Class} & {Frequency} & {Relative\ Frequency} &{30-39} & {1} & {0.025} & {40-49} & {1} & {0.025} & {50 - 59} & {2} & {0.050} & {60 - 69} & {5} & {0.125} & {70 - 79} & {13} & {0.325} & {80 - 89} & {10} & {0.250} & {90 - 99} & {8} & {0.200} &{Total} & {40} & {1}\ \end{array}[/tex]
Solving (b): [tex]P(x < 70)[/tex]
To do this, we add up the relative frequencies of classes less than 70.
i.e.
[tex]P(x < 70) = [30 - 39] + [40 - 49] + [50 - 59] + [60 - 69][/tex]
So, we have:
[tex]P(x < 70) = 0.025 + 0.025 + 0.050 + 0.125[/tex]
[tex]P(x < 70) = 0.225[/tex]
what is the difference between the products of the digits in 425 and the sum of the digits in the numeral 92784
Answer: 10
Step-by-step explanation:
4 x 2 x 5 = 40
9 + 2 + 7 + 8 + 4 = 30
40 - 30 = 10
= 10
Make a substitution to express the integrand as a rational function and then evaluate the integral. int_(25)^(81) sqrt(x)/(x-1) dx
Let y = √x, so that y ² = x and 2y dy = dx. Then the integral becomes
[tex]\displaystyle \int_{25}^{81} \frac{\sqrt x}{x-1}\,\mathrm dx = \int_{\sqrt{25}}^{\sqrt{81}} \frac y{y^2-1}(2y\,\mathrm dy) = 2 \int_5^9 \frac{y^2}{y^2-1}\,\mathrm dy[/tex]
Now,
y ² / (y ² - 1) = 1 + 1 / (y ² - 1) = 1 + 1/2 (1/(y - 1) - 1/(y + 1))
so integrating gives us
[tex]\displaystyle 2\int_5^9\frac{y^2}{y^2-1}\,\mathrm dy= \int_5^9\left(2+\frac1{y-1}-\frac1{y+1}\right)\,\mathrm dy \\\\= (2y+\ln|y-1|-\ln|y+1|)\bigg|_5^9 \\\\= \boxed{8+\ln\left(\dfrac65\right)}[/tex]
Translate the following into an algebraic expression: If it would take Mark m hours to clean the house alone and with his brother Sam they can clean the house together in t hours. How many hours would it have taken Sam if he was working alone
Find the area of the figure
Answer:
24
Step-by-step explanation:
divide the area in 2 regions
4 x 2 = 8 (area of one region)
4 x 4 = 16 (area of second region)
8 + 16 = 24 (sum of areas of the two regions)
Barnaby decided to count the number of ducks and geese flying south for the winter. On the first day he counted 175 ducks and 63 geese. By the end of migration, Barnaby had counted 4,725 geese. If the ratio of ducks to geese remained the same (175 to 63), how many ducks did he count?
Answer:
13,125 ducks
Step-by-step explanation:
The ratio of ducks:geese on the first day was:
175:63
On the last day (end of migration), he counted 4,725 geese.
To find the number of ducks using the same ratio, we are first going to divide 4,725 by 63 to find what number all the ducks and geese multiplied by:
4,725/63 = 75
The geese multiplied by 75. This means the ducks also multiplied by 75:
175*75 = 13,125
Barnaby counted 13,125 ducks.
Hope it helps (●'◡'●)
will give brainyest (m^2/3 n^-1/3)^6
Step-by-step explanation:
here is the answer to your question
I will assign a question at around 9:00 today (July 3, 2021) for a huge amount of points. I won’t say where on Brainly. Good luck.
Answer:
ಠ_ಠ
Step-by-step explanation:
Which of these is an example of technology?
an idea for a story
the first wheel ever built
an engineer
Answer:
the first wheel ever built
Answer:
The first wheel ever built
Step-by-step explanation
(*) Sorry for my late answer but I hope this helps others that are looking for this.
100% in the test :)
What is the inverse of function f? f(x)=3-x/7
Answer:
[tex] {f}^{ - 1} (x) = \frac{x}{3} + \frac{7}{3} [/tex]
hence option d is the correct option.
Answer:
Option C is answer.
Step-by-step explanation:
Hey there!
Given;
f(x) = (3-x) /7
Let f(x) be "y".
y = (3-x) /7
Interchanging "x" and "y".
x = (3-y)/7
7x = 3-y
y = 3-7x
Therefore, f'(x) = 3-7x.
Hope it helps!
Which of the following is not true regarding the flow of information from the adjusted trial balance on the end-of-period spreadsheet?
The correct statement about the flow of information from the adjusted trial balance on the end-of-period spreadsheet is A. The revenue and expense account balances flow into the income statement.
What is an Adjusted Trial Balance?This refers to the general ledger balance after some changes have been done an account balance such as accrued expenses, depreciation, etc.
Therefore, we can see that from the complete information, the statement that is false about the adjusted trial balance on the end-of-period spreadsheet is option A because the revenue and expense account balances does not flow into the income statement.
The other options from the complete text are:
a. The revenue and expense account balances flow into the income statement.b. The asset and liability account balances flow into the retained earnings statement.c. The revenue and expense account balances flow into the retained earnings statement.d. The retained earnings and dividends account balances flow into the balance sheet.
Read more about adjusted trial balance here:
https://brainly.com/question/14476257
#SPJ6
A student estimated based on the video that the ball left my hand 1.65 meters off the ground, and after 0.58 seconds the ball reached the maximum height of 3.26 meters. Use this information to find an equation of the form h = a ( t − t 1 ) 2 + h 1 for the height of the ball, in meters, after t seconds. h =
9514 1404 393
Answer:
h = -4.79(t -0.58)^2 +3.26
Step-by-step explanation:
The coordinates (t1, h1) are the time and height at the maximum. Then 'a' can be found from ...
h = a(t -t1)^2 +h1
1.65 = a(0 -0.58)^2 +3.26
-1.61 = 0.3364a . . . . . subtract 3.26
-4.786 = a . . . . . . . divide by the coefficient of a
The equation is ...
h = -4.79(t -0.58)^2 +3.26
7. What is given in the problem?
A. Radius of 80m C. Radius of 80 ft.
B. Diameter of 40 ft. D. Diameter of 40 m paki sagot
Answer:
radius of 80cm is the answer
f(x) = 1
g(x) = x - 4
Can you evaluate (g•f)(0)? Explain why or why not?
Answer:
This is a multiplication of functions g and f, and these functions have no restrictions(such as a even root or a fraction), and thus [tex](g \mult f)(0) = g(0)f(0) = -4(1) = -4[/tex]
Step-by-step explanation:
We are given the following functions:
[tex]f(x) = 1[/tex]
[tex]g(x) = x - 4[/tex]
Can you evaluate (g•f)(0)?
This is a multiplication of functions g and f, and these functions have no restrictions(such as a even root or a fraction), and thus [tex](g \mult f)(0) = g(0)f(0) = -4(1) = -4[/tex]
Answer:
To evaluate the composition, you need to find the value of function f first. But, f(0) is 1 over 0, and division by 0 is undefined. Therefore, you cannot find the value of the composition.
You must evaluate the function f first.
Division by 0 is undefined.
The composition cannot be evaluated.
How many outcomes (sample points) for a deal of two cards from a 52-card deck are possible? Report your answer as an integer.
Answer:
1326
Step-by-step explanation:
[tex]{52\choose2}=\frac{52!}{(52-2)!2!}=\frac{52!}{50!*2!}=1326[/tex]
Round off to the underlined place values. 1 0.5242 2. 2.1616 3. 5.4852 4. 0.5862 5. 5.9658 6. 2.8959 7. 8.2584 8. 8.8956 9. 4.1492 1 5481
Answer:
wheres the underline pls let me know what is underlined ill answer it on comment
Two competitive brothers, who work in two different industries, were comparing their salaries. Because there is a difference of 4 years in their respective work experience, they decided to compare, not their actual salaries, but to compare their salaries against their company averages to see who is doing better. The following gives the brothers salaries, companies mean, and standard deviation for each company
Brother Salary P sd
Tom 84000 75000 7000
Andy 70578 60000 8200
What is the 2-score of Andy's salary?
a. 1.89
b. 1.89
c. 1.29
d. 0-129
Answer:
c. 1.29
Step-by-step explanation:
Z-score:
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Andy 70578 60000 8200
This means that [tex]X = 70578, \mu = 60000, \sigma = 8200[/tex]
What is the z-score of Andy's salary?
This is Z, so:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{70578 - 60000}{8200}[/tex]
[tex]Z = 1.29[/tex]
So the correct answer is given by option c.
If f(x) = 3X + 10x and g(x) = 4x - 2, find (f+g)(x).
O A. 17x - 2
O B. 3* + 6x + 2
O C. 3* - 6x + 2
D. 3X + 14x-2
help!!!
How many different committees can be formed from 12 teachers and 43 students if the committee consists of 3 teachers and 4 students?
The committee of 7 members can be selected in BLANK
different ways.
Answer:
27150200Step-by-step explanation:
Combination of 3 teachers out of 12:
12C3 = 12!/9!3! = 10*11*12/2*3 = 220Combination of 4 students out of 43:
43C4 = 43!/39!4! = 40*41*42*43/2*3*4 = 123410Total combinations:
220*123410 = 27150200please solve both i have been struggling
Answer:
3
Step-by-step explanation:
make a column of x ,f, fx
then write income in x and no.of workers in f
andthen multiply both just like 100*3 ,100*2, 300*p, 400*2,500*1 write its answer fx
add the all fx and use this formula
mean =fx /n
260=adding total of fx divide by 5
Repeat same formula in no 2
Thirty-six percent of customers who purchased products from an e-commerce site had orders exceeding 110. If 17% of customers have orders exceeding 110 and also pay with the e-commerce site's sponsored credit card, determine the probability that a customer whose order exceeds 110 will pay with the sponsored credit card.
Answer:
The right solution is "0.5".
Step-by-step explanation:
According to the question,
P(pay with the sponsored credit card | order exceeds $110)
= [tex]\frac{P(Pay \ with \ the \ sponsored \ credit\ card\ and\ order\ exceeds\ 110)}{P(order \ exceeds \ 110)}[/tex]
= [tex]\frac{P(A \ and \ B)}{P(A)}[/tex]
By putting the values, we get
= [tex]\frac{0.17}{0.34}[/tex]
= [tex]0.5[/tex]
Thus, the above is the right solution.
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 24 customers per hour or 0.4 customers per minute.
a. What is the mean or expected number of customers that will arrive in a five-minute period?
b. Assume that the Poisson probability distribution can be used to describe the arrival process. Use the arrival rate in part (a) and compute the probabilities that exactly 0, 1, 2, and 3 customers will arrive during a five-minute period.
c. Delays are expected if more than three customers arrive during any five-minute period. What is the probability that delays will occur?
2. In the Willow Brook National Bank waiting line system (see Problem 1), assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 36 customers per hour, or 0.6 customers per minute. Use the exponential probability distribution to answer the following questions:
a. What is the probability that the service time is one minute or less?
b. What is the probability that the service time is two minutes or less?
c. What is the probability that the service time is more than two minutes?
Answer:
1.
a. 2
b. 0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.
c. 0.1428 = 14.28% probability that delays will occur.
2.
a. 0.4512 = 45.12% probability that the service time is one minute or less.
b. 0.6988 = 69.88% probability that the service time is two minutes or less.
c. 0.3012 = 30.12% probability that the service time is more than two minutes.
Step-by-step explanation:
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Exponential distribution:
The exponential probability distribution, with mean m, is described by the following equation:
[tex]f(x) = \mu e^{-\mu x}[/tex]
In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.
The probability that x is lower or equal to a is given by:
[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]
Which has the following solution:
[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]
The probability of finding a value higher than x is:
[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]
Question 1:
a. What is the mean or expected number of customers that will arrive in a five-minute period?
0.4 customers per minute, so for 5 minutes:
[tex]\mu = 0.4*5 = 2[/tex]
So 2 is the answer.
Question b:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-2}*2^{0}}{(0)!} = 0.1353[/tex]
[tex]P(X = 1) = \frac{e^{-2}*2^{1}}{(1)!} = 0.2707[/tex]
[tex]P(X = 2) = \frac{e^{-2}*2^{2}}{(2)!} = 0.2707[/tex]
[tex]P(X = 3) = \frac{e^{-2}*2^{3}}{(3)!} = 0.1805[/tex]
0.1353 probability that exactly 0 customers will arrive during a five-minute period, 0.2707 that exactly 1 customer will arrive, 0.2707 that exactly 2 customers will arrive and 0.1805 that exactly 3 customers will arrive.
Question c:
This is:
[tex]P(X > 3) = 1 - P(X \leq 3)[/tex]
In which:
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
The values we have in item b, so:
[tex]P(X \leq 3) = 0.1353 + 0.2707 + 0.2707 + 0.1805 = 0.8572[/tex]
[tex]P(X > 3) = 1 - P(X \leq 3) = 1 - 0.8572 = 0.1428[/tex]
0.1428 = 14.28% probability that delays will occur.
Question 2:
[tex]\mu = 0.6[/tex]
a. What is the probability that the service time is one minute or less?
[tex]P(X \leq 1) = 1 - e^{-0.6} = 0.4512[/tex]
0.4512 = 45.12% probability that the service time is one minute or less.
b. What is the probability that the service time is two minutes or less?
[tex]P(X \leq 2) = 1 - e^{-0.6(2)} = 1 - e^{-1.2} = 0.6988[/tex]
0.6988 = 69.88% probability that the service time is two minutes or less.
c. What is the probability that the service time is more than two minutes?
[tex]P(X > 2) = e^{-1.2} = 0.3012[/tex]
0.3012 = 30.12% probability that the service time is more than two minutes.
Type your answer
(1 out of 4)
What is the value of the function when x = 3 in the
piecewise function
g(x) =
3x when x > 1
- 2x when x < 1
Answer:
9
Step-by-step explanation:
Can you help please fellow people
Answer:
using 2 below points to draw:
(0, 7)
(3.5, 6)
Step-by-step explanation:
using
Simplify this algebraic expression.
y-3/3 +12
O A. y-11
O B. y + 13
O c. y-5
O D. y+ 11
Answer:
D
Step-by-step explanation:
[tex]y - \frac{3}{3} + 12[/tex]
[tex]y - 1 + 12[/tex]
[tex]y + 11[/tex]
Moses receives a gift that is wrapped in a cube shaped box. The volume of the box is 1331/8 cubic inches.Find the length of a side of the box
Answer:
5.5inches
Step-by-step explanation:
1331/8=166.375
then length of a side is = cubic root of 166.375
=³√166.375
5.5
Please help i need answer asap
Answer:
23
Step-by-step explanation:
Which of the following is the value of a when the function (x) - 3|xlis written in the standard form of an absolute value
function?
Answer:1
Step-by-step explanation:2
2
The value of a when the function f(x) = 3|xl is written in the standard form of an absolute value function is 3.
What is meant by an absolute function ?An absolute function is defined as a function which consists of an algebraic expression that is within absolute value symbols.
Here,
The standard form of the absolute value function is written by,
f(x) = a|x|
Given that,
f(x) = 3|x|
Comparing this with the standard form, we get,
a|x| = 3|x|
Therefore, a = 3
Hence,
The value of a when the function f(x) = 3|xl is written in the standard form of an absolute value function is 3.
To learn more about absolute function, click:
https://brainly.com/question/14364803
#SPJ7
halla la suma y el producto de la PG 3,9,27,81,243
Answer:
huh ano yan huhu paki ayos ng sagot
Step-by-step explanation:
hahahhaa