type of vehicle is supposed to be filled to a pressure of 26 pai2 Suppose the actual air pressure in each tire is a random variable-X for the right tire and Y for the left tire, with joint pdf Sk(x² + y²), f(x, y) = {t if 20≤x≤ 30, 20 ≤ y ≤ 30, otherwise. 0 a. What is the value of k? b. What is the probability that both tires are under filled? c. What is the probability that the difference in air pressure between the two tires is at most 2 psi? d. Determine the (marginal) distribution of air pressure in the right tire alone. e. Are X and Y independent rv's? [8]

Answers

Answer 1

The probability that both tires are underfilled is given by. ∫∫f(x, y) dx dy

(a) To find the value of k, we need to calculate the integral of the joint PDF over its entire support and set it equal to 1, since the PDF must integrate to 1.

∫∫f(x, y) dxdy = 1

Integrating f(x, y) over the given range [20, 30] for both x and y:

∫∫20 dx dy = 1

20 * (30 - 20) * (30 - 20) = 1

200 * 100 = 1

k = 1 / (200 * 100) = 1 / 20000 = 0.00005

Therefore, the value of k is 0.00005.

(b) To find the probability that both tires are underfilled, we need to calculate the integral of the joint PDF over the region where both x and y are less than 26.

P(X < 26, Y < 26) = ∫∫f(x, y) dx dy, where the limits of integration are 20 to 26 for x and 20 to 26 for y.

(c) To find the probability that the difference in air pressure between the two tires is at most 2 psi, we need to calculate the integral of the joint PDF over the region where |x - y| ≤ 2.

P(|X - Y| ≤ 2) = ∫∫f(x, y) dx dy, where the limits of integration are determined by the condition |x - y| ≤ 2.

(d) To determine the marginal distribution of air pressure in the right tire alone, we need to integrate the joint PDF over the entire range of y.

P(X) = ∫f(x, y) dy, where the limits of integration for y are 20 to 30.

(e) To determine if X and Y are independent random variables, we need to check if the joint PDF can be factorized into the product of the marginal PDFs of X and Y. If it can, then X and Y are independent.

If the joint PDF f(x, y) can be written as g(x)h(y), where g(x) is the PDF of X and h(y) is the PDF of Y, then X and Y are independent.

To check for independence, compare the joint PDF f(x, y) with the product of the marginal PDFs g(x)h(y) and see if they are equal or not.

To know more about probability, refer here:

brainly.com/question/31828911

#SPJ4


Related Questions

find the coordinates of the midpoint of pq with endpoints p(−5, −1) and q(−7, 3).

Answers

Therefore, the midpoint of PQ is M(-3, 1) with the given coordinates.

To find the coordinates of the midpoint of the line segment PQ with endpoints P(-5, -1) and Q(-7, 3), you can use the midpoint formula.

The midpoint formula states that the coordinates of the midpoint (M) are given by the average of the corresponding coordinates of the endpoints:

M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2)

Using this formula, we can calculate the midpoint coordinates:

x = (-5 + (-7)) / 2 = (-12) / 2 = -6 / 2 = -3

y = (-1 + 3) / 2 = 2 / 2 = 1

=(-3,1)

To know more about coordinates,

https://brainly.com/question/16758176

#SPJ11

A given distribution function of some continuous random variable X:

F(x) = { 0, x<0
(a - 1)(1 - cos x), 0 < x ≤ π/2
1, x > π/2

a) Find parameter a;
b) Find the probability density function of the continuous random variable X;
c) Find the probability P(-π/2 ≤ x ≤ 1);
d) Find the median;
e) Find the expected value and the standard deviation of continuous random variable X.

Answers

a)  geta = 1 ; b) The probability density function f(x) = { 0, x ≤ 0 (a - 1) sin x, 0 < x ≤ π/2 0, x > π/2 ; c) Required probability is P(-π/2 ≤ x ≤ 1) = 1 ; d) M = π/2 - cos^(-1)(1/2a - 1) ; e) The standard deviation of the continuous random variable X is given by σ(X) = sqrt[(π² - 4) / 2].

Given distribution function of some continuous random variable X is given by

F(x) = { 0, x<0 (a - 1)(1 - cos x), 0 < x ≤ π/2 1, x > π/2a)

Find parameter

a;The given distribution function is given byF(x) = { 0, x<0 (a - 1)(1 - cos x), 0 < x ≤ π/2 1, x > π/2

To find the parameter a, use the property that a distribution function should be continuous and non decreasing.Here, the given distribution function is continuous and non decreasing at the point x = 0

Hence, the left hand limit and the right-hand limit of the distribution function at x = 0 should exist and they should be equal to 0.

Hence we have0 = F(0) = (a-1)(1 - cos 0) = (a-1)(1-1) = 0

So, we geta = 1

b) Find the probability density function of the continuous random variable X;The probability density function of a continuous random variable X is given by

f(x) = d/dxF(x) = d/dx {(a - 1)(1 - cos x)}, 0 < x ≤ π/2 = (a - 1) sin x, 0 < x ≤ π/2

The probability density function of the continuous random variable X is given by f(x) = { 0, x ≤ 0 (a - 1) sin x, 0 < x ≤ π/2 0, x > π/2

c) Find the probability P(-π/2 ≤ x ≤ 1);

Given distribution function F(x) = { 0, x<0 (a - 1)(1 - cos x), 0 < x ≤ π/2 1, x > π/2

Required probability is

P(-π/2 ≤ x ≤ 1) = F(1) - F(-π/2) = 1 - 0 = 1

d) Find the median;The median of a continuous random variable X is defined as that value of x for which the probability that X is less than x is equal to the probability that X is greater than x.

Mathematically,M = F^(-1)(1/2)

Thus, we have M = F^(-1)(1/2) = F^(-1)(F(M))

Solving for M, we get

M = π/2 - cos^(-1)(1/2a - 1)

The median of the continuous random variable X is given by

M = π/2 - cos^(-1)(1/2a - 1)

e) Find the expected value and the standard deviation of continuous random variable X.

The expected value of a continuous random variable X is given byE(X) = ∫xf(x)dx, -∞ < x < ∞

On substituting the value of f(x), we getE(X) = ∫(0 to π/2) x(a - 1) sin x dx = (a - 1) (π - 2)

On substituting the value of a = 1, we getE(X) = 0

The expected value of the continuous random variable X is given by E(X) = 0

The variance of a continuous random variable X is given byVar(X) = E(X²) - [E(X)]²

On substituting the value of f(x) and a, we getVar(X) = ∫(0 to π/2) x² sin x dx - 0= (π² - 4) / 2

On substituting the value of a = 1, we getVar(X) = (π² - 4) / 2

The standard deviation of the continuous random variable X is given by

σ(X) = sqrt[Var(X)]

On substituting the value of Var(X), we get

σ(X) = sqrt[(π² - 4) / 2]

Hence, the expected value of the continuous random variable X is 0, and the standard deviation of the continuous random variable X is given by σ(X) = sqrt[(π² - 4) / 2].

Know more about the probability density function

https://brainly.com/question/15714810

#SPJ11

Finding the Mean and Variance of the Sampling Distribution of Means Answer the following: Consider all the samples of size 5 from this population: 25 6 8 10 12 13 1. Compute the mean of the population (u). 2. Compute the variance of the population (8). 3. Determine the number of possible samples of size n = 5. 4. List all possible samples and their corresponding means. 5. Construct the sampling distribution of the sample means. 6. Compute the mean of the sampling distribution of the sample means (Hx). 7. Compute the variance (u) of the sampling distribution of the sample means. 8. Construct the histogram for the sampling distribution of the sample means.

Answers

To find the mean and variance of the sampling distribution of means, we consider all possible samples of size 5 from a given population: 25, 6, 8, 10, 12, 13, and 1.

1. The mean of the population (u) is calculated by summing all values (25 + 6 + 8 + 10 + 12 + 13 + 1) and dividing by the total number of values (7).

2. The variance of the population ([tex]σ^2\\[/tex])is computed by finding the average squared deviation from the mean. First, we calculate the squared deviations for each value by subtracting the mean from each value, squaring the result, and summing these squared deviations. Then, we divide this sum by the total number of values.

3. The number of possible samples of size n = 5 can be determined using the combination formula, which is given by n! / (r! * (n - r)!), where n is the total number of values and r is the sample size.

4. To list all possible samples and their corresponding means, we select all combinations of 5 values from the given population. Each combination represents a sample, and the mean of each sample is calculated by taking the average of the values in that sample.

5. The sampling distribution of the sample means is constructed by listing all possible sample means and their corresponding frequencies. Each sample mean represents a point in the distribution, and its frequency is determined by the number of times that particular sample mean appears in all possible samples.

6. The mean of the sampling distribution (Hx) is computed as the average of all sample means. This can be done by summing all sample means and dividing by the total number of samples.

7. The variance ([tex]σ^2\\[/tex]) of the sampling distribution is determined by dividing the population variance by the sample size. Since the population variance is already calculated in step 2, we divide it by 5.

8. To construct a histogram for the sampling distribution of the sample means, we use the sample means as the x-axis values and their corresponding frequencies as the y-axis values. Each sample mean is represented by a bar, and the height of each bar corresponds to its frequency. The histogram provides a visual representation of the distribution of the sample means, showing its shape and central tendency.

Learn more about mean here:

https://brainly.com/question/31101410

#SPJ11

Find the 17th term of the geometric sequence if a₅, -64 and a₈ = 91.

Answers

The 17th term of the geometric sequence is -4,096.

To find the 17th term of the geometric sequence, we need to determine the common ratio (r) first. We can do this by dividing the 8th term (a₈ = 91) by the 5th term (a₅).

r = a₈ / a₅

r = 91 / (-64)

r = -1.421875

Now that we have the common ratio, we can use it to find the 17th term (a₁₇) by multiplying the 8th term by the common ratio raised to the power of the number of terms between the 8th and 17th term, which is 9.

a₁₇ = a₈ * (r)⁹

a₁₇ = 91 * (-1.421875)⁹

a₁₇ ≈ -4,096

Therefore, the 17th term of the geometric sequence is -4,096.

Learn more about geometric sequence here: brainly.com/question/27852674

#SPJ11


find
A set of data has Q1 = 50 and IQR = 12. i) Find Q3 and ii) determine if 81 is an outlier. Oi) 68 ii) no Oi) 62 ) ii) yes Oi) 62 ii) no Oi) 68 ii) yes

Answers

The third quartile (Q3) in the data set is 62. Additionally, 81 is not considered an outlier based on the given boundaries and the information provided.

i) The interquartile range (IQR) is a measure of the spread of the middle 50% of the data. Given that the first quartile (Q1) is 50 and the IQR is 12, we can calculate the third quartile (Q3) using the formula Q3 = Q1 + IQR. Substituting the values, we get Q3 = 50 + 12 = 62.

ii) To determine if 81 is an outlier, we need to consider the boundaries of the data set. Outliers are typically defined as values that fall below Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR. In this case, the lower boundary would be 50 - 1.5 * 12 = 32, and the upper boundary would be 62 + 1.5 * 12 = 80. Since 81 falls within the boundaries, it is not considered an outlier based on the given information.

Learn more about data set here:

https://brainly.com/question/29011762

#SPJ11

raster data model is widely used to represent field features, but cannot represent point, line, and polygon features.

Answers

The raster data model is commonly used to represent field features, but it is not suitable for representing point, line, and polygon features.

The raster data model is a grid-based representation where each cell or pixel contains a value representing a specific attribute or characteristic. It is well-suited for representing continuous spatial phenomena such as elevation, temperature, or vegetation density. Raster data is organized into a regular grid structure, with each cell having a consistent size and shape.

However, the raster data model has limitations when it comes to representing discrete features like points, lines, and polygons. Since raster data is based on a grid, it cannot precisely represent the exact shape and location of these features. Instead, they are approximated by the cells that cover their extent.

Learn more about polygons here:

https://brainly.com/question/23846997

#SPJ11

The patient recovery time from a particular surgical procedure is normally distributed with a mean of 5.7 days and a standard deviation of 2.5 days. What is the 90th percentile for recovery times? (Round your answer to two decimal places

Answers

The patient recovery time from a particular surgical procedure is normally distributed with a mean of 5.7 days

and a standard deviation of 2.5 days. What is the 90th percentile for recovery times? (Round your answer to two decimal places)For a normal distribution, we have the z score that can be computed as follows:z = (x - μ) / σwherez = the standard scorex = the raw scoreμ = the meanσ = the standard deviation

The formula for finding the percentile from the standard score is:Percentile = (1 - z) × 100The given information is that the mean is 5.7 and the standard deviation is 2.5, hence for the 90th percentile, the value of the standard score is:z90 = 1.28To determine the value of x corresponding to this z score, we substitute into the formula:z = (x - μ) / σ1.28 = (x - 5.7) / 2.5Multiplying through by 2.5 gives:x - 5.7 = 3.2x = 8.9Therefore, the 90th percentile for recovery times is 8.9 days (rounded to two decimal places).

To know more about equation visit:

https://brainly.com/question/649785

#SPJ11

Use Simpson's rule with n = 10 to approximate
∫5 1 cos(x)/x dx
Keep at least 2 decimal places accuracy in your final answer

Answers

We want to calculate the value of the definite integral $\int_{1}^{5} \frac{\cos(x)}{x} dx$ using Simpson's rule with n=10.

First, we have to calculate the interval width of each segment, which is given by $\Delta x = \frac{5-1}

{10}=0.4$Next, we calculate the values of the function at the endpoints of the intervals.Using the left endpoints for the first four segments, we get:$f(1) = \frac{\cos(1)}{1}=0.5403$ $f

(1.4) = \frac{\cos(1.4)}{1.4}=0.4077$ $

f(1.8) = \frac{\cos(1.8)

}{1.8}=0.3126$

$f(2.2) = \frac{\cos(2.2)}

{2.2}=0.2394$Using the midpoints for the next five segments, we get:$f(2.6) = \frac{\cos(2.6)}

{2.6}=0.1885$ $f(3.0) = \frac{\cos(3.0)}

{3.0}=0.1310$

$f(3.4) = \frac{\cos(3.4)}

{3.4}=0.0899$

$f(3.8) = \frac{\cos(3.8)}

{3.8}=0.0627$

$f(4.2) = \frac{\cos(4.2)}

{4.2}=0.0449$Using the right endpoint for the last segment, we get:$f(4.6) = \frac{\cos(4.6)}

{4.6}=0.0323$Next, we can apply Simpson's rule:$$\begin{aligned}\int_{1}^{5} \frac{\cos(x)}{x} dx &\approx \frac{\Delta x}{3}\left[f(1)+4f(1.4)+2f(1.8)+4f(2.2)+2f(2.6)+4f(3.0) \right.\\&\quad \left. +2f(3.4)+4f(3.8)+2f(4.2)+f(4.6)\right]\\&= \frac{0.4}{3}\left[0.5403+4(0.4077)+2(0.3126)+4(0.2394)+2(0.1885)\right.\\&\quad \left. +4(0.1310)+2(0.0899)+4(0.0627)+2(0.0449)+0.0323\right]\\&= 0.3811\end{aligned}$$Rounding to two decimal places, the final answer is 0.38. Therefore, $\int_{1}^{5} \frac{\cos(x)}{x} dx \approx 0.38$.

To know more about area visit:

https://brainly.com/question/13194650

#SPJ11

Use the discriminant to determine the type and number of solutions. -2x² + 5x + 5 = 0 Select one: a. One rational solution O b. Two imaginary solutions Oc. Two rational solutions d. Two irrational solutions

Answers

The given quadratic equation is 3x^2 - 4x - 160 = 0.

To find the solutions of the quadratic equation, we can use the quadratic formula:

x = (-b ± sqrt(b^2 - 4ac)) / (2a)

In this equation, a = 3, b = -4, and c = -160. Substituting these values into the quadratic formula, we get:

x = (-(-4) ± sqrt((-4)^2 - 4 * 3 * (-160))) / (2 * 3)

Simplifying further:

x = (4 ± sqrt(16 + 1920)) / 6

x = (4 ± sqrt(1936)) / 6

x = (4 ± 44) / 6

We have two possible solutions:

x = (4 + 44) / 6 = 48 / 6 = 8

x = (4 - 44) / 6 = -40 / 6 = -20/3

Therefore, the solutions to the quadratic equation 3x^2 - 4x - 160 = 0 are x = 8 and x = -20/3.

Now, let's analyze the quadratic equation and its solutions. Since we are dealing with a real quadratic equation, it is possible to have real solutions. In this case, we have two real solutions: one is a rational number (8) and the other is an irrational number (-20/3).

The rational solution x = 8 indicates that there is a point where the quadratic equation intersects the x-axis. It represents the x-coordinate of the vertex of the parabolic graph.

The irrational solution x = -20/3 indicates another point of intersection with the x-axis. It represents another possible value for x that satisfies the equation.

Learn more about rational here : brainly.com/question/15837135

#SPJ11

Consider the following sample of fat content of n = 10 randomly selected hot dogs: 25.2 21.3 22.8 17.0 29.8 21.0 25.5 16.0 20.9 19.5 Assuming that these were selected from a normal distribution. Find a 95% CI for the population mean fat content. Find the 95% Prediction interval for the fat content of a single hot dog.

Answers

To find a 95% confidence interval (CI) for the population mean fat content, we can use the t-distribution since the sample size is small (n = 10) and the population standard deviation is unknown.

Given data: 25.2, 21.3, 22.8, 17.0, 29.8, 21.0, 25.5, 16.0, 20.9, 19.5

Step 1: Calculate the sample mean (bar on X) and sample standard deviation (s).

bar on X = (25.2 + 21.3 + 22.8 + 17.0 + 29.8 + 21.0 + 25.5 + 16.0 + 20.9 + 19.5) / 10

bar on X ≈ 22.5

s = sqrt(((25.2 - 22.5)^2 + (21.3 - 22.5)^2 + ... + (19.5 - 22.5)^2) / (10 - 1))

s ≈ 4.22

Step 2: Calculate the standard error (SE) using the formula SE = s / sqrt(n).

SE = 4.22 / sqrt(10)

SE ≈ 1.33

Step 3: Determine the critical value (t*) for a 95% confidence level with (n - 1) degrees of freedom. Since n = 10, the degrees of freedom is 9. Using a t-table or calculator, the t* value is approximately 2.262.

Step 4: Calculate the margin of error (ME) using the formula ME = t* * SE.

ME = 2.262 * 1.33

ME ≈ 3.01

Step 5: Construct the confidence interval.

Lower bound = bar on X - ME

Lower bound = 22.5 - 3.01

Lower bound ≈ 19.49

Upper bound = bar on X + ME

Upper bound = 22.5 + 3.01

Upper bound ≈ 25.51

Therefore, the 95% confidence interval for the population mean fat content is approximately (19.49, 25.51).

To find the 95% prediction interval for the fat content of a single hot dog, we use a similar approach, but with an additional term accounting for the prediction error.

Step 6: Calculate the prediction error term (PE) using the formula PE = t* * s * sqrt(1 + 1/n).

PE = 2.262 * 4.22 * sqrt(1 + 1/10)

PE ≈ 10.37

Step 7: Construct the prediction interval.

Lower bound = bar on X - PE

Lower bound = 22.5 - 10.37

Lower bound ≈ 12.13

Upper bound = bar on X + PE

Upper bound = 22.5 + 10.37

Upper bound ≈ 32.87

Therefore, the 95% prediction interval for the fat content of a single hot dog is approximately (12.13, 32.87).

To know more about Value visit-

brainly.com/question/30760879

#SPJ11

Solve the absolute value inequality. Write the solution in interval notation. 3|x-9|+9<15 Select one:
a. (-[infinity], 7) U (11,[infinity]) b. (-[infinity], 1) U (17,[infinity]) c. (7. 11) d. (1.17)

Answers

The solution to the absolute value inequality 3|x-9|+9<15 is option d. (1,17).

To solve the absolute value inequality 3|x-9|+9<15, we need to isolate the absolute value expression and consider both the positive and negative cases.

First, subtract 9 from both sides of the inequality:

3|x-9| < 6

Next, divide both sides by 3:

|x-9| < 2

Now, we consider the positive and negative cases:

Positive case:

For the positive case, we have:

x-9 < 2

Solving for x, we get:

x < 11

Negative case:

For the negative case, we have:

-(x-9) < 2

Expanding and solving for x, we get:

x > 7

Combining both cases, we have the solution:

7 < x < 11

Expressing the solution in interval notation, we get option d. (1,17), which represents the open interval between 1 and 17, excluding the endpoints.

Learn more about absolute value inequality here: brainly.com/question/30201926

#SPJ11

An insurer has 10 separate policies with coverage for one year. The face value of each of those policies is $1,000.
The probability that there will be a claim in the year under consideration is 0.1. Find the probability that the insurer will pay out more than the expected total for the year under consideration.

Answers

Let X be the random variable for the total payout. Then we can say that $X$ is the sum of the payouts of the 10 policies. As there are 10 policies and the face value of each policy is $1000, the total expected payout would be $10,000.The probability of there being a claim is given as 0.1. Hence the probability of there not being a claim would be 0.9. This is important to know as it helps us calculate the probability of paying out more than the expected total for the year under consideration.

Let's find the standard deviation for the variable X.σX = √(npq)σX = √(10 × 1000 × 0.1 × 0.9)σX = 94.87

Therefore, the expected value and standard deviation of the total payout are:

Expected value = μX = np = 1000 × 10 × 0.1 = $1000

Standard deviation = σX = 94.87Using the Chebyshev’s theorem, we can say:P(X > E(X) + kσX) ≤ 1/k²

The insurer is an individual who gives protection to people for financial losses or damages in the form of a policy.

Here we calculated the probability of an insurer paying more than the expected total for the year under consideration.

The probability of a claim is given as 0.1.

Hence the probability of there not being a claim would be 0.9. Using the Chebyshev’s theorem, we found out that the probability of paying out more than the expected total for the year under consideration is ≤ 0.25.

learn more about probability click here:

https://brainly.com/question/13604758

#SPJ11

how much will you have in 10 years with daily compounding of $15,000 invested today at 12%?

Answers

In 10 years, with daily compounding, $15,000 invested today at 12% will grow to a total value of approximately $52,486.32.

To calculate the future value of the investment, we can use the formula for compound interest:

Future Value = Principal × (1 + (Interest Rate / Number of Compounding Periods))^(Number of Compounding Periods × Number of Years)

In this case, the principal amount is $15,000, the interest rate is 12% (0.12 as a decimal), the number of compounding periods per year is 365 (since it's daily compounding), and the number of years is 10. Plugging these values into the formula, we can calculate the future value to be approximately $52,486.32.

Know more about future value here:

https://brainly.com/question/30787954

#SPJ11

8. Which of the correlation coefficients shown below indicates the strongest linear correlation? a) - 0.903 b) 0.720 c) -0.410 d) 0.203 9. A manager of the credit department for an oil company would l

Answers

Based on this, the correlation coefficient that indicates the strongest linear correlation is -0.903 which is option A.

Correlation coefficient is a statistical measure that indicates the extent to which two or more variables change together. The correlation coefficient ranges from -1 to +1.

If the correlation coefficient is +1, there is a perfect positive relationship between the variables. When the correlation coefficient is -1, there is a perfect negative correlation between the variables.

A strong positive linear correlation is indicated by a correlation coefficient that is close to +1. While a strong negative linear correlation is indicated by a correlation coefficient that is close to -1. A correlation coefficient of 0 indicates no correlation between the two variables.

This indicates a strong negative linear correlation.9.

A manager of the credit department for an oil company would like to determine whether there is a linear relationship between the amount of outstanding receivables (in thousands of dollars) and the size of the firm (in millions of dollars). The best tool for this analysis is linear regression.

Linear regression is a statistical method that examines the relationship between two continuous variables. It can be used to determine if there is a relationship between the two variables and to what extent they are related. Linear regression calculates the line of best fit between the two variables.

This line can then be used to predict the value of one variable based on the value of the other variable.

To know more about correlation coefficients visit:

https://brainly.com/question/29978658

#SPJ11

Find the greatest common factor of 11n and 14c.

Answers

The greatest common factor of 11n and 14c is 1. This means that there is no number greater than 1 that can divide both 11n and 14c without leaving a remainder.

To find the greatest common factor (GCF) of 11n and 14c, we need to determine the largest number that divides both 11n and 14c without leaving a remainder.

Let's break down the two terms: 11n and 14c. The prime factorization of 11 is 11, which means it is a prime number and cannot be further factored. Similarly, the prime factorization of 14 is 2 × 7.

Since the GCF must have factors common to both terms, the common factors between 11n and 14c are the factors they share. In this case, the only factor they have in common is 1.

Learn more about greatest common factor :

https://brainly.com/question/22290900

#SPJ11

systematic error is defined as group of answer choices error that is random. error that has equal probability of being too high and too low. error that averages out with repeated trials. error that tends to be too high or too low.

Answers

Error that tends to be too high or too low is defined as a systematic error. Avoiding observational errors - it is vital to be meticulous and record the readings accurately.

Systematic errors are those errors that are consistent and can be reliably replicated under the same conditions. These errors are not random and are mostly caused by the faulty apparatus used to perform the experiment. These errors tend to produce measurements that are consistently too high or too low from the true value.

The outcomes of random errors can be either too high or too low, and they usually balance out over multiple trials. In contrast, systematic errors are consistent and can be accounted for by performing a correction factor on the measurement.

These errors can lead to skewed results and can cause an experiment to be inaccurate and unreliable.

To know more about systematic error visit :-

https://brainly.com/question/30779771

#SPJ11

7. Given the lines L₁: (x, y, z) = (1, 3,0) + t(4, 3, 1), L₂: (x, y, z) = (1, 2, 3 ) + t(8, 6, 2 ),
the plane P: 2x − y + 3z = 15 and the point A(1, 0, 7 ).
a) Show that the lines L₁ and L₂ lie in the same plane and find the general equation of this plane.
b) Find the distance between the line L₁ and the Y-axis.
c) Find the point Bon the plane P which is closest to the point A.

Answers

Answer:

a) To show that the lines L₁ and L₂ lie in the same plane, we can demonstrate that both lines satisfy the equation of the given plane P: 2x - y + 3z = 15.

For Line L₁:

The parametric equations of L₁ are:

x = 1 + 4t

y = 3 + 3t

z = t

Substituting these values into the equation of the plane:

2(1 + 4t) - (3 + 3t) + 3t = 15

2 + 8t - 3 - 3t + 3t = 15

7t - 1 = 15

7t = 16

t = 16/7

Therefore, Line L₁ satisfies the equation of plane P.

For Line L₂:

The parametric equations of L₂ are:

x = 1 + 8t

y = 2 + 6t

z = 3 + 2t

Substituting these values into the equation of the plane:

2(1 + 8t) - (2 + 6t) + 3(3 + 2t) = 15

2 + 16t - 2 - 6t + 9 + 6t = 15

16t + 6t + 6t = 15 - 2 - 9

28t = 4

t = 4/28

t = 1/7

Therefore, Line L₂ satisfies the equation of plane P.

Since both Line L₁ and Line L₂ satisfy the equation of plane P, we can conclude that they lie in the same plane.

The general equation of the plane P is 2x - y + 3z = 15.

b) To find the distance between Line L₁ and the Y-axis, we can find the perpendicular distance from any point on Line L₁ to the Y-axis.

Consider the point P₁(1, 3, 0) on Line L₁. The Y-coordinate of this point is 3.

The distance between the Y-axis and point P₁ is the absolute value of the Y-coordinate, which is 3.

Therefore, the distance between Line L₁ and the Y-axis is 3 units.

c) To find the point B on plane P that is closest to the point A(1, 0, 7), we can find the perpendicular distance from point A to plane P.

The normal vector of plane P is (2, -1, 3) (coefficient of x, y, z in the plane's equation).

The vector from point A to any point (x, y, z) on the plane can be represented as (x - 1, y - 0, z - 7).

The dot product of the normal vector and the vector from point A to the plane is zero for the point on the plane closest to point A.

(2, -1, 3) · (x - 1, y - 0, z - 7) = 0

2(x - 1) - (y - 0) + 3(z - 7) = 0

2x - 2 - y + 3z - 21 = 0

2x - y + 3z = 23

Therefore, the point B on plane P that is closest to point A(1, 0, 7) lies on the plane with the equation 2x - y + 3z = 23.

A furniture manufacturer took 68 hours to make the first premium elegance chair. The factory is known to have a 75% learning curve. How long will it take to make chair number 13 only. Select one: O a. 23.46 hours O b. 20.98 hours O c. 70.00 hours O d. Oe. Time left 1:13:33 none of the listed answers 452.28 hou

Answers

According to the 75% learning curve, it is estimated that it will take approximately 23.46 hours to manufacture chair number 13.

The learning curve is a concept that suggests the time required to complete a task decreases as the cumulative volume of production increases. In this case, the learning curve is stated to be 75%, which means that for each doubling of the cumulative volume of production, the time required decreases by 25%.

To determine the time it will take to manufacture chair number 13, we need to calculate the learning curve rate. The formula to calculate the learning curve rate is as follows:

Learning Curve Rate = log(learning curve percentage) / log(2)

In this case, the learning curve rate is calculated as:

Learning Curve Rate = log(75%) / log(2) ≈ -0.415

Next, we can use the learning curve formula to find the time required for chair number 13. The formula is:

Time required for a specific unit = Time required for the first unit × (Cumulative volume of production for the specific unit)^learning curve rate

Given that the first premium elegance chair took 68 hours to manufacture, and we want to find the time for chair number 13, the calculation is:

Time required for chair number 13 = 68 × ([tex]13^{(-0.415)[/tex]) ≈ 23.46 hours

Therefore, it is estimated that it will take approximately 23.46 hours to manufacture chair number 13, which corresponds to option (a) in the provided choices.

Learn more about learning curve here:

https://brainly.com/question/31721052

#SPJ11

Student Name: Q2A bridge crest vertical curve is used to join a +4 percent grade with a -3 percent grade at a section of a two lane highway. The roadway is flat before & after the bridge. Determine the minimum lengths of the crest vertical curve and its sag curves if the design speed on the highway is 60 mph and perception/reaction time is 3.5 sec. Use all criteria.

Answers

The minimum length of the crest vertical curve is 354.1 feet, and the minimum length of the sag curves is 493.4 feet.

In designing the crest vertical curve, several criteria need to be considered, including driver perception-reaction time, design speed, and grade changes. The design should ensure driver comfort and safety by providing adequate sight distance.

To determine the minimum length of the crest vertical curve, we consider the stopping sight distance, which includes the distance required for a driver to perceive an object, react, and come to a stop. The minimum length of the crest curve is calculated based on the formula:

Lc = (V^2) / (30(f1 - f2))

Where:

Lc = minimum length of the crest vertical curve

V = design speed (in feet per second)

f1 = gradient of the approaching grade (in decimal form)

f2 = gradient of the departing grade (in decimal form)

Given the design speed of 60 mph (or 88 ft/s), and the grade changes of +4% and -3%, we can calculate the minimum length of the crest vertical curve using the formula. The result is approximately 434 feet.

Additionally, the sag curves are designed to provide a smooth transition between the crest curve and the approaching and departing grades. The minimum lengths of the sag curves are typically equal and calculated based on the formula:

Ls = (V^2) / (60(a + g))

Where:

Ls = minimum length of the sag curves

V = design speed (in feet per second)

a = acceleration due to gravity (32.2 ft/s^2)

g = difference in grades (in decimal form)

For the given scenario, the difference in grades is 7% (4% - (-3%)), and using the formula with the design speed of 60 mph (or 88 ft/s), we can calculate the minimum lengths of the sag curves to be approximately 307 feet each.

By considering the perception-reaction time, design speed, and grade changes, the minimum lengths of the crest vertical curve and the sag curves can be determined to ensure safe and comfortable driving conditions on the two-lane highway.

To learn more about Crest vertical curve

brainly.com/question/31424347

#SPJ11

Maximize z = x + 3y, subject to the constraints: x + y ≤ 4, x ≥ 0, y ≥ 0, find the maximum value of z ? a. 0 b. 4 c. 12 d. 16

Answers

The correct option is c. The maximum value of z is 12. To find the maximum value of the objective function z = x + 3y, subject to the given constraints x + y ≤ 4, x ≥ 0, and y ≥ 0, we need to optimize the objective function within the feasible region defined by the constraints.

The feasible region is defined by the inequalities x + y ≤ 4, x ≥ 0, and y ≥ 0. Graphically, it represents the area below the line x + y = 4 and bounded by the x and y axes.

To find the maximum value of z = x + 3y within this feasible region, we can examine the corner points of the region. These corner points are (0, 0), (0, 4), and (4, 0).

Substituting the coordinates of each corner point into the objective function, we find:

- For (0, 0): z = 0 + 3(0) = 0

- For (0, 4): z = 0 + 3(4) = 12

- For (4, 0): z = 4 + 3(0) = 4

Among these values, the maximum value of z is 12, which corresponds to the point (0, 4) within the feasible region.

Hence, the correct option is c. The maximum value of z is 12.

To learn more about inequalities , click here;

brainly.com/question/20383699

#SPJ11

Solve the matrix equation for X: X [ 1 -1 2] = [-27 -3 0]
[5 0 1] [ 9 -4 9]
X =

Answers

The matrix equation for X: X [ 1 -1 2] = [-27 -3 0], X = [-27 -3 0; 9 -4 9] * [1 -1 2; 5 0 1]⁻¹

To solve the matrix equation X [1 -1 2] = [-27 -3 0; 9 -4 9], we first need to find the inverse of the matrix [1 -1 2; 5 0 1]. The inverse of a 2x3 matrix is a 3x2 matrix. In this case, the inverse is [-2/7 2/7; 5/7 -1/7; 8/7 -1/7].

Next, we multiply the given matrix [-27 -3 0; 9 -4 9] by the inverse matrix [1 -1 2; 5 0 1]⁻¹. Performing this multiplication gives us the final solution for X. The resulting matrix equation is X = [-1 -2 2; 1 -1 0].

Learn more about matrix equation here: brainly.com/question/27572352

#SPJ11

According to a survey, high school girls average 100 text messages daily (The Boston Globe, April 21, 2010). Assume the population standard deviation is 20 text messages. Suppose a random sample of 50 high school girls is taken. [You may find it useful to reference the z table. a. What is the probability that the sample mean is more than 105? (Round "z" value to 2 decimal places, and final answer to 4 decimal places.) Probability b. what is the probability that the sample mean is less than 95? (Round "z" value to 2 decimal places, and final answer to 4 decimal places.) Probability 0.0384 c. What is the probability that the sample mean is between 95 and 105? (Round "z" value to 2 decimal places, and final answer to 4 decimal places.) Probability 0.9232

Answers

The probability that the sample mean is more than 105 is 0.0384. The probability that the sample mean is less than 95 is 0.0384. The probability that the sample mean is between 95 and 105 is 0.9232.

The probability that the sample mean is more than 105 can be calculated using the following formula: P(X > 105) = P(Z > (105 - 100) / (20 / √50))

where:X is the sample mean

Z is the z-score

100 is the population mean

20 is the population standard deviation

50 is the sample size

Substituting these values into the formula, we get: P(X > 105) = P(Z > 1.77)

The z-table shows that the probability of a z-score greater than 1.77 is 0.0384. Therefore, the probability that the sample mean is more than 105 is 0.0384.

The probability that the sample mean is less than 95 can be calculated using the following formula: P(X < 95) = P(Z < (95 - 100) / (20 / √50))

Substituting these values into the formula, we get: P(X < 95) = P(Z < -1.77)

The z-table shows that the probability of a z-score less than -1.77 is 0.0384. Therefore, the probability that the sample mean is less than 95 is 0.0384.

The probability that the sample mean is between 95 and 105 can be calculated using the following formula: P(95 < X < 105) = P(Z < (105 - 100) / (20 / √50)) - P(Z < (95 - 100) / (20 / √50))

Substituting these values into the formula, we get: P(95 < X < 105) = P(Z < 1.77) - P(Z < -1.77)

The z-table shows that the probability of a z-score between 1.77 and -1.77 is 0.9232. Therefore, the probability that the sample mean is between 95 and 105 is 0.9232.

Visit here to learn more about standard deviation:

brainly.com/question/24298037

#SPJ11

Treating circulatory disease: Angioplasty is a medical procedure in which an obstructed blood vessel is widened. In some cases, a wire mesh tube, called a stent, is placed in the vessel to help it remain open. A study was conducted to compare the effectiveness of a bare metal stent with one that has been coated with a drug designed to prevent reblocking of the vessel. A total of 5312 patients received bare metal stents, and of these, 832 needed treatment for reblocking within a year. A total of 1112 received drug-coated stents, and 121 of them required treatment within a year. Can you conclude that the proportion of patients who needed retreatment differs between those who received bare metal stents and those who received drug-coated stents? Lep 1 denote the proportion of patients with bare metal stents who needed retreatment. Use the = 0.10 level and the critical value method with the table.

Part 1 out of 5
State the appropriate null and alternate hypotheses.
Part 2: How many degrees of freedom are there, using the simple method?
Part 3: Find the critical values. Round three decimal places.
Part 4: Compute the test statistic. Round three decimal places.

Answers

1. Null Hypotheses :H0: p1 = p2 ; Alternate Hypotheses :Ha: p1 ≠ p2 ; 2. df = 6422 ; 3.The critical values are ±1.645. ; 4. the test statistic is 2.747.

Part 1: State the appropriate null and alternate hypotheses.The appropriate null and alternate hypotheses for the given information are as follows:

Null Hypotheses:H0: p1 = p2

Alternate Hypotheses:Ha: p1 ≠ p2

Where p1 = proportion of patients who received bare metal stents and needed retreatment, and p2 = proportion of patients who received drug-coated stents and needed retreatment.

Part 2: How many degrees of freedom are there, using the simple method? The degrees of freedom (df) can be found using the simple method, which is as follows:df = n1 + n2 - 2

Where n1 and n2 are the sample sizes of the two groups .n1 = 5312

n2 = 1112

df = 5312 + 1112 - 2 = 6422

Part 3: Find the critical values. Round three decimal places.

The level of significance is α = 0.10, which means that α/2 = 0.05 will be used for a two-tailed test.The critical values can be found using a t-distribution table with df = 6422 and α/2 = 0.05. The critical values are ±1.645.

Part 4: Compute the test statistic. Round three decimal places.The test statistic can be calculated using the formula:z = (p1 - p2) / √[p(1 - p) x (1/n1 + 1/n2)]

Where p = (x1 + x2) / (n1 + n2), x1 and x2 are the number of patients who needed retreatment in each group.

x1 = 832, n1 = 5312, x2 = 121, n2 = 1112p = (832 + 121) / (5312 + 1112) = 0.138z = (0.147 - 0.109) / √[0.138(1 - 0.138) x (1/5312 + 1/1112)]≈ 2.747

Therefore, the test statistic is 2.747.

Know more about the Null Hypotheses

https://brainly.com/question/4436370

#SPJ11

The integral J dx/3√x + √x
can be rewritten as
(a) J 6u^3/u + 1 du
(b) J 6u^2/u^2 + 1 du
(c) J 6u^4/u^2 + 1 du
(d) J 6u^5/u^3 + 1 du

Answers

To rewrite the integral ∫ dx / (3√x + √x), we can simplify the denominator by combining the two square roots:

√x = √x * √x = √(x^2) = |x|

Therefore, the integral becomes:

∫ dx / (3√x + √x) = ∫ dx / (3|x| + |x|)

Now, we can factor out |x| from the denominator:

∫ dx / (3|x| + |x|) = ∫ dx / (4|x|)

Now, we need to consider the absolute value of x. Depending on the sign of x, we have two cases:

For x ≥ 0:

In this case, |x| = x, so the integral becomes:

∫ dx / (4x) = 1/4 ∫ dx / x = 1/4 ln|x| + C

For x < 0:

In this case, |x| = -x, so the integral becomes:

∫ dx / (4(-x)) = -1/4 ∫ dx / x = -1/4 ln|x| + C

Therefore, the rewritten integral is:

∫ dx / (3√x + √x) = 1/4 ln|x| + C

So the correct choice is (a) ∫ 6u^3 / (u + 1) du.

To learn more about denominator : brainly.com/question/19372232

#SPJ11

Find parametric equations for the following curve. Include an interval for the parameter values. The complete curve x = -5y3 - 3y Choose the correct answer below. O A. x=t, y= - 513 - 3t - 7sts5 B. x=t, y= - 513 - 3t; -00

Answers

The parametric equations for the curve are:

x = -5t^3 - 3t

y = t

To find parametric equations for the curve x = -5y^3 - 3y, we can set y as the parameter and express x in terms of y.

Let y = t, where t is the parameter.

Substituting y = t into the equation x = -5y^3 - 3y:

x = -5(t^3) - 3t

The interval for the parameter values depends on the context or specific requirements of the problem. If no specific interval is given, we can assume a wide range of values for t, such as all real numbers.

So, the correct answer is:

A. x = -5t^3 - 3t, y = t

Know more about parametric equations here:

https://brainly.com/question/29275326

#SPJ11

"Using the following stem & leaf plot, find the five number summary for the data.
1 | 0 2
2 | 3 4 4 5 9
3 |
4 | 2 2 7 9
5 | 0 4 5 6 8 9
6 | 0 8
Min = Q₁ = Med = Q3 = Max ="

Answers

The five number summary for the given data set is:

Min = 10, Q1 = 3, Med = 5, Q3 = 8, Max = 98.

To find the five number summary for the data from the given stem and leaf plot, we need to determine the minimum value, the first quartile (Q1), the median, the third quartile (Q3), and the maximum value. The minimum value is the smallest value in the data set, which is 10. The maximum value is the largest value in the data set, which is 98.

To find the median, we need to determine the middle value of the data set. Since there are 18 data points, the median is the average of the ninth and tenth values when the data set is ordered from smallest to largest. The ordered data set is: 0, 0, 2, 2, 3, 4, 4, 4, 5, 5, 6, 7, 8, 8, 9, 9, 9, 9. The ninth and tenth values are both 5, so the median is (5 + 5) / 2 = 5.

To find Q1, we need to determine the middle value of the lower half of the data set. Since there are 9 data points in the lower half, the median of the lower half is the average of the fifth and sixth values when the lower half of the data set is ordered from smallest to largest. The lower half of the ordered data set is: 0, 0, 2, 2,3, 4, 4, 4, 5

The fifth and sixth values are both 3, so Q1 is (3 + 3) / 2 = 3. To find Q3, we need to determine the middle value of the upper half of the data set. Since there are 9 data points in the upper half, the median of the upper half is the average of the fifth and sixth values when the upper half of the data set is ordered from smallest to largest. The upper half of the ordered data set is: 5, 6, 7, 8, 8, 9, 9, 9, 9

The fifth and sixth values are both 8, so Q3 is (8 + 8) / 2 = 8. Therefore, the five number summary for the given data set is:

Min = 10

Q1 = 3

Med = 5

Q3 = 8

Max = 98

to gain more insight on five number summary, visit: brainly.com/question/30451903

#SPJ11

Let X₁, X₂.... 2022/05/2represent a random sample from a shifted exponential with pdf f(x; λ,0) = Ae-(-0); x ≥ 0, > where, from previous experience it is known that 0 = 0.64. a. Construct a maximum-likelihood estimator of A. b. If 10 independent samples are made, resulting in the values: 3.11, 0.64, 2.55, 2.20, 5.44, 3.42, 10.39, 8.93, 17.82, and 1.30 calculate the estimates of A.

Answers

(a) Construct a maximum-likelihood estimator of A:

To construct the maximum-likelihood estimator of A, we need to maximize the likelihood function based on the given sample. The likelihood function L(A) is defined as the product of the probability density function (PDF) evaluated at each observation.

Given that the PDF is f(x; λ, 0) = Ae^(-λx), where x ≥ 0, and we have a sample of independent observations X₁, X₂, ..., Xₙ, the likelihood function can be written as:

L(A) = A^n * e^(-λΣxi)

To maximize the likelihood function, we can take the natural logarithm of both sides and find the derivative with respect to A, and set it equal to zero.

ln(L(A)) = nln(A) - λΣxi

Taking the derivative with respect to A and setting it equal to zero, we get:

d/dA ln(L(A)) = n/A - 0

n/A = 0

n = 0

Therefore, the maximum-likelihood estimator of A is A = n.

(b) Given the sample values: 3.11, 0.64, 2.55, 2.20, 5.44, 3.42, 10.39, 8.93, 17.82, and 1.30, we have n = 10.

Hence, the estimate of A is A = n = 10.

To know more about Function visit-

brainly.com/question/31062578

#SPJ11

Let n1=80, X1=20, n2=100, and X2=10. The value of P_1 ,P_2
are:
0.4 ,0.20
0.5 ,0.20
0.25, 0.10
0.5, 0.25

Answers

Let n1 = 80, X1 = 20, n2 = 100, and X2 = 10P_1 and P_2 values are 0.25 and 0.10

Given n1 = 80, X1 = 20, n2 = 100, and X2 = 10P_1 and P_2 values are required

We know that:P_1 = X_1/n_1P_1 = 20/80P_1 = 0.25P_2 = X_2/n_2P_2 = 10/100P_2 = 0.10

Hence, the values of P_1 and P_2 are 0.25 and 0.10 respectively.

Let n1 = 80, X1 = 20, n2 = 100, and X2 = 10P_1 and P_2 values are required

We know that:P_1 = X_1/n_1P_1 = 20/80P_1 = 0.25P_2 = X_2/n_2P_2 = 10/100P_2 = 0.10

Hence, the values of P_1 and P_2 are 0.25 and 0.10 respectively.

To know more about probability visit :-

https://brainly.com/question/31828911

#SPJ11

Sketch the cylinder y = ln(z + 1) in R³. Indicate proper rulings.

Answers

There are infinitely many rulings in the direction of the z-axis.

Given a cylinder whose equation is y = ln(z + 1) in R³.

The given equation of the cylinder is y = ln(z + 1)

⇒ e^y = z + 1

⇒ z = e^y - 1

The curve of intersection of the cylinder and x = 0 is the curve on the yz-plane where x = 0

Hence, the curve is y = ln(z + 1) where x = 0

Thus, the cylinder and the curve are shown in the following diagram.

The horizontal lines on the cylinder are rulings.

Let's check the number of rulings as follows,

Since the cylinder is obtained by moving a curve (y = ln(z + 1)) along the y-axis, there will be no rulings in the direction of y-axis.

In the direction of z-axis, we see that the cylinder extends indefinitely, hence there are infinitely many rulings in that direction.

Therefore, there are infinitely many rulings in the direction of the z-axis.

Hence, the number of rulings in the cylinder is infinite.

To know more about z-axis visit:

https://brainly.com/question/31745462

#SPJ11

When Emma saves each month for a goal, what is the value of the goal called?

A.
annuity value
B.
future value
C.
payment value
D.
present value

Answers

When Emma saves each month for a goal, the value of the goal called is referred to as (B) future value.

An annuity is a stream of equal payments received or paid at equal intervals of time. Annuity value represents the present value of the annuity amount that will be received at the end of the specified time period. Future value (FV) is the value of an investment after a specified period of time. It is the value of the initial deposit plus the interest earned on that deposit over time. The future value of a single deposit will increase over time due to the effect of compounding interest.

When Emma saves each month for a goal, the amount she saves accumulates over time and earns interest. The future value is calculated based on the initial deposit amount, the number of months it will earn interest, and the interest rate. It is important to determine the future value of the goal in order to make effective financial decisions that will enable Emma to achieve her goal.

To know more about annuity value visit:

https://brainly.com/question/21801625

#SPJ11

Other Questions
Company X produces product X. The company incurred the following costs in manufacturing and selling the product for the year 2013: Variable manufacturing cost of P 120,000 Fixed manufacturing cost of P 80,000 Selling expense of P 3.00 per unit Administrative expense of P 100,000 Selling price per unit of P 10.00 Units produced is 80,000 units Ending inventory under absorption costing is P 12,500 Ending inventory under variable costing is P 7,500 There is no beginning inventories Net income under variable costing is P 232,500Compute the gross profit under absorption costing?a. 562,500b. 456,500c. 232,500d. None of the abovee. 482,500 A company with a net income of BD 215,000 and a dividend pay out ratio of 35%, will retain how much cash OBD 139750 OBD 75250 OBD 161250 OBD 180000 QUESTION 12 If a company's days cost in payables is 73 days what is their Payable turnover? O 12.00x O 4.37x 0.20x O 5.00x QUESTION 13 According to the equation: X--> 208/82 Pb + 4/2 He The nucleus that is 2correctly represented by X is 1. (a) What are the period and amplitude of the function f(x) = sin(x)? (b) What are the period and amplitude of the function g(x) = 5 sin(3x)? (c)What are he period and amplitude of the function h(x) = 2 sin(x)?2. A point starts at the point (3,0) on a circle centered at the origin and travels counter clockwise at a constant angular speed of 2 radians per second. Let t represent the number of seconds since the point started moving. (a) Write an expression in terms of t to represent the number of radians the point has swept out since the point started moving. (b)Write a formula that expresses the x-coordinate of the point in terms of the number of seconds t since the point started moving. (c) Write a formula that expresses the y-coordinate of the point in terms of the number of seconds t since the point started moving. Formulate (draw up) contingency plans for industrial action anddemonstrate in your answer how to use them should industrial actionoccur. AVAILABLE WATERThe per cent of available water can be calculated by substracting the per cent of water at the wilting point (WP) from field capacity (FC)(field capacity = moisture equivalent)TASKCalculate the per cent of available water in soils A, B and C, if:Soil: A FC 14,5% WP-8%Soil: B FC 8,0% WP 4.0%Soil: C FC-30,0% WP-18%Which soil is sandy, wich one is clay and which one is sandy loam soil? Explain your choise and results. .In the Keynesian cross model, assume that the consumption function is given by C=$185 +0.7(Y-T) Planned investment is $100; government purchases and taxes are both $50. d. What level of government purchases is needed to achieve an income of $1040? Assume taxes remain at $50. G-S e. What level of taxes is needed to achieve an income of $1040? Assume government purchases remain at $50. Imagine you are bitten by a poisonous snake. You recognize the snake as one that produces venom that cleaves the fatty acids from the glycerol moiety of glycerophospholipids. Which of the following phospholipase inhibitors will most likely inactivate the snake venom? Choose one: A. phospholipase Cinhibitor B. an anticoagulant C. phospholipase A2 inhibitor D. phospholipase D inhibitor Which of the following is not true about entries in the General Journal that have been recorded and posted in error. a. You can record a General Journal entry to reverse the original entry, then record the correction with another General Journal entry. b. You can use the General Journal Adjust icon to reverse the error, then correct the details in the window. c. You cannot correct an entry. The entry must be left the way it is and you need to be more careful next time. d. Corrections can be recorded at any time. Which of the following is NOT a factor in adolescent obesity? a Consuming sugary beverages b Increased sedentary behavior c Decreased physical activity d Access to nutrient-dense foods e Larger portion sizes of food An asset for drilling was purchased and placed in service by petroleum production company. Its cost basis $60,000, and it has an estimated market value of $12,000 at the end of an estimated useful life of 14 years. Compute the depreciation amount in the third year and the book value at the end of the fifth year of life using (a) the straight-line depreciation method, (b) the 200% declining balance method, (c) the MACRS GDS system, and (d) the MACRS ADS system. On December 31, 2020, Dow Steel Corporation had 600,000 shares of common stock and 300,000 shares of 8%, noncumulative, nonconvertible preferred stock issued and outstanding. Dow issued a 4% common stock dividend on May 15 and paid cash dividends of $400,000 and $75,000 to common and preferred shareholders, respectively, on December 15, 2021. On February 28, 2021, Dow sold 60,000 common shares. In keeping with its long-term share repurchase plan, 2,000 shares were retired on July 1. Dow's net income for the year ended December 31, 2021, was $2,100,000. The income tax rate is 25%. Required: Compute Dow's earnings per share for the year ended December 31, 2021. (Do not round intermediate calculations. Enter your answers in thousands. Round "Earnings per share" answer to 2 decimal places.) Desde que Renata se mud a su casa en 2001 ha estado monitoreando la altura del rbol frente a su casa. Cuando lleg, el rbol meda 210 cm y ha estado creciendo 33 cm por aoa) Cul es la ecuacin lineal que modela este suceso? b) Cunto medir el rbol en 2067?c) rea 3: Comprubalo como progresin aritmtica. Based on the data below calculate the company's annual ordering cost? Annual requirements = 7500 units Ordering cost BD 12 Holding cost = BD 0.5 O 125 O 300 O 45000 O 150 Managers of fast-food restaurants struggle with a rapid turnover of personnel. Employee turnover rates of 100 to 200 percent annually are common. The work environment is difficult, and customers can often be demanding. One of the first steps managers can take to help workers deliver quality service is to - make sure services delivery expectations are consistent and coherent throughout the organization. - reward service providers based solely on the speed of service. - ban abusive customers from their restaurants. - provide emotional support and concern for their employees. - review the delivery support system. QuestionAlthough firms such as restaurants have difficulty controlling service quality from day to day, they do have control over- how they communicate the services they promise. - the price of ingredients. - the way customers view them compared to competitors. - the attitudes of customers. - the knowledge gap consumers create. Question 1. A firm produces a product that sells for $150 per unit. Variable cost per unit is $67 and fixedcost per period is $35,500. The firm's maximum capacity of production per period is 1,000 units.a) Develop an algebraic statement for the revenue function, cost function, and profit function.b) Determine the number of units required to be sold to break even.c) Compute the break-even point as a percent of capacity.d) Compute the break-even point in sales dollars. intoduction of seafood industy?Global leader in sea food industryand current trend and conditions of seafood in australia andworld? a bottle full of water has a mass of 45g when full of mercury.its mass is 360g if the mass of the empty bottle is 20g. calculate the density of the mercury. state the order in which the reading will be taken Hello , as a school team we have to write about IBM , my part is intro about this company ... then next part is state the problem , We choose as a main problem , Manager TURNOVER, which is kind of big issue in IBM and causes problem like: no proper culture of the company , candidates are not chosen so properly and there is not accentuate on their education. Not regular meetings could be other Turnover probelm etc , I have to write about Motivation part. How to motivate manager to be able to perform well. Can you proposed my some good solutions with your own words, like for example : more benefits , hiring somebody from outside , some kind of psychologist to observe and than show weaknesses etc.. or something like that i will be very grateful for good ideas Tim Meekma purchased a microwave oven for $345.88. The delivery charge was $25.00 and the installation amounted to $75.00. The state sales tax is 6 1/4% and the county tax is 1.1%. a. What is the total amount of sales tax on the microwave oven?b. What is the total purchase price?