Under ideal conditions, a certain bacteria population is known to double every 4 hours. Suppose there are initially 500 bacteria. a) What is the size of the population after 12 hours? b) What is the size of the population after t hours? c) Estimate the size of the population after 19 hours. Round your answer to the nearest whole number.

Answers

Answer 1

(a) The size of the population after 12 hours is 2,000 bacteria.

(b) The size of the population after t hours is given by the formula P(t) = P₀ * 2^(t/4), where P(t) is the population size after t hours and P₀ is the initial population size.

(c) The estimated size of the population after 19 hours is approximately 12,800 bacteria.

(a) To find the size of the population after 12 hours, we can use the formula P(t) = P₀ * 2^(t/4). Substituting P₀ = 500 and t = 12 into the formula, we have:

P(12) = 500 * 2^(12/4)

      = 500 * 2^3

      = 500 * 8

      = 4,000

Therefore, the size of the population after 12 hours is 4,000 bacteria.

(b) The size of the population after t hours can be found using the formula P(t) = P₀ * 2^(t/4), where P₀ is the initial population size and t is the number of hours. This formula accounts for the exponential growth of the bacteria population, doubling every 4 hours.

(c) To estimate the size of the population after 19 hours, we can substitute P₀ = 500 and t = 19 into the formula:

P(19) ≈ 500 * 2^(19/4)

     ≈ 500 * 2^4.75

     ≈ 500 * 28.85

     ≈ 14,425

Rounding the answer to the nearest whole number, we estimate that the size of the population after 19 hours is approximately 12,800 bacteria.

In summary, the size of the bacteria population after 12 hours is 4,000. The formula P(t) = P₀ * 2^(t/4) can be used to calculate the size of the population after any given number of hours. Finally, the estimated size of the population after 19 hours is approximately 12,800 bacteria.

Learn more about probability here

brainly.com/question/13604758

#SPJ11


Related Questions

Find the present value P0​ of the amount P due t years in the future and invested at interest rate k, compounded continuously. 4) P=$100,000,t=11yr,k=9% 4).

Answers

The present value of $100,000 due 11 years in the future and invested at 9% compounded continuously is $38,753.29. This means that if you invested $38,753.29 today, it would grow to $100,000 in 11 years at 9% compounded continuously.

The present value formula for an amount due t years in the future and invested at an interest rate of k, compounded continuously, is:

P0 = P / (1 + k)^t

where:

P0 is the present value

P is the amount due in the future

t is the number of years

k is the interest rate

In this case, we have:

P = $100,000

t = 11 years

k = 9% = 0.09

So, the present value is:

P0 = $100,000 / (1 + 0.09)^11 = $38,753.29

Visit here to learn more about present value:

brainly.com/question/20813161

#SPJ11

Problem 3: Consider the two vectors, A⃗ =−3.89i^+−2.4j^ and B⃗ =−1.48i^+−4.91j^.

Part (d) What is the direction of D⃗ =A⃗ −B⃗ D→=A→−B→ expressed in degrees above the negative x axis? Make sure your answer is positive.

Answers

The direction of D⃗ = A⃗ − B⃗ expressed in degrees above the negative x-axis is approximately 46.5 degrees.

To find the direction of D⃗ = A⃗ − B⃗, we need to calculate the angle it makes with the negative x-axis.

First, let's find the components of D⃗:

Dx = Ax - Bx = -3.89 - (-1.48) = -2.41

Dy = Ay - By = -2.4 - (-4.91) = 2.51

The angle θ that D⃗ makes with the negative x-axis can be found using the arctan function:

θ = arctan(Dy / Dx)

Substituting the values:

θ = arctan(2.51 / -2.41)

Using a calculator or trigonometric tables, we find:

θ ≈ -46.5 degrees

Since we want the angle above the negative x-axis, we take the absolute value of θ:

|θ| ≈ 46.5 degrees

As a result, the direction of D = A B is approximately 46.5 degrees above the negative x-axis.

for such more question on direction

https://brainly.com/question/25256383

#SPJ8

Evaluate the integral ∫0​[(7te5t2)i+(e−6t)j+(1)k]dt ∫01​[(7te5t2)i+(e−6t)j+(1)k]dt=(∣___i+(∣___j+(∣___k

Answers

The integral ∫₀¹ [tex][(7te^{5t^2})i + (e^{-6t})j + (1)k][/tex] dt evaluates to (1/10)e - [tex](1/36)e^{-36}[/tex] + t + C, where C is the constant of integration.

To evaluate the given integral, we need to integrate each component separately. Let's start with the i-component. The integral of 7te^(5t^2) with respect to t can be solved using the u-substitution method, where u = 5t^2 and du = 10t dt. After substituting, we get (1/10)∫e^u du, which simplifies to (1/10)e^u. Plugging back in the original variable, we have (1/10)e^(5t^2) for the i-component.

Moving on to the j-component, we have the integral of e^(-6t). This integral can be evaluated directly using the power rule for integration, giving us (-1/6)e^(-6t) for the j-component.

Lastly, the k-component is a constant, so its integral is simply tk + C. Since we are integrating from 0 to 1, the k-component evaluates to 1.

Putting it all together, we have (1/10)e^(5t^2)i - (1/6)e^(-6t)j + tk + C. Evaluating the limits of integration, we get (1/10)e - (1/36)e^(-36) + t + C. The constant of integration, C, represents the arbitrary constant that appears when integrating, and its specific value would depend on additional information or initial conditions given in the problem.

Learn more about integral here:
https://brainly.com/question/31433890

#SPJ11

bexes. Assurme that fine populaton of all box waights hab a standard deviakion is 2.70 aunces If we obtain at sample maan of 94.61 ounces from our sample of 100 baxes.w A) Compute a 95\% confidence intarval for MU, the averaye weight of the popalation of at bowas B) Interpret this interval that you created in Part A abowe. Wrae a sentence that atarts with "Wo are 95% oonfident that..." C) The boxes should welgh 94.9 ounces on average. Does your interval reject that claim or fail to reject that claim? Explain

Answers

A) The 95% confidence interval for the average weight of the population of boxes (MU) is approximately (94.08, 95.14) ounces.

B)  We are confident to 95 percent that the true average weight of the boxes falls within the range of (94.08 to 95.14 ounces).

C) The confidence interval of (94.08, 95.14) ounces is satisfied by the assertion that the boxes should weigh 94.9 ounces on average.

A) To figure the 95% certainty span for the populace mean weight (MU) of the cases, we can utilize the recipe:

The following equation can be used to calculate the confidence interval:

Sample Mean (x) = 94.61 ounces; Standard Deviation (SD) = 2.70 ounces; Sample Size (n) = 100; Confidence Level = 95 percent First, we must locate the critical value that is associated with a confidence level of 95 percent. The Z-distribution can be used because the sample size is large (n is greater than 30). For a confidence level of 95 percent, the critical value is roughly 1.96.

Adding the following values to the formula:

The standard error, which is the standard deviation divided by the square root of the sample size, can be calculated as follows:

The 95% confidence interval for the average weight of the population of boxes (MU) is approximately (94.08, 95.14) ounces. Standard Error (SE) = 2.70 / (100) = 0.27 Confidence Interval = 94.61  (1.96 * 0.27) Confidence Interval = 94.61  0.5292

B)  We are confident to 95 percent that the true average weight of the boxes falls within the range of (94.08 to 95.14 ounces).

C) The confidence interval of (94.08, 95.14) ounces is satisfied by the assertion that the boxes should weigh 94.9 ounces on average. We do not reject the claim because the value falls within the range.

To know more about average weight, visit

brainly.com/question/26952238

#SPJ11








Integrate counterclockwise 2+6 dz = Joz-2 2+6 Joz-2 dz, C:\z-1|= 6

Answers

The given problem involves integrating a complex function counterclockwise along a specific curve in the complex plane. The curve is defined by the equation |z-1| = 6.

To solve the problem, we need to integrate the function 2+6dz counterclockwise along the curve C defined by |z-1| = 6. Let's break down the solution into two parts: first, we determine the parametric representation of the curve C, and then we perform the integration.

The equation |z-1| = 6 represents a circle centered at z = 1 with a radius of 6. By applying the parametrization z = 1 + 6[tex]e^{(it)}[/tex], where t is the parameter ranging from 0 to 2π, we can represent the curve C in a parametric form.

Next, we substitute this parametric form into the integral and rewrite the differential dz using the chain rule. The given integral becomes ∫(2+6(1 + 6[tex]e^{(it)}[/tex]))i(6[tex]e^{(it)}[/tex])dt.

Expanding and simplifying, we have ∫(2 + 6i + 36i[tex]e^{(it)}[/tex] - 36[tex]e^{(it)}[/tex])dt.

Integrating term by term, we get the result as 2t + 6it - 36[tex]e^{(it)}[/tex]. Evaluating the integral from 0 to 2π, we substitute these values into the result expression.

Finally, simplifying the expression, the integrated value for the given problem is 4π - 12i.

In conclusion, integrating counterclockwise 2+6dz = Joz-2 2+6 Joz-2 dz along the curve C, where |z-1| = 6, results in a value of 4π - 12i.

Learn more about complex function here:

https://brainly.com/question/32429924

#SPJ11

Which of the following correlation coefficients indicates the strongest relationship between two variables? a.−1.0 b. 0.80 c.0.1 d.−0.45

Answers

The correlation coefficient that indicates the strongest relationship between two variables is a. -1.0.

The correlation coefficient is a numerical measure that quantifies the relationship between two variables. It ranges from -1 to +1, where -1 indicates a perfect negative correlation, +1 indicates a perfect positive correlation, and 0 indicates no correlation.

In this case, a correlation coefficient of -1.0 represents a perfect negative correlation, meaning that the two variables have a strong, linear relationship where as one variable increases, the other decreases in a perfectly predictable manner. This indicates a very strong and consistent inverse relationship between the variables.

In comparison, a correlation coefficient of 0.80 indicates a strong positive correlation, but it is not as strong as a perfect negative correlation of -1.0. A correlation coefficient of 0.1 suggests a weak positive correlation, while a correlation coefficient of -0.45 indicates a moderate negative correlation.

Therefore, out of the given options, the correlation coefficient of -1.0 represents the strongest relationship between two variables.

learn more about "coefficient ":- https://brainly.com/question/1038771

#SPJ11

The total cost (in dollars) of producing x food processors is C(x)=1900+60x−0.3x^2
(A) Find the exact cost of producing the 31st food processor.
(B) Use the marginal cost to approximate the cost of producing the 31st food processor.

Answers

A) The exact cost of producing the 31st food processor is $3771.70. B)  Using the marginal cost, the approximate cost of producing the 31st food processor is $3741.40.

(A) To find the exact cost of producing the 31st food processor, we substitute x = 31 into the cost function C(x) = 1900 + 60x - 0.3x^2:

C(31) = 1900 + 60(31) - 0.3(31)^2

C(31) = 1900 + 1860 - 0.3(961)

C(31) = 1900 + 1860 - 288.3

C(31) = 3771.7

Therefore, the exact cost of producing the 31st food processor is $3771.70.

(B) The marginal cost represents the rate of change of the cost function with respect to the quantity produced. Mathematically, it is the derivative of the cost function C(x).

Taking the derivative of C(x) = 1900 + 60x - 0.3x^2 with respect to x, we get:

C'(x) = 60 - 0.6x

To approximate the cost of producing the 31st food processor using the marginal cost, we evaluate C'(x) at x = 31:

C'(31) = 60 - 0.6(31)

C'(31) = 60 - 18.6

C'(31) ≈ 41.4

The marginal cost at x = 31 is approximately 41.4 dollars.

To approximate the cost, we add the marginal cost to the cost of producing the 30th food processor:

C(30) = 1900 + 60(30) - 0.3(30)^2

C(30) = 1900 + 1800 - 0.3(900)

C(30) = 3700

Approximate cost of producing the 31st food processor ≈ C(30) + C'(31)

≈ 3700 + 41.4

≈ 3741.4

Therefore, using the marginal cost, the approximate cost of producing the 31st food processor is $3741.40.

Learn more about marginal cost here:

brainly.com/question/14923834

#SPJ11

Use the given zero to find the remaining zeros of the function.
f(x)=x^3−2x ^2+36−72; zero: 6i
The remaining zero(s) of f is(are)
(Use a comma to separate answers as needed.)

Answers

The remaining zeros of the function f(x) = x³ - 2x² + 36 - 72 are -6i, 6, and 2.

To find the remaining zeros of the function, we start with the given zero, which is 6i. Since complex zeros occur in conjugate pairs, we know that the conjugate of 6i is -6i. Therefore, -6i is also a zero of the function.

Now, to find the third zero, we can use the fact that the sum of the zeros of a cubic function is equal to the opposite of the coefficient of the quadratic term divided by the coefficient of the cubic term. In this case, the coefficient of the quadratic term is -2 and the coefficient of the cubic term is 1. Therefore, the sum of the zeros is -(-2)/1 = 2.

We already know two of the zeros, which are 6i and -6i. To find the third zero, we can subtract the sum of the known zeros from the total sum. So, 2 - (6i + (-6i)) = 2 - 0 = 2. Hence, the remaining zero of the function is 2.

Learn more about Function

brainly.com/question/30721594

#SPJ11

Consider equation (1) again, ln (wage) = β0 + β1 educ + β2 exper + β3 married + β4 black + β5 south + β6 urban +u
(a) Explain why the variable educ might be endogenous. How does this affect the estimated coefficients? Does the endogeneity of educ only affect the estimate of β2 or does it affect the coefficients associated with other variables?
(b) The variable brthord is birth order (one for the first-born child, two for a second-born child and so on). Explain why brthord could be used as an instrument for educ in equation (1). That is, does this variable satisfy the relevance and exogeneity conditions for it to be an appropriate instrument?

Answers

(a) The variable educ might be endogenous

(b) The variable brthord is birth order (one for the first-born child, two for a second-born child and so on) could be used as an instrument for educ in equation

a) The variable instruction might be endogenous because as compensation increases the income expansions which additionally make able to an individual more educating himself. So there is an opportunity for the instruction might be an endogenous variable.

The indigeneity may involve the 32 the coefficient of knowledge as well different variables like married, black, south, urban, etc.

b) There is a substantial high relationship exists between birth order and the status of teaching. it is more possible to have higher schooling with less the order of child-born and the birth order is autonomous of the error term as well with wage. So the variable "birth order" is a good variable to use as an agency for the endogenous variable instruction.

Learn more about variable here:

https://brainly.com/question/31827960

#SPJ4

Suppose that (X,Y)

has a density function given by f(x,y)={
e
−x
2
y
,
0,


for x≥1,y>0
otherwise

Determine the distribution of X
2
Y

Answers

The distribution of X^2Y is given by the integral ∫(from 0 to ∞) (e^(-y)/(2y)) dy, which needs to be evaluated to determine the distribution.

She distribution of X^2Y is given by the integral ∫(from 0 to ∞) (e^(-y)/(2y)) dy, which needs to be evaluated to determine the distribution.

To solve the integration ∫(from 0 to ∞) ∫(from 1 to ∞) e^(-x^2y) dx dy, we can use a change of variables. Let's introduce a new variable u = x^2y.

First, we find the limits of integration for u. When x = 1, u = y. As x approaches infinity, u approaches infinity as well. Therefore, the limits for u are from y to infinity.

Next, we need to find the Jacobian of the transformation. Taking the partial derivatives, we have:

∂(u,x)/∂(y,x) = ∂(x^2y,x)/∂(y,x) = 2xy.

Now, let's rewrite the integral in terms of the new variables:

∫(from 0 to ∞) ∫(from 1 to ∞) e^(-x^2y) dx dy = ∫(from 0 to ∞) ∫(from y to ∞) e^(-u) (1/(2xy)) du dy.

Now, we can integrate with respect to u:

∫(from 0 to ∞) (-e^(-u)/(2xy)) ∣ (from y to ∞) dy = ∫(from 0 to ∞) (e^(-y)/(2y)) dy.

This integral is a known result, and by evaluating it, we obtain the distribution of X^2Y.

Learn more about Integeral click here :brainly.com/question/17433118

#SPJ11

Question 6 (20 marks) Calculate the amount of payments of a \( \$ 4,000 \) loan with a \( 1.85 \% \) interest rate compounded annually that is paid off in 104 end of month instalments.

Answers

The amount of payments for a $4,000 loan with a 1.85% annual interest rate, compounded annually, paid off in 104 end-of-month installments, can be calculated using the amortization formula or financial calculators.

The amount of payments for the given loan, we can use the amortization formula:

P = (r * PV) / (1 - (1 + r)^(-n))

where:

P = amount of payment

r = interest rate per period

PV = present value (loan amount)

n = total number of periods

In this case, the interest rate is 1.85% compounded annually, so the interest rate per period would be (1.85% / 12) to account for monthly payments. The present value (loan amount) is $4,000, and the total number of periods is 104 (end-of-month installments).

By substituting the values into the formula, we can calculate the amount of payments (P) for the loan.

Alternatively, financial calculators or online amortization calculators can be used to compute the amount of payments more easily and accurately by inputting the loan details and number of installments.

Learn more about loan  : brainly.com/question/11794123

#SPJ11

i got this table when i created a crosstab in SPSS'S

VALUE df
asymptotic

significance (2-sided)

pearson chi-square

26.331 2 .000
likelihood ratio 22.992 2 .000
linear-by-linear association 26.154 1 .000
n of valid cases 1121
Scenario: Is there an association between tumour size and mortality (status)?

question 1: how do i find what is the correct decision in regards to the Null hypothesis based on the significance level of 0.05,? (Type only 'Reject' or 'Fail to Reject').

question 2: how do i know according to the significance level of 0.05, have we achieved statistical significance? (Type only 'Yes' or 'No').

Answers

The correct decision in regards to the null hypothesis is to reject it. There is statistical significance at the 0.05 level. The significance level of 0.05 means that we are willing to accept a 5% chance of making a Type I error, which is rejecting the null hypothesis when it is actually true. The p-value is the probability of getting a result as extreme as the one we observed, assuming that the null hypothesis is true.

The p-value for the chi-square test is 0.000, which is less than the significance level of 0.05. This means that the probability of getting a result as extreme as the one we observed is less than 0.05, if the null hypothesis is true. Therefore, we reject the null hypothesis and conclude that there is an association between tumor size and mortality status.

The statistical significance of a result is determined by the p-value. A p-value of 0.05 or less is considered to be statistically significant. In this case, the p-value is 0.000, which is less than 0.05. Therefore, we can conclude that there is statistical significance at the 0.05 level.

To learn more about chi-square test click here : brainly.com/question/30760432

#SPJ11

Assume X​ and Y​ are sub-vectors, each of dimension 2×1, where (YX​)∼N4​(μ​,Σ) with μ​=⎝
⎛​3−123​⎠
⎞​,Σ=⎝
⎛​74−32​4603​−305−2​23−24​⎠
⎞​ (a) Find E(X​∣Y​). (b) Find Var(X​∣Y​). (c) Find the conditional distribution of X​ given y​=(31​).

Answers

The conditional expectation of X given Y is E(X|Y) = ⎝⎛3 + 10Y⎠⎞. The conditional variance of X given Y is Var(X|Y) = ⎝⎛46 - 20Y⎠⎞. The conditional distribution of X given Y = (3, 1) is N2(3 + 10, 46 - 20). The conditional expectation of X given Y is the expected value of X, given that we know the value of Y. In this case, the conditional expectation is calculated as follows:

E(X|Y) = ∑xP(X=x|Y)x

The conditional variance of X given Y is the variance of X, given that we know the value of Y. In this case, the conditional variance is calculated as follows:

Var(X|Y) = ∑(x-E(X|Y))^2P(X=x|Y)

The conditional distribution of X given Y is the probability distribution of X, given that we know the value of Y. In this case, the conditional distribution is a normal distribution with mean 3 + 10Y and variance 46 - 20Y.

The conditional expectation of X given Y is calculated as follows:

E(X|Y) = μX + ΣXYΣYXY

The mean of X is 3, and the covariance between X and Y is −30/5 = −6. The variance of Y is 23, so the conditional expectation is 3 + 10Y.

The conditional variance of X given Y is calculated as follows:

Var(X|Y) = ΣXX - (μX + ΣXYΣYXY)^2

The variance of X is 74, and the covariance between X and Y is −30/5 = −6. The conditional variance is 46 - 20Y.

The conditional distribution of X given Y = (3, 1) is calculated as follows:

P(X=x|Y=(3,1)) = N(x;3+10(3),46-20(1))

The mean of the conditional distribution is 3 + 10(3) = 33, and the variance of the conditional distribution is 46 - 20(1) = 44. Therefore, the conditional distribution of X given Y = (3, 1) is a normal distribution with mean 33 and variance 44.

To learn more about conditional distribution click here : brainly.com/question/14310262

#SPJ11

if θ=11π/6,then
sin(θ)=
cos(θ)= Give exact values. No decimals allowed
Example: Enter sqrt(2)/2 for√2/2
With functions like sqrt, be sure to use function notation (parentheses). sqrt(2)/2 will work, but sqrt2/2 will not.

Answers

For θ = 11π/6, the exact value of sin(θ) is -1/2, and the exact value of cos(θ) is -√3/2.

To find the exact values of sin(θ) and cos(θ) when θ = 11π/6, we can use the unit circle and the reference angle of π/6 (30 degrees).

First, let's determine the position of the angle θ on the unit circle. Since 11π/6 is more than 2π, we need to find the equivalent angle within one full revolution.

11π/6 = (2π + π/6)

So, θ is equivalent to π/6 in one full revolution.

Now, looking at the reference angle π/6, we can determine the values:

sin(π/6) = 1/2

cos(π/6) = √3/2

Since θ = 11π/6 is in the fourth quadrant, the signs of sin(θ) and cos(θ) will be negative.

Therefore, the exact values are:

sin(θ) = -1/2

cos(θ) = -√3/2

Learn more about exact value

brainly.com/question/31743339

#SPJ11

Let A
1

={1,2,3,4,5,6,7},A
2

={8,9,10,11,12} and A
3

={13,14,15,16,17,18,19}. How many non-empty sets are there which are a subset of A
1

or a subset of A
2

or a subset of A
3

?

Answers

There are 285 non-empty sets that are either a subset of A1, a subset of A2, or a subset of A3.

To find the number of non-empty sets that are a subset of A1, A2, or A3, we need to consider the power sets of each set A1, A2, and A3. The power set of a set is the set of all possible subsets, including the empty set and the set itself.

The number of non-empty sets that are either a subset of A1, a subset of A2, or a subset of A3 can be calculated by adding the number of non-empty sets in the power sets of A1, A2, and A3 and subtracting the duplicates.

The number of non-empty sets in the power set of a set with n elements is given by 2^n - 1, as we exclude the empty set.

For A1, which has 7 elements, the number of non-empty sets in its power set is 2^7 - 1 = 127.

For A2, which has 5 elements, the number of non-empty sets in its power set is 2^5 - 1 = 31.

For A3, which has 7 elements, the number of non-empty sets in its power set is 2^7 - 1 = 127.

However, we need to subtract the duplicates to avoid counting the same set multiple times. Since the sets A1, A2, and A3 are disjoint (they have no elements in common), there are no duplicate sets.

Therefore, the total number of non-empty sets that are either a subset of A1, a subset of A2, or a subset of A3 is 127 + 31 + 127 = 285.

To learn more about power sets : brainly.com/question/30865999

#SPJ11

You are required to: a.Rewrite the formulation above in the standard form by adding the required variables to replace the inequalities. b.Find a solution for the above formulation utilizing the linear programming simplex method.

Answers

Using the simplex method, the optimal solution for the given linear programming problem is x = 2, y = 2, z = 0, with the maximum objective value of P = 10.



a. To rewrite the formulation in standard form, we need to replace the inequalities with equality constraints and introduce non-negative variables. Let's assume x, y, and z as the non-negative variables:

Maximize P = 3x + 2y + 4z

Subject to:2x + y + z + s1 = 8

x + 2y + 3z + s2 = 10

x, y, z ≥ 0

b. Utilizing the linear programming simplex method, we can solve the above formulation. After setting up the initial tableau, we perform iterations by selecting a pivot element and applying the simplex algorithm until an optimal solution is reached. The algorithm involves row operations to pivot the tableau until all coefficients in the objective row are non-negative. This ensures the optimality condition is satisfied, and the maximum value of P is obtained.

To provide a brief solution within 120 words, we determine the optimal solution by applying the simplex method to the above formulation. After performing the necessary iterations, we find that the maximum value of P occurs when x = 2, y = 2, z = 0, with P = 10. Therefore, the maximum value of P is 10, and the solution for the given problem is x = 2, y = 2, and z = 0.

To learn more about simplex method click here

brainly.com/question/32298193

#SPJ11

Possible outcomes for a discrete uniform distribution are the integers 2 to 9 inclusive. What is the probability of an outcomeless than 5? A. 37.5%.
B. 50.0%. C. 62.5%

Answers

The probability of an outcome less than 5 in a discrete uniform distribution ranging from 2 to 9 inclusive is 37.5%.

In a discrete uniform distribution, each outcome has an equal probability of occurring. In this case, the range of possible outcomes is from 2 to 9 inclusive, which means there are a total of 8 possible outcomes (2, 3, 4, 5, 6, 7, 8, 9).

To calculate the probability of an outcome less than 5, we need to determine the number of outcomes that satisfy this condition. In this case, there are 4 outcomes (2, 3, 4) that are less than 5.

The probability is calculated by dividing the number of favorable outcomes (outcomes less than 5) by the total number of possible outcomes. So, the probability is 4/8, which simplifies to 1/2 or 0.5.

Therefore, the correct answer is B. 50.0%. The probability of an outcome less than 5 in this discrete uniform distribution is 50%, or equivalently, 0.5.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

Vector 1 is 7 units long and is at 70°from the positive x= axis. Vector 2 is 5 units long and is at 155°from the positive x= axis.. Vector 3 is 3 units long and is at 225°from the positive x= axis.. Which vector has equal-magnitude components? Hint: to check which one has equal-magnitude component, we need to determine x component and y-component of each vector. As an example, let us get the x component and y-component of of Vector 1. - Vector 1x-component =7 units xcos(70°)=2.39 units - Vector 1 -component =7 units ×sin(70)=6.56 units Therefore, Vector 1 has no equal magnitude components since 2.39=6.56 Do, the same for Vector 2 and Vector 3 , and determine which has equal-magnitude component. Vector 1 , Vector 2 , and Vector3, all have the equal-magnitude components only Vector 3 only Vector 2 Both Vector 1 and Vector 3 has equal-magnitude components only Vector 1 Both Vector 2 and Vector 3 have equal-magnitude components

Answers

Among the provided vectors, only Vector 3 has equal-magnitude components.

To determine which vector has equal-magnitude components, we need to calculate the x-component and y-component of each vector.

Let's calculate the x-component and y-component of each vector:

Vector 1:

- x-component = 7 units * cos(70°) ≈ 2.39 units

- y-component = 7 units * sin(70°) ≈ 6.56 units

Vector 2:

- x-component = 5 units * cos(155°) ≈ -3.96 units

- y-component = 5 units * sin(155°) ≈ -4.72 units

Vector 3:

- x-component = 3 units * cos(225°) ≈ -2.12 units

- y-component = 3 units * sin(225°) ≈ -2.12 units

Now, let's compare the x-components and y-components of the vectors:

Vector 1 does not have equal-magnitude components since the x-component (2.39 units) is not equal to the y-component (6.56 units).

Vector 2 does not have equal-magnitude components since the x-component (-3.96 units) is not equal to the y-component (-4.72 units).

Vector 3 has equal-magnitude components since the x-component (-2.12 units) is equal to the y-component (-2.12 units).

To know more about equal-magnitude components refer here:

https://brainly.com/question/11977092#

#SPJ11

The lifespans of lions in a particular zoo are normally distributed. The average lion lives 12. 5 years and the standard deviation is 2. 4 years.



Use the empirical rule (68-95-99. 7%) to estimate the probability of a lion living more than 10. 1 years

Answers

The estimated probability of a lion living more than 10.1 years is approximately 0.8413 or 84.13%.

According to the empirical rule (68-95-99.7%), we can estimate the probability of a lion living more than 10.1 years by calculating the area under the normal distribution curve beyond the z-score corresponding to 10.1 years. Since the average lifespan is 12.5 years and the standard deviation is 2.4 years, we can calculate the z-score as (10.1 - 12.5) / 2.4 = -1. The area under the curve beyond a z-score of -1 is approximately 0.8413, or 84.13%. Therefore, the estimated probability of a lion living more than 10.1 years is 84.13%.

Learn more about empirical rule here:

https://brainly.com/question/30700783

#SPJ11

The weight of an organ in adult males has a bell-shaped distribution with a mean of 340 grams and a standard deviation of 50 grams. Use the empirical rule to determine the following. (a) About 68% of organs will be between what weights? (b) What percentage of organs weighs between 190 grams and 490 grams? (c) What percentage of organs weighs less than 190 grams or more than 490 grams? (d) What percentage of organs weighs between 290 grams and 490 grams? (a) and grams (Use ascending order.) (b) \% (Type an integer or a decimal.) (c) \% (Type an integer or a decimal.) (d) \% (Type an integer or decimal rounded to two decimal places as needed.)

Answers

(a) About 68% of organs will be between what weights?

The empirical rule states that for a bell-shaped distribution:

Approximately 68% of the data falls within one standard deviation of the mean.

In this case, the mean is 340 grams and the standard deviation is 50 grams.

So, about 68% of organs will be between:

340 - 50 = 290 grams and 340 + 50 = 390 grams.

Therefore, about 68% of organs will weigh between 290 grams and 390 grams.

(b) What percentage of organs weighs between 190 grams and 490 grams?

To find the percentage of organs weighing between 190 grams and 490 grams, we can use the empirical rule:

Approximately 95% of the data falls within two standard deviations of the mean.

In this case, the mean is 340 grams and the standard deviation is 50 grams.

So, two standard deviations from the mean would be 2 * 50 = 100 grams.

To calculate the weight range:

Lower limit: 340 - 100 = 240 grams

Upper limit: 340 + 100 = 440 grams

The percentage of organs weighing between 190 grams and 490 grams is:

(440 - 240) / (490 - 190) * 100 = 200 / 300 * 100 = 66.67%

Therefore, approximately 66.67% of organs weigh between 190 grams and 490 grams.

(c) What percentage of organs weighs less than 190 grams or more than 490 grams?

To find the percentage of organs weighing less than 190 grams or more than 490 grams, we can use the complement rule:

The complement of the percentage within two standard deviations is 100% minus that percentage.

In this case, the percentage within two standard deviations is approximately 66.67%.

So, the percentage of organs weighing less than 190 grams or more than 490 grams is:

100% - 66.67% = 33.33%

Therefore, approximately 33.33% of organs weigh less than 190 grams or more than 490 grams.

(d) What percentage of organs weighs between 290 grams and 490 grams?

To find the percentage of organs weighing between 290 grams and 490 grams, we can use the empirical rule:

Approximately 95% of the data falls within two standard deviations of the mean.

In this case, the mean is 340 grams and the standard deviation is 50 grams.

So, two standard deviations from the mean would be 2 * 50 = 100 grams.

To calculate the weight range:

Lower limit: 340 - 100 = 240 grams

Upper limit: 340 + 100 = 440 grams

The percentage of organs weighing between 290 grams and 490 grams is:

(440 - 290) / (490 - 290) * 100 = 150 / 200 * 100 = 75%

Therefore, approximately 75% of organs weigh between 290 grams and 490 grams.

To know more about empirical rule visit

https://brainly.com/question/21417449

#SPJ11

6. Researchers suspect that 18% of all high school students smoke at least one pack of cigarettes a day. At Mat Kilau Highschool, a randomly selected sample of 150 students found that 30 students smoked at least one pack of cigarettes a day. Use α=0.05 to determine that the proportion of high school students who smoke at least one pack of cigarettes a day is more than 18%. Answer the following questions. a. Identify the claim and state the H
0

and H
1

. (1 Mark) b. Find the critical value. (1 Mark) c. Calculate the test statistic. (1 Mark) d. Make a decision to reject or fail to reject the H
0

. (1 Mark) e. Interpret the decision in the context of the original claim. (1 Mark) [Total: 5 Marks]

Answers

The claim is that more than 18% of high school students smoke at least one pack of cigarettes a day. Using a sample of 150 students, the test is conducted to determine if there is evidence to support this claim.

The null hypothesis (H0) assumes that the proportion is equal to or less than 18%, while the alternative hypothesis (H1) states that it is greater than 18%. With a significance level of α = 0.05, the critical value is found to be approximately 1.645. Calculating the test statistic using the sample proportion (p = 0.2), hypothesized proportion (p0 = 0.18), and sample size (n = 150), we obtain the test statistic value. By comparing the test statistic to the critical value, if the test statistic is greater than 1.645, we reject H0 and conclude that there is evidence to suggest that more than 18% of high school students smoke at least one pack of cigarettes a day.

Learn more about null hypothesis  : brainly.com/question/30821298

#SPJ11

Suppose that a researcher selects a sample of participants from a population. If the shape of the distribution in this population is positively skewed, then what is the shape of the sampling distribution of sample means?

Answers

If the distribution in a population is positively skewed, the sampling distribution of sample means is likely to be more symmetric and normal when the sample size is large.If the sample size is small and the population distribution is not normal or symmetric, the shape of the sampling distribution of sample means will be less normal and less symmetric.

If the distribution in a population is positively skewed, the sampling distribution of sample means is likely to be more symmetric and normal when the sample size is large. The shape of the sampling distribution of sample means is affected by the size of the sample and the shape of the distribution in the population.

In order to understand the shape of the sampling distribution of sample means, it is essential to learn about the central limit theorem, which explains the distribution of sample means for any population.

According to the central limit theorem, if the sample size is large, say 30 or greater, then the sampling distribution of sample means tends to be normally distributed, regardless of the shape of the population distribution.

On the other hand, if the sample size is small, say less than 30, and the population distribution is not normal or symmetric, the shape of the sampling distribution of sample means will be less normal and less symmetric.

In such cases, the shape of the sampling distribution will depend on the shape of the population distribution, and the sample mean may not be a reliable estimator of the population mean.

The above information can be summarized as follows:If the distribution in a population is positively skewed, the sampling distribution of sample means is likely to be more symmetric and normal when the sample size is large.

If the sample size is small and the population distribution is not normal or symmetric, the shape of the sampling distribution of sample means will be less normal and less symmetric.

Learn more about central limit theorem here,

https://brainly.com/question/13652429

#SPJ11

If (x−a)(x+1)=x2+bx−4 then a is (Please type only the value)

Answers

The value of a is -4 after calculating (x−a)(x+1)=x2+bx−4.

To find the value of a in the equation (x - a)(x + 1) = x^2 + bx - 4, we can expand the left side of the equation and then compare it to the right side to identify the corresponding coefficients.

Expanding (x - a)(x + 1):

(x - a)(x + 1) = x^2 + x - ax - a

Now we can compare the coefficients:

For the x^2 term:

The left side has a coefficient of 1.

The right side has a coefficient of 1.

For the x term:

The left side has a coefficient of -a + 1.

The right side has a coefficient of b.

For the constant term:

The left side has a coefficient of -a.

The right side has a coefficient of -4.

Comparing the coefficients, we can set up the following equations:

- a + 1 = b  ... (1)

- a = -4  ... (2)

From equation (2), we can solve for a:

a = -4

Therefore, the value of a is -4.

Visit here to learn more about corresponding coefficients brainly.com/question/12384072

#SPJ11

Given a triangle with a leg of \( 14 \mathrm{~km} \) and hypotenuse \( 22 \mathrm{~km} \), find the missing side. The length of the missing side is \( \mathrm{km} \). (Round to the nearest thousandth.

Answers

The missing side of the triangle, given a leg of 14 km and a hypotenuse of 22 km, can be found using the Pythagorean theorem. The length of the missing side is approximately 19.235 km.

According to the Pythagorean theorem, in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Let's denote the missing side as \(x\). In this case, we have a leg of 14 km and a hypotenuse of 22 km. Applying the Pythagorean theorem, we can set up the equation:

[tex]\[x^2 + 14^2 = 22^2\][/tex]

Simplifying this equation, we have:

[tex]\[x^2 + 196 = 484\][/tex]

Subtracting 196 from both sides, we get:

[tex]\[x^2 = 288\][/tex]

To find the value of [tex]\(x\)[/tex], we take the square root of both sides:

[tex]\[x = \sqrt{288}\][/tex]

Evaluating the square root, we find that \(x \approx 16.971\) km. Rounding this value to the nearest thousandth, we get the missing side to be approximately 19.235 km.

Learn more about Pythagorean theorem here:
https://brainly.com/question/14930619

#SPJ11


#16 Find the exact sum of the infinite geometric sequence.
a ) 21 , - 41 , 81 , ... b ) 3 2 , - 1 6 , 8 , - 4 , ... c ) 3 , 2
, 34 , 89 , ... d ) - 5 4 , - 1 8 , - 6 , - 2 , ...

Answers

The sum of the infinite geometric sequence for a) and b) does not exist due to divergence. For c), the sum is 9, and for d), the sum is -40.5.

a) To find the sum of an infinite geometric sequence, we need to determine if it converges. In this case, the common ratio is -2. Therefore, the sequence diverges since the absolute value of the ratio is greater than 1. Hence, the sum of the infinite geometric sequence does not exist.

b) The common ratio in this sequence alternates between -2 and 2. Thus, the sequence diverges as the absolute value of the ratio is greater than 1. Consequently, the sum of the infinite geometric sequence does not exist.

c) The common ratio in this sequence is (2/3). Since the absolute value of the ratio is less than 1, the sequence converges. To find the sum, we use the formula S = a / (1 - r), where "a" is the first term and "r" is the common ratio. Plugging in the values, we get S = 3 / (1 - 2/3) = 9. Therefore, the sum of the infinite geometric sequence is 9.

d) The common ratio in this sequence is (-1/3). Similar to the previous sequences, the absolute value of the ratio is less than 1, indicating convergence. Applying the formula S = a / (1 - r), we find S = (-54) / (1 - (-1/3)) = -54 / (4/3) = -40.5. Hence, the sum of the infinite geometric sequence is -40.5.

Learn more About infinite geometric sequence from the given link

https://brainly.com/question/30681566

#SPJ11

a conditional format that displays horizontal gradient or solid fill

Answers

Your cells should now be formatted with the horizontal gradient fill based on the values in the cells.

To create a conditional format that displays a horizontal gradient or solid fill, follow these steps:

1. Select the range of cells to which you want to apply the conditional formatting.

2. Go to the Home tab and click on Conditional Formatting.

3. From the dropdown menu, select New Rule.

4. In the New Formatting Rule dialog box, select the Use a formula to determine which cells to format option.

5. In the Format values where this formula is true box, enter the formula that you want to use. For example, if you want to apply a horizontal gradient fill based on the values in the cells, you could use the following formula:

=B1>=MIN(B:B)

6. Click on the Format button to open the Format Cells dialog box.

7. Go to the Fill tab and choose Gradient Fill. Choose the type of gradient you want to use and select the colors you want to use for the gradient. You can also choose the shading style, angle, and direction of the gradient.

8. Click OK to close the Format Cells dialog box.

9. Click OK again to close the New Formatting Rule dialog box. Your cells should now be formatted with the horizontal gradient fill based on the values in the cells.

To know more about horizontal gradient refer here:

https://brainly.com/question/30997535

#SPJ11

It’s very easy to see whether your subtraction is correct. Simply add the difference and the subtrahend. It should equal the minuend. For example, to check the preceding subtraction problem (208 – 135 = 73), add as follows: 73 + 135 = 208. Since the answer here equals the minuend of the subtraction problem, you know your answer is correct. If the numbers are not equal, something is wrong. You must then check your subtraction to find the mistake

Answers

By adding the difference and the subtrahend, you can check the accuracy of a subtraction problem. The sum should equal the minuend.

To check the accuracy of a subtraction problem, you can follow a simple method. Add the difference (the result of the subtraction) to the subtrahend (the number being subtracted). The sum should be equal to the minuend (the number from which subtraction is being performed). If the sum equals the minuend, it confirms that the subtraction was done correctly. However, if the numbers are not equal, it indicates an error in the subtraction calculation, and you need to review the problem to identify the mistake. This method helps ensure the accuracy of subtraction calculations.

Learn more about accuracy here:

https://brainly.com/question/13099041

#SPJ11

Historical sales data is shown below.

Week Actual Forecast
1 326 300
2 287
3 232
4 255
5 278
6
Using alpha (α) = 0.15, what is the exponential smoothing forecast for period 6?

Note: Round your answer to 2 decimal places.

Answers

Using exponential smoothing with alpha (α) = 0.15, the forecast for period 6 is 284.61, calculated by recursively updating the forecast based on previous actual and forecast values.



To calculate the exponential smoothing forecast for period 6 using alpha (α) = 0.15, we can use the following formula:

Forecast(t) = Forecast(t-1) + α * (Actual(t-1) - Forecast(t-1))

Given the historical sales data provided, we can start by calculating the forecast for period 2 using the formula:

Forecast(2) = Forecast(1) + α * (Actual(1) - Forecast(1))

          = 300 + 0.15 * (326 - 300)

          = 300 + 0.15 * 26

          = 300 + 3.9

          = 303.9

Next, we can calculate the forecast for period 3:

Forecast(3) = Forecast(2) + α * (Actual(2) - Forecast(2))

          = 303.9 + 0.15 * (287 - 303.9)

          = 303.9 + 0.15 * (-16.9)

          = 303.9 - 2.535

          = 301.365

Similarly, we can calculate the forecast for period 4:

Forecast(4) = Forecast(3) + α * (Actual(3) - Forecast(3))

          = 301.365 + 0.15 * (232 - 301.365)

          = 301.365 + 0.15 * (-69.365)

          = 301.365 - 10.40475

          = 290.96025

Next, we can calculate the forecast for period 5:

Forecast(5) = Forecast(4) + α * (Actual(4) - Forecast(4))

          = 290.96025 + 0.15 * (255 - 290.96025)

          = 290.96025 + 0.15 * (-35.04025)

          = 290.96025 - 5.2560375

          = 285.7042125

Finally, we can calculate the forecast for period 6:

Forecast(6) = Forecast(5) + α * (Actual(5) - Forecast(5))

          = 285.7042125 + 0.15 * (278 - 285.7042125)

          = 285.7042125 + 0.15 * (-7.2957875)

          = 285.7042125 - 1.094368125

          = 284.609844375

Therefore, Using exponential smoothing with alpha (α) = 0.15, the forecast for period 6 is 284.61, calculated by recursively updating the forecast based on previous actual and forecast values.

To learn more about exponential click here brainly.com/question/32723856

#SPJ11

HELP !!! HELP !!! HELP !!! HELP !!! HELP !!! HELP !!! HELP !!!

Answers

Answer:

89.4 m

Step-by-step explanation:

[tex]a^{2}[/tex] + [tex]b^{2}[/tex] = [tex]c^{2}[/tex]

[tex]40^{2}[/tex] + [tex]80^{2}[/tex] = [tex]c^{2}[/tex]  the distance on the x axis is 40 and the distance on the y axis is 80.

1600 + 6400 = [tex]c^{2}[/tex]

8000 = [tex]c^{2}[/tex]

[tex]\sqrt{8000}[/tex] = [tex]\sqrt{c^{2} }[/tex]

89.4 ≈ c

Helping in the name of Jesus.

Alice, Bob, Carol, and Dave are playing a game. Each player has the cards {1,2,…,n} where n≥4 in their hands. The players play cards in order of Alice, Bob, Carol, then Dave, such that each player must play a card that none of the others have played. For example, suppose they have cards {1,2,…,5}, and suppose Alice plays 2 , then Bob can play 1,3,4, or 5 . If Bob then plays 5 , then Carol can play 1,3 , or 4. If Carol then plays 4 then Dave can play 1 or 3. (a) Draw the game tree for n=4 cards. (b) Consider the complete bipartite graph K4,n​ with labels A,B,C,D and 1,2,…,n. Prove a bijection between the set of valid games for n cards and a particular subset of labelled subgraphs of K4,n​. You must define your subset of graphs.

Answers

We have a bijection between the set of valid games for n cards and a particular subset of labeled subgraphs of K4,n.

(a) The game tree for n=4 cards:  Image Credits: Mathematics Stack Exchange

(b) Let K4,n be a complete bipartite graph labeled A, B, C, D, and 1,2,…,n. We will prove a bijection between the set of valid games for n cards and a particular subset of labeled subgraphs of K4,n.

We can re-label the vertices of the bipartite graph K4,n as follows:

A1, B2, C3, D4, A5, B6, C7, D8, ..., A(n-3), B(n-2), C(n-1), and Dn.

A valid game can be represented as a simple path in K4,n that starts at A and ends at D. As each player plays, we move along the path, and we can represent the moves of Alice, Bob, Carol, and Dave by vertices connected by edges.

We construct a subgraph of K4,n as follows: for each move played by a player, we include the vertex representing the player and the vertex representing the card they played. The resulting subgraph is a labeled tree rooted at A. Every valid game corresponds to a unique subgraph constructed in this way.

To show the bijection, we need to prove that every subgraph constructed as above corresponds to a valid game, and that every valid game corresponds to a subgraph constructed as above.

Suppose we have a subgraph constructed as above. We can obtain a valid game by traversing the tree in preorder, selecting the card played by each player. As we move along the path, we always select a card that has not been played before. Since the tree is a labeled tree, there is a unique path from A to D, so the game we obtain is unique. Hence, every subgraph constructed as above corresponds to a valid game.

Suppose we have a valid game. We can construct a subgraph as above by starting with the vertex labeled A and adding the vertices corresponding to each move played. Since each move corresponds to a vertex that has not been added before, we obtain a tree rooted at A. Hence, every valid game corresponds to a subgraph constructed as above.

To know more about probability visit :

https://brainly.com/question/31828911

#SPJ11

Other Questions
1) The ER between the Swiss franc and the US dollar is one to one in the spot market. The interest rates in Switzerland and the US are -.01 and .03 respectively. Swiss franc. What kind of arbitrage will induce a profit for you, if the spot rate is 1.05 Swiss francs equal $1? Assume you start with $1 million. 2) Expound on interest parity theory in the aforementioned context. Is the above situation sustainable? List the Earths important plates and describe their extent. There is a capacitor connected to a source of voltage providing the potential difference V. Next, the voltage across the capacitor is doubled. Due to this the capacitance of the capacitor: Options-1. is decreased by a factor of 22. Is doubled3. stays the same The major dietary factor to be concerned about in relation to heart disease isSelect one:a. cholesterol.b. protein.c. total fat.d. saturated fat PLEASE HELP 100 POINT REWARD.SHOW WORK AND EXPLAINGiven: The circles share the same center, O, BP is tangent to the inner circle at N, PA is tangent to the inner circle at M, mMON = 120, and mAX=mBY = 106.Find mP. Show your work.Find a and b. Explain your reasoning Freud posited that the ___ consists of what we are currently thinking. a. conscious b. subconscious c. preconscious d. unconscious which computer is considered the first pc or personal computer A particular stock keeping unit (SKU) has demand that averages 14 units per year andis Poisson distributed. That is, the time between demands is exponentially distributedwith a mean of 1/14 years. Assume that 1 year = 360 days. The inventory is managedaccording to a (r, Q) inventory control policy with r = 3 and Q = 4. The SKU costs$150. An inventory carrying charge of 0.20 is used and the annual holding cost foreach unit has been set at 0.2 * $150 = $30 per unit per year. The SKU is purchasedfrom an outside supplier and it is estimated that the cost of time and materials requiredto place a purchase order is about $15. It takes 45 days to receive a replenishmentorder. The cost of backordering is very difficult to estimate, but a guess has beenmade that the annualized cost of a backorder is about $25 per unit per year.(a) Using the analytical results for the (r, Q) inventory model, compute the total costof the current policy. the best way to prevent formation of diverticula in the colon is to Dinshaw Company is considering the purchase of a new machine. The invoice price of the machine is $71,803, freight charges are estimated to be $2,740, and installation costs are expected to be $7,350. The annual cost savings are expected to be $14,790 for 9 years. The firm requires a 21% rate of retum. Ignore income taces. What is the internal rate of return on this investment? (Round answer to O decimal ploces, eg. 15\%) How do you find the crossover rate of two projects? How might you recognize in the field that a disconformity exists between two sequences of rock?a. you might observe a buried soil or weathering zone between the two unitsb. you would find unmetamorphosed sedimentary rock in direct contact with an igneous plutonc. the sediment grain size will always vary between the two unitsd. you might observe fossils that are not temporally (time) compatible between the two rock units.e. answers a and d are both correct Being a giver can be detrimental because:Select one:A.they are more prone to being taken advantage of - particularly by takersB.frequently helping others may sometimes cost them some of their own individual productivityC.their extra-role effort to help others may increase stress and lead to burnoutD.All of theseE.A & C only "Once one starts to think about the economic growth process, it is hard to think about anything else". Use the Solow growth model to explain and critically evaluate this statement using twenty-first century evidence and data. Just after opening a parachute of negligible mass, a parachutist of mass 97.5 kg experiences an instantaneous upward acceleration of 1.05 m/s 2 . Find the force of the air on the parachute. magnitude direction Students in a mathematics class were given an exam and then retested monthly with equivalent exams. The average scoresS(on a 100-point scale) for the class can be modeled byS=8614ln(t+1),0t12, wheretis the time in months. Question What was the average score on the original exam? Question After how many months was the average score below 66%? Round to the nearest whole number. Suppose that a firm has estimated its inverse demand curve as P = 1,477 - 0.04*q, where P is the price per unit and q is the quantity of units produced. What is the firm's marginal revenue equal to when it produces 2,782 units? Please round to two decimal places. What are some leading ideas about how to provide development assistance? Identify and examine the fundamental management functions in the classroom Two reversible engines A & B are arranged in series as shown in the figure, EA rejecting heat directly to engine, EB. EA receives 200 kJ at a temperature of 421C from a hot source, while EB is in communication with a cold sink at a temperature of 4.4C. If the work output of EA is twice that of EB, find the efficiency of each engine.