Type your answers in all of the blanks and submit S ⋆⋆ A cylindrical glass beaker has an inside diameter of 8.0 cm and a mass of 200 g. It is filled with water to a height of 5.0 cm. The water-filled beaker is placed on a weight scale. A solid cylinder of aluminum that is 8.0 cm tall and has a radius of 2.0 cm is tied to a string. The cylinder is now lowered into the beaker such that it is half-immersed in the water. Density of aluminum is 2700 kg/m 3
What is the reading on the weight scale now? N What is the tension in the string? N

Answers

Answer 1

The reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.

The solution to this problem can be broken down into three parts: the weight of the glass, the weight of the water, and the weight of the aluminum cylinder. From there, we can use Archimedes' principle to find the buoyant force acting on the cylinder, and use that to find the tension in the string and the new reading on the weight scale.

Let's begin.The volume of the water-filled beaker is equal to the volume of water it contains.

Therefore, we can calculate the volume of water as follows:

V = πr²h

πr²h = π(0.04 m)²(0.05 m),

π(0.04 m)²(0.05 m) = 2.0 x 10⁻⁵ m³.

We can also calculate the mass of the water as follows:

m = ρV ,

ρV = (1000 kg/m³)(2.0 x 10⁻⁵ m³) ,

(1000 kg/m³)(2.0 x 10⁻⁵ m³) = 0.02 kg.

Next, we can find the weight of the glass using its mass and the acceleration due to gravity:

w = mg,

mg = (0.2 kg)(9.81 m/s²) ,

(0.2 kg)(9.81 m/s²) = 1.962 N.

To find the weight of the aluminum cylinder, we first need to calculate its volume:

V = πr²h

= π(0.02 m)²(0.08 m) ,

π(0.02 m)²(0.08 m) = 1.005 x 10⁻⁴ m³.

We can then find its mass using its volume and density:

m = ρV,

ρV = (2700 kg/m³)(1.005 x 10⁻⁴ m³),

(2700 kg/m³)(1.005 x 10⁻⁴ m³) = 0.027135 kg.

Finally, we can find the weight of the aluminum cylinder:

w = mg ,

mg = (0.027135 kg)(9.81 m/s²),

(0.027135 kg)(9.81 m/s²) = 0.266 N.

Now that we have found the weights of the glass, water, and aluminum cylinder, we can add them together to find the total weight of the system:

1.962 N + 0.02 kg(9.81 m/s²) + 0.266 N = 4.295 N.

This is the new reading on the weight scale. However, we still need to find the tension in the string.To do this, we need to find the buoyant force acting on the aluminum cylinder. The volume of water displaced by the cylinder is equal to the volume of the cylinder that is submerged in the water. This volume can be found by multiplying the cross-sectional area of the cylinder by the height of the water level:

Vd = Ah ,

Ah = πr²h/2 ,

πr²h/2 = π(0.02 m)²(0.025 m) ,

π(0.02 m)²(0.025 m) = 7.854 x 10⁻⁶ m³.

Since the density of water is 1000 kg/m³, we can find the buoyant force using the following formula:

Fb = ρgVd,

ρgVd = (1000 kg/m³)(9.81 m/s²)(7.854 x 10⁻⁶ m³),

(1000 kg/m³)(9.81 m/s²)(7.854 x 10⁻⁶ m³) = 0.077 N.

The tension in the string is equal to the weight of the aluminum cylinder minus the buoyant force acting on it:

T = w - Fb,

w - Fb = 0.266 N - 0.077 N,

0.266 N - 0.077 N = 0.189 N.

Therefore, the reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.

The reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.

To know more about Archimedes' principle visit:

brainly.com/question/787619

#SPJ11


Related Questions

Required information A woman of mass 53.4 kg is standing in an elevator If the elevator maintains constant acceleration and is moving at 150 m's as it passes the fourth floor on its way down, what is its speed 4.00 s later? m/s

Answers

The elevator's speed 4.00 seconds later is approximately 189.2 m/s. To solve this problem, we can use the equations of motion under constant acceleration.

The woman's mass: m = 53.4 kg

Initial speed of the elevator: u = 150 m/s

Time interval: t = 4.00 s

We need to find the elevator's speed after 4.00 seconds later. Let's calculate it step by step.

First, we need to find the elevator's acceleration. Since the elevator maintains constant acceleration, we can assume it remains constant throughout the motion.

Using the equation:

v = u + at

We can rearrange it to solve for acceleration:

a = (v - u) / t

Substituting the given values:

a = (v - 150 m/s) / 4.00 s

Next, we can use the equation of motion to find the final speed (v) after 4.00 seconds:

v = u + at

Substituting the values:

v = 150 m/s + a(4.00 s)

Now, we need to find the acceleration. The weight of the woman is the force acting on her, given by:

F = mg

Using the equation:

F = ma

We can rearrange it to solve for acceleration:

a = F / m

Substituting the given values:

a = (mg) / m

The mass cancels out:

a = g

We can use the acceleration due to gravity, g, which is approximately 9.8 m/s².

Substituting the value of g into the equation for v:

v = 150 m/s + (9.8 m/s²)(4.00 s)

Calculating the expression:

v = 150 m/s + 39.2 m/s

v = 189.2 m/s

Therefore, the elevator's speed 4.00 seconds later is approximately 189.2 m/s.

Learn more about speed here:

https://brainly.com/question/28224010

#SPJ11

3. A stainless steel kettle (cs = 450 J/kg/K) has a mass of 0.7 kg and contains 0.8 kg of water. Initially the kettle and water have an initial temperature of 18°C. (a) How much energy is required to raise the temperature of the kettle (only) to 100°C? (b) How much energy is required to raise the temperature of the water (only) to 100°C? Assume that Cw = 4190 J/kg/K. Hence calculate the total energy input required to heat both the kettle and the water. (c) If energy is delivered by an electric heating element at a rate of 1800 W (1800 J/s) estimate how long it would take for the kettle to start to boil. [Hint: note the units, Joules per sec.] (d) The automatic cut-off is faulty. Estimate how much time would be required to evaporate all of the water - to 'boil dry'. Assume the latent heat of vaporization for water is Lv=2260 kJ/kg. 4. Calculate the energy required to melt the following substances. a. 5 kg of water b. 5 kg of lead c. 5 kg of copper

Answers

3.(a) Energy to heat the kettle: 25,830 Joules

(b) Energy to heat the water: 275,776 Joules

(c) Time for the kettle to start to boil: 167.56 seconds

(d) Time to evaporate all the water: 1004.44 seconds

How to solve for the energy

a Energy to heat the kettle:

= 0.7 kg * 450 J/kg/K * (100°C - 18°C)

= 25,830 Joules

b Energy to heat the water:

= 0.8 kg * 4190 J/kg/K * (100°C - 18°C)

= 275,776 Joules

The total energy to heat both the kettle and the water:

= 25,830 J + 275,776 J

= 301,606 Joules

c Time for the kettle to start to boil:

time  = 301,606 J / 1800 J/s

= 167.56 seconds

d Energy to evaporate the water:

= mass_water * Lv

= 0.8 kg * 2260 kJ/kg

= 1,808,000 J

Time to evaporate all the water:

= 1,808,000 J / 1800 J/s

= 1004.44 seconds

4

Energy to melt 5 kg of water, lead, and copper:

Water: = 5 kg * 334 kJ/kg

= 1,670,000 Joules

Lead: = 5 kg * 24.5 kJ/kg

= 122,500 Joules

Copper:  = 5 kg * 205 kJ/kg

= 1,025,000 Joules

Read mre on energy here https://brainly.com/question/2003548

#SPJ4

Refer back to Example 25-12. Suppose the incident beam of light is linearly polarized in the vertical direction. In addition, the transmission axis of the analyzer is an angle of 80.0 ∘∘ to the vertical. What angle should the transmission axis of the polarizer make with the vertical if the transmitted intensity is to be a maximum?Example 25-12 depicts the following scenario. In the polarization experiment shown in the sketch below, the final intensity of the beam is 0.200 IO. Unpolarized incident beam Transmission axis 1. Oul Transmission axis HŐ 1./2 Transmitted Polarizer beam 0.2001 Analyzer Part D Refer back to Example 25-12. Suppose the incident beam of light is linearly polarized in the vertical direction. In addition, the transmission axis of the analyzer is an angle of 80.0 ° to the vertical. What angle should the transmission axis of the polarizer make with the vertical if the transmitted intensity is to be a maximum? EVO AEO ? .043 Submit Previous Answers Request Answer

Answers

The complement of 80.0° is 10.0°, so the transmission axis of the polarizer should make an angle of 10.0° with the vertical in order to achieve maximum transmitted intensity.

In Example 25-12, the transmitted intensity is given as 0.200 IO, indicating a reduction in intensity due to the polarizer and analyzer. In order to maximize the transmitted intensity, we need to align the transmission axis of the polarizer with the polarization direction of the incident beam.

Here, the incident beam is linearly polarized in the vertical direction, so we want the transmission axis of the polarizer to be parallel to the vertical direction.

The transmission axis of the analyzer is at an angle of 80.0° to the vertical. Since the transmission axis of the analyzer is perpendicular to the transmission axis of the polarizer, the angle between the transmission axis of the polarizer and the vertical should be the complement of the angle between the analyzer and the vertical.

To learn more about intensity-

brainly.com/question/13950082

#SPJ11

You have a building with a UA value of 400 BTU/hr/degF in a
climate with 2500 degF-days of heating needs. How many kWh of
electricity are needed if you have a heat pump with an HSPF of
10?

Answers

The energy (in KWh) of the electricity are needed if you have a heat pump with an HSPF of 10 is 29.31 KWh

How do i determine the energy (in KWh) of the electricity needed?

The following data were obtained from the question given above:

UA value = 400 BTU/hr/degFDegree-days = 2500 degF-daysHeating Seasonal Performance Factor (HSPF) = 10Electricity consumption (kWh) =?

The electricity consumption (kWh) can be obtained as illustrated below:

Electricity consumption (kWh) = (Degree-days / HSPF) × (UA value / 3412)

Inputting the given parameters, we have:

= (2500 / 10) × (400 / 3412)

= 29.31 KWh

Thus, we can conclude that the electricity consumption (kWh) is 29.31 KWh

Learn more about electricity in KWh:

https://brainly.com/question/13093848

#SPJ4

At the center of a cube 50 cm long on one side is a charge of 150uC in size. If there are no other charges nearby
(a) Find the electric flux through each side of the cube
(b) Find the electric flux that passes through the entire plane of the cube

Answers

(a) To find the electric flux through each side of the cube, we can use Gauss's Law. The electric flux through a closed surface is given by Φ = Q/ε₀, where Q is the charge enclosed by the surface and ε₀ is the electric constant. In this case, the charge enclosed by each side of the cube is 150 uC. Therefore, the electric flux through each side of the cube is 150 uC / ε₀.

(b) The electric flux passing through the entire plane of the cube is the sum of the fluxes through each side. Since there are six sides to a cube, the total electric flux through the entire plane of the cube is 6 times the flux through each side, resulting in 900 uC / ε₀.

To  learn more about flux click here:brainly.com/question/15655691

#SPJ11

g. The production characteristics of an Alaska North Slope reservoir include a GOR of 548 scf/STB, stock tank oil of 26.9°API, and a formation volume factor of 1.29 res. Bbl/STB. What type of fluid is in this reservoir? h. The initial reservoir pressure and temperature in a North Sea reservoir is 5000 psia and 260°F. The PVT analysis indicated the bubble-point pressure of the oil at 3500 psia. Is the reservoir fluid saturated or undersaturated? How do you know? 12.2 Producing GOR from a Middle Eastern reservoir, which was monitored for almost 2 years, was found to be constant at 40,000 scf/STB. The separator produced a lightly colored liquid of 50°API. However, after 2 years, the GOR and the condensate API gravity started to increase. a. What type of reservoir fluid exists in this reservoir? b. What was the state of the fluid in the first 2 years? 12.3 Compositional analysis of a reservoir fluid from a field in India reported a C₁ of 15.0 mol %, while the PVT analysis of this fluid indicated a formation vol- ume factor of 2.5 res. bbl/STB. What type of reservoir fluid exists in this field?

Answers

The described reservoir fluids include gas-oil mixtures, undersaturated oils, volatile oils, and gas-condensate mixtures.

What types of reservoir fluids are described in the given paragraph?

In the given paragraph, several reservoir fluids and their characteristics are described.

In part g, the reservoir fluid from the Alaska North Slope is characterized by a Gas-Oil Ratio (GOR) of 548 standard cubic feet per stock tank barrel (scf/STB), a stock tank oil of 26.9°API, and a formation volume factor of 1.29 reservoir barrels per stock tank barrel (res. Bbl/STB). Based on these properties, it indicates that the fluid in this reservoir is a gas-oil mixture.

In part h, the North Sea reservoir has an initial reservoir pressure and temperature of 5000 psia and 260°F, respectively. The PVT analysis reveals that the bubble-point pressure of the oil is 3500 psia. Since the initial pressure is higher than the bubble-point pressure, the reservoir fluid is considered undersaturated.

This conclusion is drawn based on the fact that the reservoir pressure is above the bubble-point pressure, indicating that the oil is still in a single-phase liquid state.

In part 12.2, the Middle Eastern reservoir initially produces a constant GOR of 40,000 scf/STB and a lightly colored liquid with an API gravity of 50°. However, over time, both the GOR and the condensate API gravity increase.

The type of reservoir fluid present in this reservoir is a volatile oil, which undergoes gas liberation due to pressure depletion. In the first two years, the fluid was in a single-phase liquid state with a constant GOR.

In part 12.3, the reservoir fluid from the Indian field has a C₁ component content of 15.0 mol% and a formation volume factor of 2.5 res. bbl/STB. Based on these properties, it indicates that the reservoir fluid in this field is a gas-condensate mixture.

In summary, the paragraph discusses various reservoir fluids and their characteristics, such as gas-oil mixtures, undersaturated oils, volatile oils, and gas-condensate mixtures, based on their specific properties and analytical results.

Learn more about reservoir fluids

brainly.com/question/29892382

#SPJ11

If we have a box of a dozen resistors and want to
connect them together in such a way that they offer the highest
possible total resistance, how should we connect them?

Answers

The negative terminal of the power supply is connected to resistor 1. The total resistance of the series combination of resistors is equal to the sum of the individual resistances, which in this case is 120 ohms.

To connect a box of a dozen resistors in such a way that they offer the highest possible total resistance, the resistors should be connected in series. When resistors are connected in series, they are connected end-to-end, so that the current flows through each resistor in turn. The total resistance of the series combination of resistors is equal to the sum of the individual resistances. Therefore, connecting the resistors in series will result in the highest possible total resistance. Here's an example: If we have a box of a dozen resistors and each has a resistance of 10 ohms, we can connect them in series as follows: resistor 1 is connected to resistor 2, which is connected to resistor 3, and so on, until resistor 12 is connected to the positive terminal of the power supply. The negative terminal of the power supply is connected to resistor 1. The total resistance of the series combination of resistors is equal to the sum of the individual resistances, which in this case is 120 ohms.

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

The position of a simple harmonic oscillator is given by x(t) = 0.50m cos (pi/3 t) where t is in seconds. What is the max velocity of this oscillator?
a. 0.17 m/s
b. 0.52 m/s
c. 0.67 m/s
d. 1.0 m/s
e. 2.0 m/s

Answers

The position of a simple harmonic oscillator is given by x(t) = 0.50m cos (pi/3 t) where t is in seconds. The max velocity of this oscillator is (b) 0.52.

How to find max velocity of oscillator?

To find the maximum velocity of the oscillator, we need to find its velocity and differentiate the given position function with respect to time. Let's do that!

Step-by-step explanation:

Given,The position of a simple harmonic oscillator is given by:

x(t) = 0.50m cos (π/3 t) where t is in seconds.

We know that,

v(t) =  [tex]\frac{dx(t)}{dt}[/tex]

Differentiating the position function with respect to time, we get

v(t) = -0.50m ([tex]\frac{\pi }{3}[/tex]) sin ([tex]\frac{\pi }{3}[/tex] t)

Thus, the velocity function is given by:

v(t) = -0.50m ([tex]\frac{\pi }{3}[/tex]) sin ([tex]\frac{\pi }{3}[/tex] t)

Now, we need to find the maximum velocity of this oscillator. To do that, we need to find the maximum value of the velocity function.In this case, the maximum value of sin x is 1.Therefore, the maximum velocity is given by:

v(max) = -0.50m ([tex]\frac{\pi }{3}[/tex]) sin ([tex]\frac{\pi }{3}[/tex] t)

When sin ([tex]\frac{\pi }{3}[/tex] t) = 1, we get

v(max) = -0.50m ([tex]\frac{\pi }{3}[/tex]) (1)v(max) = -0.52 m/s

Thus, the maximum velocity of the oscillator is 0.52 m/s. So, the option (b) 0.52 m/s is the correct answer.

Learn more about maximum velocity

https://brainly.com/question/30505958

#SPJ11

9) Calculating with Faradays law and magnetic flux A flat circular coil of wire has a radius of 0.18 m and is made of 75 turns of wire. The coil is lying flat on a level surface and is entirely within a uniform magnetic field with a magnitude of 0.55 T, pointing straight into the paper. The magnetic field is then completely removed over a time duration of 0.050 s. Calculate the average magnitude of the induced EMF during this time duration. 10) Electron accelerated in an E field An electron passes between two charged metal plates that create a 100 N/C field in the vertical direction. The initial velocity is purely horizontal at 3.00×106 m/s and the horizontal distance it travels within the uniform field is 0.040 m. What is the vertical component of its final velocity?

Answers

The vertical component of the final velocity of the electron is - 2.33963×10^6 m/s.

the formula to calculate the magnitude of induced EMF is given as:

ε=−NΔΦ/Δtwhere,ε is the magnitude of induced EMF,N is the number of turns in the coil,ΔΦ is the change in magnetic flux over time, andΔt is the time duration.

So, first, let us calculate the change in magnetic flux over time.Since the magnetic field is uniform, the magnetic flux through the coil can be given as:

Φ=B*Awhere,B is the magnetic field andA is the area of the coil.

In this case, the area of the coil can be given as:

A=π*r²where,r is the radius of the coil.

So,A=π*(0.18 m)²=0.032184 m²And, the magnetic flux through the coil can be given as:Φ=B*A=0.55 T * 0.032184 m² = 0.0177012 Wb

Now, the magnetic field is completely removed over a time duration of 0.050 s. Hence, the change in magnetic flux over time can be given as:

ΔΦ/Δt= (0 - 0.0177012 Wb) / 0.050 s= - 0.354024 V

And, since there are 75 turns in the coil, the magnitude of induced EMF can be given as:

ε=−NΔΦ/Δt= - 75 * (- 0.354024 V)= 26.5518 V

So, the average magnitude of the induced EMF during this time duration is 26.5518 V.

10) Electron accelerated in an E fieldThe formula to calculate the vertical component of the final velocity of an electron accelerated in an E field is given as:

vfy = v0y + ayt

where,vfy is the vertical component of the final velocity,v0y is the vertical component of the initial velocity,ay is the acceleration in the y direction, andt is the time taken.In this case, the electron passes between two charged metal plates that create a 100 N/C field in the vertical direction.

The initial velocity is purely horizontal at 3.00×106 m/s and the horizontal distance it travels within the uniform field is 0.040 m.So, the time taken by the electron can be given as:t = d/v0xt= 0.040 m / 3.00×106 m/s= 1.33333×10^-8 sNow, the acceleration in the y direction can be given as:ay = qE/my

where,q is the charge of the electron,E is the electric field, andmy is the mass of the electron.In this case,q = -1.6×10^-19 C, E = 100 N/C, andmy = 9.11×10^-31 kgSo,ay = qE/my= (- 1.6×10^-19 C * 100 N/C) / 9.11×10^-31 kg= - 1.7547×10^14 m/s²

And, since the initial velocity is purely horizontal, the vertical component of the initial velocity is zero.

So,v0y = 0So, the vertical component of the final velocity of the electron can be given as:vfy = v0y + ayt= 0 + (- 1.7547×10^14 m/s² * 1.33333×10^-8 s)= - 2.33963×10^6 m/s

Therefore, the vertical component of the final velocity of the electron is - 2.33963×10^6 m/s.

Learn more about velocity with the given link,

https://brainly.com/question/80295

#SPJ11

Fighter aircraft 1 is on an aircraft carrier in the Atlantic, at what speed (in knots) must the aircraft carrier travel so that the aircraft's takeoff roll coincides with the runway length L?
Indications:
Ignore the ground effect.
Use the given density
Gravity 9.81m/s^2
Use as many figures as your calculator allows for your calculations.
Enter your result without units or spaces with 4 figures after the decimal point.
Aircraft 1
W in N 9345
S in m^2 6.745
T max in N 3519
Cd0 0.032
K 0.07
μ 0.02
rho in kg/m^3 1.225
CL max 1.4
CL,Lo 0.8 CL max
VLo 1.2 Vs
L in m 270.5306

Answers

The aircraft carrier must travel at a speed of approximately 34.7991 knots for the aircraft's takeoff roll to coincide with the runway length.

To calculate the speed (in knots) at which the aircraft carrier must travel for the aircraft's takeoff roll to coincide with the runway length, we can use the following formula:

V = (2 * W / (rho * S * CL * L))^0.5

Where:

V is the velocity of the aircraft carrier in knots

W is the weight of the aircraft in Newtons

rho is the density in kg/m^3

S is the wing area in m^2

CL is the lift coefficient

L is the runway length in meters

Plugging in the given values:

W = 9345 N

rho = 1.225 kg/m^3

S = 6.745 m^2

CL = 0.8 * 1.4 (CL max) = 1.12

L = 270.5306 m

V = (2 * 9345 / (1.225 * 6.745 * 1.12 * 270.5306))^0.5

Calculating this expression yields:

V ≈ 34.7991 knots

To know more about speed:

https://brainly.com/question/17661499

#SPJ11

A particle of charge 40.0MC moves.directly toward another particle of charge 80.0mC, which is held stationary. At the instant the distance between the two particles is 2.00m, the kinetic energy of the moving particle is 16.0J. What is the distance separating the two
particles when the moving particle is momentarily stopped?

Answers

The distance separating the two particles when the moving particle is momentarily stopped is infinity.

Charge of one particle = 40.0 MC

Charge of another particle = 80.0 mC

Kinetic energy of the moving particle = 16.0 J

The distance between the two particles when the kinetic energy of the moving particle is 16.0 J is 2.00 m. We need to find the distance separating the two particles when the moving particle is momentarily stopped.

Let, r be the distance between two particles and K.E be the kinetic energy of the moving particle

According to the Coulomb's law, the electrostatic force F between two charged particles is:F = k q1q2 / r2

Here,q1 and q2 are the charges on the two particles

r is the distance between the particles

k is the Coulomb's constant which is equal to 9 x 10^9 N.m^2/C^2

By the work-energy theorem, the change in kinetic energy of the moving particle is equal to the work done by the electrostatic force as the particle moves from infinity to distance r from the other particle i.e.,

K.E = Work done by the electrostatic force on the moving particle

W = k q1q2(1/r - 1/∞)

The work done by the electrostatic force on the moving particle when it is momentarily stopped is

K.E = W = k q1q2(1/r - 1/∞)0 = k q1q2(1/r - 1/∞)1/r = 1/∞r = ∞

Hence, the distance separating the two particles when the moving particle is momentarily stopped is infinity.

Learn more about distance https://brainly.com/question/26550516

#SPJ11

1. One Dimensional Fermi Gas. Consider an electron gas with spin 1/2 that is confined in one dimensional uniform trap with length L. The number of electron is given by N and consider zero temperature. (a) (10 marks) Find the density of states. (b) (10 marks) Find the Fermi energy of the system.

Answers

The density of states has been found to be g(E) = 2Lm/πh2 and the Fermi energy of the system has been found to be EF = (π2h2/4mL2)(N/L)2 or EF = (π2n2h2/2mL2).

The density of states is the total number of single-particle states available at an energy level. The amount of single-particle states is determined by the geometry of the system. As a result, the density of states is determined by the quantity of states per unit energy interval.

Consider an electron gas with spin 1/2 that is confined in a one-dimensional uniform trap with a length L and a zero-temperature. The Fermi energy of the system can also be determined.

To find the density of states, one may use the equation:

nk = kΔkΔxL,

where the states are equally spaced and the energy of a particular state is

En = n2π2h2/2mL2.

The value of k is given by nk = πn/L.

Therefore, we have the equation:

nk = πnΔxΔk.

Then, by plugging this expression into the previous equation, we have:

nΔxΔk = kL/π.

Since we are dealing with spin 1/2 fermions, we must take into account that each single-particle state has a spin degeneracy of 2. So the density of states is given by:

g(E) = 2(Δn/ΔE),

where the density of states is the number of states per unit energy interval.

Substituting the expression for Δk and solving for ΔE, we get:

ΔE = (π2h2/2mL2)Δn.

Therefore, the density of states is:

g(E) = 2πL2h/2(π2h2/2mL2) = 2Lm/πh2.

The electron gas with spin 1/2 that is confined in one dimensional uniform trap with length L has been analyzed. The density of states has been found to be g(E) = 2Lm/πh2 and the Fermi energy of the system has been found to be EF = (π2h2/4mL2)(N/L)2 or EF = (π2n2h2/2mL2). We have demonstrated that the Fermi energy is proportional to (N/L)2, where N is the number of electrons.

Learn more about Fermi energy visit:

brainly.com/question/31499121

#SPJ11

1) a) On a hot day, the temperature of a 5,800-L swimming pool increases by 2.00 °C. What is
the net heat transfer during this heating? Ignore any complications, such as loss of water
by evaporation.
b)How much energy is required to raise the temperature of a 0.21-kg aluminum pot
(specific heat 900 J/kg ∙ K) containing 0.14 kg of water from 90 °C to the boiling point
and then boil away 0.01 kg of water? (Latent heat of vaporization is 2.25 ÷ 10
6 J kg for water.)
c)The main uptake air duct of a forced air gas heater is 1.4 m in diameter. What is the
average speed of air in the duct if it carries a volume equal to that of the house’s interior
every 4.0 min? The inside volume of the house is equivalent to a rectangular solid 18.0
m wide by 17.0 m long by 5.0 m high.

Answers

a. The net heat transfer during the heating of the swimming pool is  48,588,800 J.

b. The energy required to raise the temperature of the aluminum pot and boil away water is 24,390 J.

c.  The average speed of air in the duct is approximately 4.14 m/s.

How do we calculate?

(a)

Q = mcΔT

Volume of the swimming pool (V) = 5,800 L = 5,800 kg (s

Change in temperature (ΔT) = 2.00 °C

Specific heat capacity of water (c) = 4,186 J/kg ∙ °C

Mass = density × volume

m = 1 kg/L × 5,800 L

m = 5,800 kg

Q = mcΔT

Q = (5,800 kg) × (4,186 J/kg ∙ °C) × (2.00 °C)

Q = 48,588,800 J

(b)

Raising the temperature of the aluminum pot is found as :

Mass of aluminum pot (m1) = 0.21 kg

Specific heat capacity of aluminum (c1) = 900 J/kg ∙ °C

Change in temperature (ΔT1) = boiling point (100 °C) - initial temperature (90 °C)

Q1 = m1c1ΔT1

Q1 = (0.21 kg) × (900 J/kg ∙ °C) × (100 °C - 90 °C)

Q1 = 1,890 J

Boiling away the water:

Mass of water (m2) = 0.14 kg

Latent heat of vaporization of water (L) = 2.25 × 10^6 J/kg

Change in mass (Δm) = 0.01 kg

Q2 = mLΔm

Q2 = (2.25 × 10^6 J/kg) × (0.01 kg)

Q2 = 22,500 J

Total energy required = Q1 + Q2

Total energy required = 1,890 J + 22,500 J

Total energy required = 24,390 J

(c)

Volume flow rate (Q) = Area × Speed

Volume of the house's interior (V) = 18.0 m × 17.0 m × 5.0 m

V = 1,530 m³

Q = V / t

Q = 1,530 m³ / (4.0 min × 60 s/min)

Q =  6.375 m³/s

Area (A) = πr²

A = π(1.4 m / 2)²

A =  1.54 m²

Speed = Q / A

Speed = 6.375 m³/s / 1.54 m²

Speed =  4.14 m/s

Learn more about heat transfer at:

https://brainly.com/question/16055406

#SPJ4

Exercise 4 When we look at the star Polaris (the North Star), we are seeing it as it was 680 years ago. How far away from us (in meters) is Polaris? Answer: 6.4.1018 m

Answers

The star Polaris, also known as the ,North Star , is located at a distance of approximately 6.4 × 10^18 meters from us. When we observe Polaris, we are actually seeing it as it appeared 680 years ago due to the finite speed of light.

The speed of light in a vacuum is approximately 299,792,458 meters per second. Since light travels at a finite speed, it takes time for light to reach us from distant objects in the universe. Polaris is located in the constellation Ursa Minor and serves as a useful navigational reference point due to its proximity to the North Celestial Pole.

The distance of 6.4 × 10^18 meters corresponds to the light travel time of approximately 680 years. Therefore, when we observe Polaris, we are effectively looking into the past, seeing the star as it appeared over six centuries ago.

Learn more about North star click here:

brainly.com/question/32168908

#SPJ11

6. [-12 Points] DETAILS SERPSE10 26.2.OP.008. MY NOTES ASK YOUR TEACHER The heating coil in a coffee maker is made of nichrome wire with a radius of 0.275 mm. If the coil draws a current of 9.20 A when there is a 120 V potential difference across its ends, find the following. (Take the resistivity of nichrome to be 1.50 x 10-60 m.) (a) resistance of the coil (in) (b) length of wire used to wind the coil (in m) m 7. (-/1 Points) DETAILS SERPSE 10 26.3.OP.010.MI. MY NOTES ASK YOUR TEACHER If the magnitude of the drift velocity of free electrons in a copper wire is 6.44 x 10 m/s, what is the electric field in the conductor? V/m 8. [-/1 Points] DETAILS SERPSE 10 26.3.P.015. MY NOTES ASK YOUR TEACHER A current density of 9.00 x 10-43A/m? exists in the atmosphere at a location where the electric field is 103 V/m. Calculate the electrical conductivity of the Earth's atmosphere in this region. (m)- 9. (-/1 Points] DETAILS SERPSE 10 26.4.0P.011. MY NOTES ASK YOUR TEACHER A physics student is studying the effect of temperature on the resistance of a current carrying wire. She applies a voltage to a iron wire at a temperature of 53.0°C and notes that it produces a current of 1.30 A. If she then applies the same voltage to the same wire at -88.0°c, what current should she expect (in A)? The temperature coefficient of resistivity for iron is 5.00 x 10-(c)?. (Assume that the reference temperature is 20°C.)

Answers

(a) The resistance of the coil is approximately 13.04 ohms.

(b) The length of wire used to wind the coil is approximately 0.0582 meters.

(a) To find the resistance of the coil, we can use Ohm's Law, which states that resistance is equal to the voltage across the coil divided by the current flowing through it. The formula for resistance is R = V/I.

Given that the potential difference across the coil is 120 V and the current flowing through it is 9.20 A, we can substitute these values into the formula to find the resistance:

R = 120 V / 9.20 A

R ≈ 13.04 Ω

Therefore, the resistance of the coil is approximately 13.04 ohms.

(b) To determine the length of wire used to wind the coil, we can use the formula for the resistance of a wire:

R = (ρ * L) / A

Where R is the resistance, ρ is the resistivity of the wire material, L is the length of the wire, and A is the cross-sectional area of the wire.

We are given the radius of the nichrome wire, which we can use to calculate the cross-sectional area:

A = π * [tex]r^2[/tex]

A = π * (0.275 x[tex]10^-^3 m)^2[/tex]

Next, rearranging the resistance formula, we can solve for the length of wire:

L = (R * A) / ρ

L = (13.04 Ω * π * (0.275 x [tex]10^-^3 m)^2[/tex] / (1.50 x [tex]10^-^6[/tex] Ω*m)

L ≈ 0.0582 m

Therefore, the length of wire used to wind the coil is approximately 0.0582 meters.

For more such information on: resistance

https://brainly.com/question/30901006

#SPJ8

Crests of an ocean wave pass a pier every 110s. If the waves are moving at 5.6 m/s, what is the wavelength of the ocean waves? 31 m 62 m 53 m 71 m

Answers

The wavelength of the ocean waves, with a wave speed of 5.6 m/s and a time period of 110 s, is 616 meters.

To find the wavelength of the ocean waves, we can use the formula:

Wavelength (λ) = Wave speed (v) * Time period (T)

Given:

Wave speed (v) = 5.6 m/s

Time period (T) = 110 s

Substituting these values into the formula, we get:

Wavelength (λ) = 5.6 m/s * 110 s

Wavelength (λ) = 616 m

Therefore, the wavelength of the ocean waves is 616 meters.

To know more about wavelength, click here:

brainly.com/question/32101149

#SPJ11

a)
You would like to heat 10 litres of tap water initially at room temperature
using an old 2 kW heater that has an efficieny of 70%. Estimate the temperature of the water after 20 minutes stating any assumptions made.
b)
Determine the amount of heat needed to completely transform 1 g of water at 15°C to steam at 115°C.

Answers

The estimated temperature of the water after 20 minutes, using the given parameters, is approximately 43.8°C. The total heat required for the complete transformation of 1 g of water, starting from 15°C and ending as steam at 115°C, is 2680 J.

a) Calculation for the temperature of water after 20 minutes:

Given information:

Mass of water (m) = 10 liters

Efficiency of the heater (η) = 70%

Power of the heater (P) = 2 kW

Initial temperature of the water (T₁) = Room temperature (Assuming 25°C)

Time for which the heater is switched on (t) = 20 minutes

Assuming the specific heat capacity of water (c) is approximately 4.2 J/g/°C, we can estimate the temperature change using the formula:

Q = m × c × ΔT

First, let's calculate the heat energy supplied by the heater (Q):

Q = P × η × t

= 2 kW × 0.7 × 20 minutes × 60 seconds/minute

= 16,800 J

Next, we can determine the temperature difference (ΔT) between the initial and final states.

ΔT = Q / (m × c)

= 16,800 J / (10 kg × 4.2 J/g/°C)

≈ 400/21 °C

Finally, we can determine the temperature of the water after 20 minutes:

Temperature of water after 20 minutes (T₂) = T₁ + ΔT

= 25°C + (400/21) °C

≈ 43.8°C (approximately)

Therefore, the estimated temperature of the water after 20 minutes, using the given parameters, is approximately 43.8°C.

b) Now, let's calculate the quantity of heat required to transform 1 gram of water from an initial temperature of 15°C to steam at a final temperature of 115°C.

Given information:

Mass of water (m) = 1 g

Initial temperature of the water (T₁) = 15°C

Steam temperature (T₂) = 115°C

Latent heat of fusion (Lᵥ) = 334 J/g

The specific heat capacity of water, denoted by 'c', is equal to 4.2 joules per gram per degree Celsius.

Latent heat of vaporization (L) = 2260 J/g

To determine the heat required, we can break it down into two parts:

Heating the water from 15°C to 115°C:

Q₁ = m × c × ΔT

= 1 g × 4.2 J/g/°C × (115°C - 15°C)

= 420 J

Transforming the water from liquid to steam:

Q₂ = m × L

= 1 g × 2260 J/g

= 2260 J

The total heat required is the sum of Q₁ and Q₂:

Total heat required = Q₁ + Q₂

= 420 J + 2260 J

= 2680 J

Therefore, the total heat required for the complete transformation of 1 g of water, starting from 15°C and ending as steam at 115°C, is 2680 J.

Learn more about heat at: https://brainly.com/question/934320

#SPJ11

Cyclotrons are widely used in nuclear medicine for producing short-lived radioactive isotopes. These cyclotrons typically accelerate H- (the hydride ion, which has one proton and two electrons) to an energy of 5 MeV to 20 MeV. A typical magnetic field in such cyclotrons is 2T. (a) What is the speed of a 10MeV H.? (b) If the H- has KE=10MeV and B=2T, what is the radius of this ion's circular orbit? (eV is electron- volts, a unit of energy; 1 eV =0.16 fJ) (c) How many complete revolutions will the ion make if the cyclotron is left operating
for 5 minutes?

Answers

(a) The speed of a 10 MeV H- ion can be calculated using relativistic equations,(b) The radius of the ion's circular orbit can be determined by balancing the magnetic force and the centripetal force acting on the ion,(c) The number of complete revolutions made by the ion can be calculated by considering the time period of one revolution and the total operating time of the cyclotron.

(a) To find the speed of a 10 MeV H- ion, we can use the relativistic equation E = γmc², where E is the energy, m is the rest mass, c is the speed of light, and γ is the Lorentz factor. By solving for v (velocity), we can find the speed of the ion.

(b) The radius of the ion's circular orbit can be determined by equating the magnetic force (Fm = qvB) and the centripetal force (Fc = mv²/r), where q is the charge of the ion, v is its velocity, B is the magnetic field strength, m is the mass of the ion, and r is the radius of the orbit.

(c) The number of complete revolutions made by the ion can be calculated by considering the time period of one revolution and the total operating time of the cyclotron. The time period can be determined using the velocity and radius of the orbit, and then the number of revolutions can be found by dividing the total operating time by the time period of one revolution.

By applying these calculations and considering the given values of energy, magnetic field strength, and operating time, we can determine the speed, radius of the orbit, and number of revolutions made by the H- ion in the cyclotron.

Learn more about cyclotrons from the given link:

https://brainly.com/question/6775569

#SPJ11

In a Young's double-slit interference apparatus, what happens to the pattern when the slits are moved closer together? The pattern A) narrows B) stays the same C) widens D) turns to dots

Answers

Young's double-slit interference apparatus is a famous experiment that demonstrates the wave nature of light. When light passes through two parallel slits, it produces an interference pattern on a screen behind it. The pattern consists of alternating bright and dark fringes. The answer to this question is option C) widens.

The interference pattern generated by the two slits is a function of the distance between them. The distance between the slits affects the path length difference of the light waves that pass through each slit. When the distance between the slits is reduced, the distance traveled by each beam of light through the slits is also reduced. This causes the fringes in the interference pattern to spread out further apart, increasing the width of the interference pattern.

Hence, the answer to this question is option C) widens.

The width of the pattern can be calculated using the formula w = λL/d, where w is the width of the fringe pattern, λ is the wavelength of light, L is the distance from the slits to the screen, and d is the distance between the slits. As the distance between the slits decreases, the width of the pattern will increase.

To learn more about interference visit;

https://brainly.com/question/31857527

#SPJ11

An amusement park ride rotates around a fixed axis such that the angular position of a point on the ride follows the equation: θ(t) = a + bt2 – ct3 where a = 3.2 rad, b = 0.65 rad/s2 and c = 0.035 rad/s3.
Randomized Variablesa = 3.2 rad
b = 0.65 rad/s2
c = 0.035 rad/s3
What is the magnitude of the angular displacement of the ride in radians between times t = 0 and t = t1? ​​​​​​​

Answers

The magnitude of the angular displacement of the ride in radians between times t = 0 and t = t1 is given by [tex]|0.65(t1)^2 - 0.035(t1)^3|,[/tex] where t1 represents the specific time interval of interest.

The magnitude of the angular displacement of the ride between times t = 0 and t = t1, we need to evaluate the difference in angular position at these two times.

Given the equation for angular position: θ(t) = a + bt^2 - ct^3, we can substitute t = 0 and t = t1 to find the angular positions at those times.

At t = 0:

θ(0) = a + b(0)² - c(0)³ = a

At t = t1:

θ(t1) = a + b(t1)² - c(t1)³

The magnitude of the angular displacement between these two times is then given by:

|θ(t1) - θ(0)| = |(a + b(t1)² - c(t1)³) - a|

Simplifying the expression, we have:

|θ(t1) - θ(0)| = |b(t1)² - c(t1)³

Substituting the given values:

|θ(t1) - θ(0)| = |0.65(t1)² - 0.035(t1)³|

This equation represents the magnitude of the angular displacement in radians between times t = 0 and t = t1.

Learn more about ”angular displacement” here:

brainly.com/question/12972672

#SPJ11

We know that for a relativistic particle, we can write the energy as E? = p° + m?. For a matter wave, we
may also express the energy and momentum via the de Broglie relations: E = hw and p = hik. i. Compute the phase velocity, Up = „ , for a relativistic particle. Express your answer in terms of, m, c, t,
and k.

Answers

The phase velocity can be expressed in terms of m, c, t, and k as Up = c(1 + (m²c²)/(hc²k²)) where p is the momentum of the particle and m is its rest mass.

For a relativistic particle, we can write the energy as E = pc + mc² where p is the momentum of the particle and m is its rest mass. The de Broglie relations for a matter wave are E = hν and p = h/λ, where h is Planck's constant, ν is the frequency of the wave, and λ is its wavelength.The phase velocity, Up is given by:Up = E/p= (pc + mc²) / p= c + (m²c⁴)/p²Using the de Broglie relation p = h/λ, we can express the momentum in terms of wavelength:p = h/λSubstituting this in the expression for phase velocity:Up = c + (m²c⁴)/(h²/λ²) = c + (m²c²λ²)/h²The wavelength of the matter wave can be expressed in terms of its frequency using the speed of light c:λ = c/fSubstituting this in the expression for phase velocity:Up = c + (m²c²/c²f²)h²= c[1 + (m²c²)/(c²f²)h²]= c(1 + (m²c²)/(hc²k²))where f = ν is the frequency of the matter wave and k = 2π/λ is its wave vector. So, the phase velocity can be expressed in terms of m, c, t, and k as Up = c(1 + (m²c²)/(hc²k²)).

Learn more about momentum:

https://brainly.com/question/24030570

#SPJ11

A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 29.5* above the horizontal. The car accelerates uniformly to a speed of 2.40 m/s in 15.0 s and then continues at constant speed. (a) What power must the winch motor provide when the car is moving at constant speed? _______________
(b) What maximum power must the motor provide? _________________ kW (c) What total energy transfers out of the motor by work by the time the car moves off the end of the track, which is of length 1.250 m
__________________

Answers

The power required by the winch motor is zero. The maximum power the motor must provide is 9.131 kW. The total amount of energy transferred from the motor to the car through work by the time the car reaches the end of the track is 4,755.94 joules.

(a) Since the car is moving at a constant speed, the power required by the winch motor is zero.

(b) To calculate the maximum power, we need to determine the maximum force exerted on the car during acceleration. The net force acting on the car is equal to its mass multiplied by its acceleration:

Force = Mass × Acceleration

Force = 950 kg × 4.005 m/s²

Force = 3,804.75 N

Now, we can calculate the maximum power by multiplying the maximum force by the maximum velocity:

Power = Force × Velocity

Power = 3,804.75 N × 2.40 m/s

Power = 9,131.40 W

Power = 9.131 kW

Therefore, the maximum power the motor must provide is 9.131 kW.

(c) To determine the total energy transferred out of the motor by work, we need to calculate the work done on the car during the entire process. The work done is given by the equation:

Work = Force × Distance

Work = 3,804.75 N × 1.250 m

Work = 4,755.94 J

Hence, the total amount of energy transferred from the motor to the car through work by the time the car reaches the end of the track is 4,755.94 joules.

Learn more about energy at: https://brainly.com/question/2003548

#SPJ11

Write about the degree of freedom and constraints and the relation between them.

Answers

The degree of freedom (DOF) refers to the number of independent parameters needed to describe the motion or configuration of a system, while constraints are conditions that restrict the system's motion or behavior.

The degree of freedom (DOF) is a fundamental concept in physics and engineering that quantifies the number of independent parameters or variables required to fully define the motion or configuration of a system. It represents the system's ability to move or change without violating any constraints. Each DOF corresponds to a specific direction or mode in which the system can vary independently. Constraints, on the other hand, are conditions or limitations that restrict the motion or behavior of a system. They can arise from physical, geometrical, or mathematical constraints and define relationships between the variables. Constraints can impose restrictions on the values of certain parameters, limit the range of motion, or enforce specific relationships between variables.

To learn more about fundamental concept in physics, Click here:

https://brainly.com/question/13435862

#SPJ11

To procedure for computing any mathematical expression with numbers that have error bar is to compute the maximum and minimum possible result of the operation. Then calculate the average and error bar from the maximum and minimum value. Example: Given x=1.2±0.1 What is y=x2 ? First calculate the maximum and minimum possible value for y. ymax​=xmax2​=1.32=1.69ymin​=xmin2​=1.12=1.21​ Then calculate the average and error bar yav​=2ymax ​+yma​​=21.60+1.21​=1.5Δy=2yaxt ​−ymin​​=21.69−1.21​=0.2​ Therefore y=1.5±0.2 Given x=1.2±0.1 What is y=x21​ ? yav​= Δy= The same procedure is used for calculation imvolving several numbers with error bars. Given: x=1.2±0.1y=5.6±0.1​ What is z=yz​ ? zmax​= zmin​= z000​= Δz=

Answers

The same procedure is used for calculation ivolving several numbers with error bars, z = 6.5 ± 0.3.

To compute any mathematical expression with numbers that have error bars, we can use the following procedure:

Calculate the maximum and minimum possible value for the result of the operation.Calculate the average and error bar for the result from the maximum and minimum value.

For example, given x=1.2±0.1, what is y=x2?

1. The maximum value of y is:

y[tex]max[/tex] = xmax^2 = (1.2+0.1)^2 = 1.32 = 1.69

2. The minimum value of y is:

y[tex]min[/tex] = xmin^2 = (1.2-0.1)^2 = 1.12 = 1.21

3. The average value of y is:

y[tex]av[/tex]= (y[tex]max[/tex] + y[tex]min[/tex])/2 = (1.69 + 1.21)/2 = 1.45

4.  The error bar for y is:

Δy = (y[tex]max[/tex] - y[tex]min[/tex])/2 = (1.69 - 1.21)/2 = 0.24

Therefore, y = 1.45 ± 0.24.

The same procedure can be used for calculations involving several numbers with error bars. For example, given:

x = 1.2 ± 0.1

y = 5.6 ± 0.1

What is z = xy?

1.The maximum value of z is:

z[tex]max[/tex] = x[tex]max[/tex]*y[tex]max[/tex] = (1.2+0.1)*(5.6+0.1) = 6.72 = 6.8

2. The minimum value of z is:

z[tex]min[/tex] = x[tex]min[/tex]*y[tex]min[/tex] = (1.2-0.1)*(5.6-0.1) = 6.16 = 6.2

3.The average value of z is:

z[tex]av[/tex] = (z[tex]max[/tex] + z[tex]min[/tex])/2 = (6.8 + 6.2)/2 = 6.5

 

4. The error bar for z is:

Δz = (z[tex]max[/tex] + z[tex]min[/tex])/2 = (6.8 - 6.2)/2 = 0.3

Therefore, z = 6.5 ± 0.3.

To learn more about error bars click here; brainly.com/question/24674734

#SPJ11

3. [-/4 Points) DETAILS OSCOLPHYS2016 17.4.P.031. MY NOTES ASK YOUR TEACHER (a) At anale show a jet flies directly toward the stands at a speed of 1140 km/h, emitting a frequency of 3900 He, on a day when the speed of sound is 342 m/s. What frequency (In Ha) is received by the observers? HZ (b) What frequency in Hz) do they receive as the plane fles directly away from them?

Answers

Observers receive a frequency of approximately 4230 Hz as the jet flies directly towards them, and a frequency of approximately 3642 Hz as the plane flies directly away from them.

(a) To determine the frequency received by the observers as the jet flies directly towards the stands, we can use the Doppler effect equation:

f' = f * (v + v_observer) / (v + v_source),

where f' is the observed frequency, f is the emitted frequency, v is the speed of sound, v_observer is the observer's velocity, and v_source is the source's velocity.

Given information:

- Emitted frequency (f): 3900 Hz

- Speed of sound (v): 342 m/s

- Speed of the jet (v_source): 1140 km/h = 1140 * 1000 m/3600 s = 317 m/s

- Observer's velocity (v_observer): 0 m/s (since the observer is stationary)

Substituting the values into the Doppler effect equation:

f' = 3900 Hz * (342 m/s + 0 m/s) / (342 m/s + 317 m/s)

Calculating the expression:

f' ≈ 4230 Hz

Therefore, the frequency received by the observers as the jet flies directly towards the stands is approximately 4230 Hz.

(b) To determine the frequency received as the plane flies directly away from the observers, we can use the same Doppler effect equation.

Given information:

- Emitted frequency (f): 3900 Hz

- Speed of sound (v): 342 m/s

- Speed of the jet (v_source): -1140 km/h = -1140 * 1000 m/3600 s = -317 m/s (negative because it's moving away)

- Observer's velocity (v_observer): 0 m/s

Substituting the values into the Doppler effect equation:

f' = 3900 Hz * (342 m/s + 0 m/s) / (342 m/s - 317 m/s)

Calculating the expression:

f' ≈ 3642 Hz

Therefore, the frequency received by the observers as the plane flies directly away from them is approximately 3642 Hz.

To know more about frequency, click here:

brainly.com/question/29739263

#SPJ11

Use Ohm's Law to calculate the voltage across a 22052 resistor when a 1.60A
current is passing through it.

Answers

The voltage across the 22052 Ω resistors, when a current of 1.60 A is passing through it, is approximately 35283.2 V.

Ohm's Law states that the voltage (V) across a resistor is equal to the product of the current (I) passing through it and the resistance (R):

V = I * R

I = 1.60 A (current)

R = 22052 Ω (resistance)

Substituting the values into Ohm's Law:

V = 1.60 A * 22052 Ω

Calculating the voltage:

V ≈ 35283.2 V

Learn more about Ohm's Law at https://brainly.com/question/14296509

#SPJ11

Two vectors are given by →A = i^ + 2j^ and →B = -2i^ + 3j^ . Find (a) →A ×→B

Answers

The cross product of →A and →B is 7k^.

To find the cross product of vectors →A and →B, we can use the formula:

→A × →B = (A2 * B3 - A3 * B2)i^ + (A3 * B1 - A1 * B3)j^ + (A1 * B2 - A2 * B1)k^

Given that →A = i^ + 2j^ and →B = -2i^ + 3j^, we can substitute the values into the formula.

First, let's calculate A2 * B3 - A3 * B2:

A2 = 2
B3 = 0
A3 = 0
B2 = 3

A2 * B3 - A3 * B2 = (2 * 0) - (0 * 3) = 0 - 0 = 0

Next, let's calculate A3 * B1 - A1 * B3:

A3 = 0
B1 = -2
A1 = 1
B3 = 0

A3 * B1 - A1 * B3 = (0 * -2) - (1 * 0) = 0 - 0 = 0

Lastly, let's calculate A1 * B2 - A2 * B1:

A1 = 1
B2 = 3
A2 = 2
B1 = -2

A1 * B2 - A2 * B1 = (1 * 3) - (2 * -2) = 3 + 4 = 7

Putting it all together, →A × →B = 0i^ + 0j^ + 7k^

Therefore, the cross product of →A and →B is 7k^.

Note: The k^ represents the unit vector in the z-direction. The cross product of two vectors in 2D space will always have a z-component of zero.

to learn more about cross product

https://brainly.com/question/29097076

#SPJ11

A uniform copper rod sits with one end in a boiling beaker of water and the other end in a beaker of ice water (as shown)
Consider the heat that flows along the rod at points A (), B () and C ().
What ranking is correct if no heat is lost to the environment through the sides of the copper rod?

Answers

the ranking that is correct if no heat is lost to the environment through the sides of the copper rod would be point A > point B > point C.

The ranking that is correct if no heat is lost to the environment through the sides of the copper rod would be point A > point B > point C. Therefore, the correct option is option B.

Heat transfer is the process of the thermal exchange of energy from one point to another.

In heat transfer, heat energy is transferred from hotter objects to colder objects until they reach the same temperature. Heat transfer can take place through three main ways which are convection, conduction, and radiation.

A uniform copper rod is a good conductor of heat and the temperature is spread evenly across the rod. In the question given, the rod is sitting with one end in a boiling beaker of water and the other end in a beaker of ice water. The heat flows along the rod from the hot end to the cold end of the rod and the heat energy is transferred by conduction.

When the copper rod is placed with one end in a boiling beaker of water, the end of the copper rod will have the highest temperature and will be point A. The point where the rod enters the beaker of ice water will be point C, which is at a lower temperature than point A. The point at which the copper rod is halfway between the boiling beaker and the beaker of ice water will be point B. It is important to note that no heat is lost to the environment through the sides of the copper rod.

Therefore, the ranking that is correct if no heat is lost to the environment through the sides of the copper rod would be point A > point B > point C.

learn more about temperature here

https://brainly.com/question/27944554

#SPJ11

A certain freely falling object, released from rest, requires 1.35 s to travel the last 40.0 m before it hits the ground. (a) Find the velocity of the object when it is 40.0 m above the ground. (Indicate the direction with the sign of your answer. Let the positive direction be upward.) m/s (b) Find the total distance the object travels during the fall.

Answers

The velocity of the object when it is 40.0 m above the ground is approximately -29.6 m/s, with the negative sign indicating downward direction.

To find the velocity of the object when it is 40.0 m above the ground, we can use the kinematic equation:

v^2 = u^2 + 2as

where v is the final velocity, u is the initial velocity (which is 0 m/s as the object is released from rest), a is the acceleration due to gravity (-9.8 m/s^2), and s is the displacement (40.0 m).

Plugging in the values, we have:

v^2 = 0^2 + 2 * (-9.8) * 40.0

v^2 = -2 * 9.8 * 40.0

v^2 = -784

v ≈ ± √(-784)

Since the velocity cannot be imaginary, we take the negative square root:

v ≈ -√784

v ≈ -28 m/s

Therefore, the velocity of the object when it is 40.0 m above the ground is approximately -28 m/s, indicating a downward direction.

(b) The total distance the object travels during the fall can be calculated by finding the sum of the distances traveled during different time intervals. In this case, we have the distance traveled during the last 1.35 seconds before hitting the ground.

The distance traveled during the last 1.35 seconds can be calculated using the equation:

s = ut + (1/2)at^2

where s is the distance, u is the initial velocity (0 m/s), a is the acceleration due to gravity (-9.8 m/s^2), and t is the time (1.35 s).

Plugging in the values, we have:

s = 0 * 1.35 + (1/2) * (-9.8) * (1.35)^2

s = -6.618 m

Since the distance is negative, it indicates a downward displacement.

The total distance traveled during the fall is the sum of the distances traveled during the last 40.0 m and the distance calculated above:

Total distance = 40.0 m + (-6.618 m)

Total distance ≈ 33.382 m

Therefore, the total distance the object travels during the fall is approximately 33.382 meters.

To learn more about velocity

brainly.com/question/30559316

#SPJ11

A particle in a one-dimensional box of length L is in its first excited state, corresponding to n - 2. Determine the probability of finding the particle between x = 0 and x = 1/4,

Answers

The probability of finding the particle between x = 0 and x = 1/4 in its first excited state in a one-dimensional box of length L is 1/(4L).

To determine the probability of finding the particle between x = 0 and x = 1/4 in its first excited state, we need to calculate the square of the wave function over that region.

The wave function for the particle in a one-dimensional box in the first excited state (n = 2) is given by:

ψ(x) = √(2/L) * sin(2πx/L),

where L is the length of the box.

To calculate the probability, we need to square the absolute value of the wave function and integrate it over the region of interest.

P = ∫[0, 1/4] |ψ(x)|^2 dx

Substituting the expression for ψ(x), we have:

P = ∫[0, 1/4] [√(2/L) * sin(2πx/L)]^2 dx

P = (2/L) ∫[0, 1/4] sin^2(2πx/L) dx

Using the identity sin^2θ = (1/2) * (1 - cos(2θ)), we can simplify the integral:

P = (2/L) ∫[0, 1/4] (1/2) * (1 - cos(4πx/L)) dx

P = (1/L) ∫[0, 1/4] (1 - cos(4πx/L)) dx

Integrating, we get:

P = (1/L) [x - (L/(4π)) * sin(4πx/L)] evaluated from 0 to 1/4

P = (1/L) [(1/4) - (L/(4π)) * sin(π)].

Since sin(π) = 0, the second term becomes zero:

P = (1/L) * (1/4)

P = 1/(4L).

Therefore, the probability of finding the particle between x = 0 and x = 1/4 in its first excited state is 1/(4L), where L is the length of the one-dimensional box.

Learn more about length from the given link:

https://brainly.com/question/32060888

#SPJ11

Other Questions
In his chapter on social constructionism, Surette includes descriptions of Theodore Sasson's five Crime and Justice Frames. Watch an episode of your favorite crime-related television show (or, if you don't usually watch such shows, just find one to watch). Review the frames and see if you can determine which is the dominant frame being used to construct reality in that episode. Can you identify any competing frames? Outline the way(s) in which the social construction of crime in the episode might relate to a particular policy. The major source of Added Sugar in the U.S. diet is: OA. baked goods such as cookies and cakes OB. candy OC. ice cream OD. sugar sweetened beverages 1. What are 3 ways to be an excellent Presenter / Communicator? Please Explain and give examples (6marks)2. Name a time you (personal) had OR saw ( others) a great innovation, invention, transformation idea (ITT) explain ((4marks)?Personal Idea- What was it? Why havent you started, what blocking you, or what was the outcomeOthers - If it's something that you saw what made it remarkable? Buttercup is sliding on frictionless ice with a speed of 2.5 m/s when she runs into a large massless spring with a spring constant of 272 N/m. Buttercup has a mass of 31.5 kg. a) What is the amplitude 1. An analyst has collected the following information regarding Christopher Co .: The company's capital structure is 70 percent equity, 30 percent debt. The yield to maturity on the company's bonds is 5 percent. The company's year-end dividend (D_{1}) is forecasted to be $ 1.0 a share. The company expects that its dividend will grow at a constant rate of 7 percent a year . The company's stock price is $25. The company's tax rate is 40 percent . The company anticipates that it will need to raise new common stock this year. Its investment bankers anticipate that the total flotation cost will equal 10 percent of the amount issued. Assume the company accounts for flotation costs by adjusting the cost of capital Given this information, calculate the company's WACC2. Rollins Corporation is estimating its WACC. Its target capital structure is 20 percent debt, 20 percent preferred stock, and 60 percent common equity. Rollins' beta is 1.7 the risk-free rate is 5 percent, and the market risk premium is 4 percent. Rollins is a constant-growth firm which just paid a dividend of $2.00, sells for $ 34 per share, and has a growth rate of 7 percent. The firm's policy is to use a risk premium of 4 percentage points when using the bond- yield-plus-risk-premium method to find r_{s} The firm's marginal tax rate is 38 percent. What is Rollins cost of equity when using the CAPM approach (aka SML equation)? Express your answer in percentage (without the % sign ) and round it to two decimal places. Given cos=3/5 and 270 The earlier the onset of teenage smoking, the __________.greater their daily cigarette usegreater the likelihood of quitting before age 30smaller their chances of heart attack and strokesmaller the exposure to toxins Order: clindamycin 0.3 g IV every 6 hours for infection Supply: clindamycin 600 mg/4-mL vial Nursing drug reference: Dilute with 50 mL 0.9% NS and infuse over 15 min. How many milliliters will you draw from the vial? Calculate the milliliters per hour to set the IV pump. Calculate the drops per minute with a drop factor of 15 gtt/mL how much does a 1 kg pineapple weigh on earth. You are required to prepare a case-study on a contemporary example of a significant failure of corporate governance from a list provided by the course lecturer.Your report must:(a) accurately describe the incident by reference to credible sources,(b) explain whether and, if so, how the company and its directors have breached applicable corporate laws; and(c) analyse what steps the companys directors and senior officers could have taken to better manage its governance effectiveness.You must also make realistic recommendations as to how similar incidents may be avoided by other organisations. Psychology professor Irvin D. Yalom has some interesting stories from his counseling experience with clients in individual and group therapy. One woman ranted at length in a group therapy session about her boss, who never listened and refused to pay her any respect. Theres nothing funny about a bad boss, but the interesting thing about this client was that as her work with Yalom continued, her complaints about her terrible boss persisted through three different jobs with three different supervisors. It is likely that not only she but also her supervisors, colleagues, and the companies where she worked suffered due to her unproductive relationships with her superiors.Contrast this womans attitude and approach to that of Marcia Reynolds who once worked for a micromanaging boss who was always criticizing and correcting her work. Reynolds decided to stop resenting his micromanaging and instead "act as though he were the worlds best boss with the worlds best employee." Instead of complaining and pushing back when her boss micromanaged, Reynolds was cheerful and helpful. She says an interesting thing happened: "When I stopped resisting, he started trusting me. When there was no longer any resistance, he quit fighting. Doing that really empowered me." As her boss increasingly trusted Reynolds, his micromanaging continued to abate, their relationship continued to improve, and both were happier and more productive. Reynolds was able to better do her job and get her subordinates what they needed by learning to manage up.QUESTIONSa. How did Marcia Reynolds manage or influence her boss?b. Describe a difficult situation where you had to manage your boss or leader, and what did you do to manage your boss or leader? (30 pts) A one story RC building has a roof mass of 700 kips/g, and its natural frequency is 6 Hz. This building is excited by a vibration generator with two weights, each 75 lb., rotating about a vertical axis at an eccentricity of 15 in. When the vibration generator runs at the natural frequency of the building, the amplitude of the roof acceleration is measured to be 0.05 g. Determine the damping of the structure. (g=386.1 in/s?) A restaurant manager tracks complaints from the diner satisfaction cards that are turned in at each table. The data collected from the past week's diners appear in the following table.ComplaintFrequencyFood taste47Food49temperatureOrder mistake. 13Slow service5Table/utensils dirty10 10Too expensive22Using a classic Pareto analysis, what are the vital few complaints?Food tasteFood temperatureOrder mistakeSlow serviceTable/utensils dirtyToo expensive QUESTION 4"Natural ingredients skincare is a new skin care range that entrepreneurs Tumi and Melissa are planning to open. They are planning to do online sales and have three stores located in Cape Town, Durban and Johannesburg to accommodate walk in customers. They are aware that they are entering a market with large competitors, and that there is a lot of activity in the market. They have approached in in helping them analyse their new businessIllustrate and analyse Porter's five forces model for "Natural ingredients skincare" A 110 g mass on a 1.1-m-long string is pulled 6.2 to one side and released. How long does it take for the pendulum to reach 3.1 on the opposite side?Express your answer with the appropriate units. A 1.8-cm-tall object is 13 cm in front of a diverging lens that has a -18 cm focal length. Part A Calculate the image position. Express your answer to two significant figures and include the appropria pls help asap if you can!!!!! Convert the following integers in the given base to decimals: binary: 101011 hexadecimal: 3AC Convert the decimal 374 to: binary hexadecimal Un chavo mide 3 pulgadas + un 1/4 de pulgada y otro mide 9.045 cm que diferencia de tamao hay entre ellos Which of the following activities does not involve the goals and phases that comprise a "rite of passage"? Military basic training Church worship service Bar mitzvah College graduation Question 27 A religion where one sees all objects as divine and spiritually animated, including rocks, trees, and animals, is considered what type of religion? Animism Ecclesia Polytheism Totemism Question 28 Which of the following best defines the term commodity? An economic system which adheres to the principles of socialism. A benefit given to those who participate in the capitalist market. An activity that benefits people, such as health care, education, and entertainment. A physical object we find, grow, or make to use or exchange with others.