use appropriate algebra and theorem 7.2.1 to find the given inverse laplace transform. (write your answer as a function of t.) ℒ−1 6s − 12 (s2 s)(s2 1)

Answers

Answer 1

The inverse Laplace transform of 6s − 12 /(s²+s)(s²+1) is 2e^(−t) − 2 + 4 sin(t).

We have:

ℒ−1 {6s − 12 /(s²+s)(s²+1)}

= ℒ−1 {A / (s²+s) + B / (s²+1)}

Where A = 2 and B = 4.

Using partial fractions, we can write:

A / (s²+s) + B / (s²+1) = (2s - 2) / (s²+s) + (4 / (s²+1))

Taking the inverse Laplace transform of each term, we get:

ℒ−1 {2s - 2 / (s²+s)} + ℒ−1 {4 / (s²+1)}

Using table 7.1 in the textbook, we know that:

ℒ−1 {1 / s(s+a)} = 1/a [1 − e^(−at)] for a > 0

Therefore,

ℒ−1 {2s - 2 / (s²+s)} = 2ℒ−1 {1 / (s+1)} − 2ℒ−1 {1 / s}

= 2e^(−t) − 2

Using table 7.1 again, we know that:

ℒ−1 {1 / (s²+a²)} = sin(at) / a for a > 0

Therefore,

ℒ−1 {4 / (s²+1)} = 4ℒ−1 {1 / (s²+1)}

= 4 sin(t)

Putting it all together, we get:

ℒ−1 {6s − 12 /(s²+s)(s²+1)} = 2e^(−t) − 2 + 4 sin(t)

Thus, the inverse Laplace transform of 6s − 12 /(s²+s)(s²+1) is 2e^(−t) − 2 + 4 sin(t).

To know more about inverse Laplace transform, refer to the link below:

https://brainly.com/question/30404106#

#SPJ11


Related Questions

5. t/f (with justification) if f(x) is a differentiable function on (a, b) and f 0 (c) = 0 for a number c in (a, b) then f(x) has a local maximum or minimum value at x = c.

Answers

The given statement if f(x) is a differentiable function on (a, b) and f'(c) = 0 for a number c in (a, b), then f(x) has a local maximum or minimum value at x = c is true


1. Since f(x) is differentiable on (a, b), it is also continuous on (a, b).
2. If f'(c) = 0, it indicates that the tangent line to the curve at x = c is horizontal.
3. To determine if it is a local maximum or minimum, we can use the First Derivative Test:
  a. If f'(x) changes from positive to negative as x increases through c, then f(x) has a local maximum at x = c.
  b. If f'(x) changes from negative to positive as x increases through c, then f(x) has a local minimum at x = c.
  c. If f'(x) does not change sign around c, then there is no local extremum at x = c.
4. Since f'(c) = 0 and f(x) is differentiable, there must be a local maximum or minimum at x = c, unless f'(x) does not change sign around c.

Hence, the given statement is true.

To learn more about differentiability

https://brainly.com/question/9062749

#SPJ11

prove that there are no integers a,b ∈zsuch that a2 =3b2 2015.

Answers

So there are no integers a ,b ∈z such that a^2 = 3b^2 + 2015.

We can prove this statement using contradiction. Assume that there exist integers a and b such that a^2 = 3b^2 + 2015.

First, note that any perfect square is congruent to either 0 or 1 modulo 3. Thus, a^2 is congruent to either 0 or 1 modulo 3. If a^2 is congruent to 0 modulo 3, then a is also congruent to 0 modulo 3. If a^2 is congruent to 1 modulo 3, then a is congruent to either 1 or 2 modulo 3.

Now consider the equation a^2 = 3b^2 + 2015 modulo 3. If a is congruent to 0 modulo 3, then the left-hand side is congruent to 0 modulo 3, but the right-hand side is congruent to 1 modulo 3, which is a contradiction. If a is congruent to 1 modulo 3, then the left-hand side is congruent to 1 modulo 3, but the right-hand side is congruent to 2 modulo 3, which is a contradiction. If a is congruent to 2 modulo 3, then the left-hand side is congruent to 1 modulo 3, and so is 3b^2 modulo 3. This implies that b is congruent to 1 modulo 3 (since the only other possibility is b being congruent to 0 modulo 3, but then 3b^2 would be congruent to 0 modulo 3, which is not possible).

Let b = 3c + 1 for some integer c. Substituting this into the original equation, we get:

a^2 = 3(3c+1)^2 + 2015

a^2 = 27c^2 + 54c + 3 + 2015

a^2 = 27c^2 + 54c + 2018

We can simplify this equation by dividing both sides by 27:

(a^2)/27 = c^2 + 2c + 74/27

Note that the left-hand side is a perfect square, and so is the right-hand side. Thus, we can write:

(a/3)^2 = (c+1/3)^2 + 71/27

But this implies that (a/3)^2 is greater than 71/27, which is a contradiction, since a/3 and c+1/3 are both integers.

Thus, our assumption that there exist integers a and b such that a^2 = 3b^2 + 2015 is false, and so there are no integers a ,b ∈z such that a^2 = 3b^2 + 2015.

To know more about integers refer here

https://brainly.com/question/15276410#

#SPJ11

Let f be a differentiable function such that f(0)=5. 420 and f′(x)=sin2x+x−−−−−−−−√. What is the value of f(2π) ?

Answers

The value of f(2π) is:π + 2√(2π).

The given differentiable function is: f′(x) = sin²(x) + x^(-1/2)

Given that: f(0) = 5.420

To find:f(2π)

The function is differentiable.

Therefore, f(x) must be continuous.

Let's first integrate the derivative of the function.

∫f′(x) dx = ∫sin²(x) + x^(-1/2) dx

∫sin²(x) dx = x/2 - (sin x cos x)/2 = (x - sin x cos x)/2

∫x^(-1/2) dx = 2x^(1/2) = 2√x

The integral is equal to: f(x) = (x - sin x cos x)/2 + 2√x

Now we need to substitute x with 2π:

f(2π) = [(2π - sin(2π) cos(2π))/2] + 2√(2π)

f(2π) = [(2π - 0 x (-1))/2] + 2√(2π)

f(2π) = [π + 2√(2π)]

Therefore, the value of f(2π) is:π + 2√(2π).

To learn about the integral here:

https://brainly.com/question/30094386

#SPJ11

Select an alpha level that will maximize the probability of rejecting a false null hypothesis (Do not use the default alpha level.).
What is the critical value of statistic that corresponds to that alpha level? O a 1.383 O b. 1.372 O c2.821 Od 1.833

Answers

It seems like the question is incomplete, and to find the correct critical value, additional information is required. However, the basic steps are provided to solve such a question.

To select an alpha level that will maximize the probability of rejecting a false null hypothesis, you would typically choose a lower alpha level, such as 0.01, instead of the default 0.05. This is because a lower alpha level requires stronger evidence against the null hypothesis, thus reducing the likelihood of a Type I error (false rejection).
To find the critical value of the statistic that corresponds to the chosen alpha level, you will need to consult a statistical table, such as a t-distribution or Z-distribution table, depending on the given data and sample size.
However, based on the options provided (a. 1.383, b. 1.372, c. 2.821, d. 1.833), it is impossible to determine the correct critical value without additional information, such as the degrees of freedom, the distribution type, or the context of the problem. Please provide more information to help me assist you further.

Learn more about critical value:

https://brainly.com/question/30168469

#SPJ11

The revenue stream of a car company follows a normal distribution. The average revenue is $5. 30 million and a standard deviation of $2. 10 million. The probability that a randomly selected month will produce less than or equal to $8. 00 million is ____________?

Answers

To find the probability that a randomly selected month will produce less than or equal to $8.00 million in revenue, we need to calculate the area under the normal distribution curve up to the value $8.00 million.

Given:

Mean (μ) = $5.30 million

Standard deviation (σ) = $2.10 million

To find this probability, we can standardize the value $8.00 million using the z-score formula and then look up the corresponding cumulative probability from the standard normal distribution table or use a calculator.

The z-score formula is given by:

z = (x - μ) / σ

Substituting the values:

z = (8.00 - 5.30) / 2.10

Calculating this value:

z ≈ 1.2857

Now, we can find the probability corresponding to this z-score.

Using the standard normal distribution table or a calculator, we can find that the probability corresponding to a z-score of 1.2857 is approximately 0.8997.

Therefore, the probability that a randomly selected month will produce less than or equal to $8.00 million in revenue is approximately 0.8997, or 89.97%.

Learn more about statistics here:

https://brainly.com/question/31527835

#SPJ11

give an example of a group g and subgroups h and k such that hk 5 {h [ h, k [ k} is not a subgroup of g.

Answers

We can say that HK is not closed under inverses and hence is not a subgroup of G

Let G be the group of integers under addition (i.e., G = {..., -2, -1, 0, 1, 2, ...}), and let H and K be the following subgroups of G:

H = {0, ±2, ±4, ...} (the even integers)

K = {0, ±3, ±6, ...} (the multiples of 3)

Now consider the product HK, which consists of all elements of the form hk, where h is an even integer and k is a multiple of 3. Specifically:

HK = {0, ±6, ±12, ±18, ...}

Note that HK contains all the elements of H and all the elements of K, as well as additional elements that are not in either H or K. For example, 6 is in HK but not in H or K.

To show that HK is not a subgroup of G, we need to find two elements of HK whose sum is not in HK. Consider the elements 6 and 12, which are both in HK. Their sum is 18, which is also in HK (since it is a multiple of 6 and a multiple of 3). However, the difference 12 = 18 - 6 is not in HK, since it is not a multiple of either 2 or 3.

Therefore, HK is not closed under inverses and hence is not a subgroup of G

To know more about subgroup refer here

https://brainly.com/question/31611800#

#SPJ11

A mean average of 60 on 7 exams is needed to pass a course. On her first 6 ​exams, Sheryl received grades of 47 comma 67 comma 74 comma 62 comma 66 and 76. What grade must she receive on her last exam to pass the​ course?

Answers

The answer is that Sheryl needs to receive a grade of at least 90 on her last exam to pass the course with a mean average of 60 on all 7 exams.



To find out what grade Sheryl needs on her last exam, we first need to calculate the total score she has received on her first 6 exams.

47 + 67 + 74 + 62 + 66 + 76 = 392

We then need to calculate what score she needs on her 7th and final exam to achieve a mean average of 60 for all 7 exams.

To do this, we can use the formula:

(mean average) x (number of exams) = total score

Substituting in the values we have:

60 x 7 = 420

We already know that Sheryl has scored a total of 392 on her first 6 exams. Therefore, we can calculate the score she needs on her final exam:

420 - 392 = 28

This means that Sheryl needs to score an additional 28 points on her last exam to achieve a mean average of 60 for all 7 exams.

However, we also need to keep in mind that the maximum score on an exam is usually 100. Therefore, if Sheryl wants to pass the course, she needs to score a grade of at least 90 on her final exam.

Sheryl needs to score a grade of at least 90 on her last exam to pass the course with a mean average of 60 on all 7 exams, based on the calculations of her previous scores and the maximum score on an exam.

To know more about average  visit:

brainly.com/question/24057012

#SPJ11

If sin(α) = 8/17 where 0 < α < π/2 and cos(β) = 5/13 where 3π/2 < β < 2π, find the exact values of the following.

Answers

The exact value of sin(α+β) is (40+√132)/221 for the given data.

To find the exact values of the following, we will use the given values of sin(α) and cos(β) and some trigonometric identities.

1. sin(α/2)

We can use the half-angle formula for sine to find sin(α/2):

sin(α/2) = ±√[(1-cos(α))/2]

Since 0 < α < π/2, we know that sin(α/2) is positive. We also know that cos(α) = √(1-sin^2(α)) from the Pythagorean identity. Using this, we can solve for cos(α/2):

cos(α/2) = ±√[(1+cos(α))/2] = ±√[(1+√(1-sin^2(α)))/2]

Plugging in the given value of sin(α), we get:

cos(α/2) = ±√[(1+√(1-(8/17)^2))/2]

cos(α/2) = ±√[(1+√(255/289))/2]

cos(α/2) = ±√[(17+√255)/34]

Since 0 < α < π/2, we know that α/2 is in the first quadrant, so both sin(α/2) and cos(α/2) are positive. Using the Pythagorean identity again, we can solve for sin(α/2):

sin(α/2) = √(1-cos^2(α/2)) = √[1-((17+√255)/34)^2]

sin(α/2) = √[(34^2-(17+√255)^2)/34^2]

sin(α/2) = √[(289-34√255)/578]

Therefore, the exact value of sin(α/2) is √[(289-34√255)/578].

2. tan(α/2)

We can use the half-angle formula for tangent to find tan(α/2):

tan(α/2) = sin(α)/(1+cos(α)) = (8/17)/(1+√(1-(8/17)^2))

tan(α/2) = (8/17)/(1+√(255/289))

tan(α/2) = (8/17)/(1+(17+√255)/34)

tan(α/2) = 16/(34+17√255)

Therefore, the exact value of tan(α/2) is 16/(34+17√255).

3. sin(α+β)

We can use the sum-to-product formula for sine to find sin(α+β):

sin(α+β) = sin(α)cos(β) + cos(α)sin(β)

Plugging in the given values, we get:

sin(α+β) = (8/17)(5/13) + √(1-(8/17)^2)√(1-(5/13)^2)

sin(α+β) = 40/221 + √(221-64-25)/221

sin(α+β) = (40+√132)/221

Therefore, the exact value of sin(α+β) is (40+√132)/221.

The complete question must be:

If sin(α) = 8/17 where 0 < α < π/2 and cos(β) = 5/13 where 3π/2 < β < 2π, find the exact values of the following.

Do not have more information.

if you donot know how to solve please move along. This is the whole problem given to me.

Learn more about trigonometric identities:

https://brainly.com/question/3785172

#SPJ11

The compensation point of fern plants which grow on the forest floor happens at 10. 00a. M. In your opinion ,at what time does a ficus plants which grows higher in the same forest achieve it's compensation point?​

Answers

The compensation point of fern plants that grow on the forest floor occurs at 10.00 am. In my opinion, the Ficus plant, which grows higher in the same forest, will achieve its compensation point at midday or early afternoon.

Compensation point is the point where the rate of photosynthesis is equal to the rate of respiration. It is the point where the carbon dioxide taken up by the plants in photosynthesis is equal to the carbon dioxide released in respiration. At this point, there is no net uptake or release of carbon dioxide. In other words, the rate of carbon dioxide production and consumption is balanced. When the light intensity is low, photosynthesis cannot meet the plant's energy needs, and respiration occurs at a higher rate, resulting in a net release of CO2. When the light intensity is high, photosynthesis happens at a faster rate than respiration, resulting in a net uptake of CO2.

In conclusion, the Ficus plant that grows higher in the same forest would achieve its compensation point at midday or early afternoon.

To know more about Ficus plant visit:

https://brainly.com/question/148490

#SPJ11

Joe has three times as many pencils as nick and they have 84 pencils together. How many pencils do each of them have?

Answers

Given that Joe has three times as many pencils as Nick and they have 84 pencils together. Let the number of pencils Nick has be x. Then, the number of pencils Joe has is 3x. So, the total number of pencils they both have is x + 3x = 4x.Now, the total number of pencils they have is 84.

So, 4x = 84. Dividing both sides by 4, we get: x = 21This implies that Nick has 21 pencils. So, Joe has three times the number of pencils Nick has, which is: 3 × 21 = 63Therefore, Joe has 63 pencils. Hence, the number of pencils Nick and Joe have are 21 and 63, respectively. Note: It is important to read the question carefully and identify the key information. In this case, the key information is that Joe has three times as many pencils as Nick and they have 84 pencils together. By understanding this information, we can set up an equation and solve for the unknown variables.

To know more about pencils  visit:

brainly.com/question/26179660

#SPJ11

A pendulum swings through an angle of 20° each second. if the pendulum is 40 inches long, how far does its tip move each second? round answers to two decimal places.

Answers

The tip of the pendulum moves approximately 13.96 inches each second

The distance the pendulum tip moves each second can be calculated using the arc length formula. The formula for the arc length of a circle sector is given by:

Arc Length = radius * angle

In this case, the radius of the pendulum is 40 inches, and the angle through which it swings each second is 20°.

Converting the angle to radians:

20° * (π/180) = 0.349066 radians

Using the formula for arc length:

Arc Length = 40 inches * 0.349066 radians = 13.96264 inches

Therefore, the tip of the pendulum moves approximately 13.96 inches each second (rounded to two decimal places).

To know more about Arc Length refer to-

https://brainly.com/question/32035879

#SPJ11

what is the probability that total waiting time is either less than 2 min or more than 7 min?

Answers

Without additional information, it is difficult to provide a specific answer. However, if we assume that the total waiting time follows a probability distribution such as the exponential distribution, we can calculate the probability as follows:

Let X be the total waiting time. Then, X can be expressed as the sum of two independent waiting times, X1 and X2.

Let f(x) be the probability density function of X. Then, we can use the cumulative distribution function (CDF) of X to calculate the probability that the total waiting time is either less than 2 min or more than 7 min.

P(X < 2 or X > 7) = P(X < 2) + P(X > 7)

Using the properties of the CDF, we can express this probability as:

P(X < 2 or X > 7) = 1 - P(2 ≤ X ≤ 7)

Next, we can use the fact that the waiting times are independent and identically distributed to express the probability in terms of the CDF of X1:

P(2 ≤ X ≤ 7) = ∫2^7 ∫0^(7-x1) f(x1) f(x2) dx2 dx1

If we assume that the waiting times follow the exponential distribution with parameter λ, then the probability density function is given by:

f(x) = λe^(-λx)

Substituting this into the above expression and evaluating the integral, we get:

P(2 ≤ X ≤ 7) = 1 - e^(-5λ) - 5λe^(-5λ)

Therefore, the probability that the total waiting time is either less than 2 min or more than 7 min is:

P(X < 2 or X > 7) = 1 - (1 - e^(-5λ) - 5λe^(-5λ)) = e^(-5λ) + 5λe^(-5λ)

Again, this is based on the assumption that the waiting times follow the exponential distribution with parameter λ.

If a different distribution is assumed, the probability calculation would be different.

To know more about probability refer here:

https://brainly.com/question/30034780?#

#SPJ11

QUESTION 6


A professor has 125 students in her classes at the beginning of the semester, but 16 students withdraw from her


classes before Test #3. If she has 1 classes in total and each class has an equal number of students, how many


students are in each class? Round your answer to the nearest ones (i. E. , one student).

Answers

Given that a student takes 6 classes before Test #3. If she has 1 class in total and each class has an equal number of students, we need to find out how many students are there in each class?

Let's assume that the number of students in each class is 'x'. Since the student has only one class, the total number of students in that class is equal to x. So, we can represent it as: Total students = x We can also represent the total number of classes as:

Total classes = 1 We are also given that a student takes 6 classes before Test #3.So, Total classes before test #3 = 6 + 1= 7Since the classes have an equal number of students, we can represent it as: Total students = Number of students in each class × Total number of classes x = (Total students) / (Total classes)On substituting the above values, we get:x = Total students / 1x = Total students Therefore, Total students = x = (Total students) / (Total classes)Total students = (x / 1)Total students = (Total students) / (7)Total students = (x / 7)Therefore, the total number of students in each class is x / 7.Round off the answer to the nearest whole number (i.e., one student), we get: Number of students in each class ≈ x / 7

Know  more about find out how many students here:

https://brainly.com/question/21295513

#SPJ11

We say that the decimal expansion 0.d1d2d3 ...dn ... is repeating if there is an m >0 such that dam+r = dy for all q € N. Show that the set of all real numbers that have a repeating decimal expansion is a countable set.

Answers

The set of all real numbers that have a repeating decimal expansion is a countable set

Let d1, d2, d3, ..., dn be the digits of the repeating block of a repeating decimal. Then we can write the repeating decimal as:

0.d1d2d3...dn(d1d2d3...dn)...

where the digits d1, d2, d3, ..., dn repeat infinitely. We can also represent this number as a fraction, by noting that:

[tex]0.d1d2d3...dn(d1d2d3...dn)... = (d1d2d3...dn) / 10^n + (d1d2d3...dn) / (10)^{2n} + (d1d2d3...dn) / 10^{3n} + ...[/tex]

Using this representation, we can see that each repeating decimal corresponds to a unique fraction. Therefore, to show that the set of all repeating decimals is countable, we need to show that the set of all fractions of the form:

[tex](d1d2d3...dn) / 10^n + (d1d2d3...dn) / 10^{2n} + (d1d2d3...dn) / 10^{3n} + ...[/tex]

is countable.

To do this, we can list all possible values of n and all possible repeating blocks d1d2d3...dn. For each value of n and each repeating block, there are only finitely many possible fractions of the above form. Therefore, we can list all such fractions in a sequence by listing all the fractions with n=1 and d1 = 0, then all the fractions with n=1 and d1 = 1, then all the fractions with n=1 and d1 = 2, and so on, and then moving on to n=2 and repeating the same process.

Since there are only countably many values of n and finitely many choices for each repeating block, the set of all repeating decimals is countable. Therefore, the set of all real numbers that have a repeating decimal expansion is also countable, since it is a subset of the set of all repeating decimals.

To know more about "Fraction" refer here:

https://brainly.com/question/29766013#

#SPJ11

Let f be a function having derivatives of all orders for all real numbers. The fourth-degree Taylor polynomial for f about ==-2 is given by P(-) = -12+10(x+2) – 16(+2)". Does the graph of f have a local maximum, local minimum, or neither at := -2? Justify your answer.

Answers

The graph of function f has a local maximum at x = -2 for taylor polynomial.

To determine if the function f has a local maximum, local minimum, or neither at x = -2, we need to analyze the Taylor polynomial and its derivatives at that point.

The fourth-degree Taylor polynomial for f about x = -2 is given by:
[tex]P(x) = -12 + 10(x + 2) - 16(x + 2)^2[/tex]

First, find the first derivative of P(x):
P'(x) = 10 - 32(x + 2)

Now, evaluate P'(x) at x = -2:
P'(-2) = 10 - 32(-2 + 2) = 10

Since P'(-2) > 0, the function f is increasing at x = -2.

Next, find the second derivative of P(x):

P''(x) = -32

Since P''(x) is a constant, P''(-2) = -32. Since P''(-2) < 0, the function f has a local maximum at x = -2 due to the concave down shape.

In conclusion, the graph of function f has a local maximum at x = -2.


Learn more about taylor polynomial here:

https://brainly.com/question/31419648


#SPJ11

Using Z-transform to find the response h [n] of the system y[n+ 2] – 2y[n + 1] + 2y [n] = x [n] when all the initial conditions are zero. Answer with an integer the value of h [n] when n =14.

Answers

The integer value of h[14] is 0 (since 1/182 is less than 0.5).

To find the response h[n] of the given system using Z-transform, we can first take the Z-transform of the given difference equation and solve for H(z), which is the Z-transform of h[n].

Taking the Z-transform of the given equation, we get:

Y(z)(z² - 2z + 2) = X(z)

Solving for H(z), we get:

H(z) = X(z) / (z² - 2z + 2)

Now, to find the value of h[n] when n = 14, we can use the inverse Z-transform. However, since the initial conditions are all zero, we can simply evaluate the expression for h[n] as:

h[14] = 1 / (14² - 2(14) + 2)

Simplifying this expression, we get:

h[14] = 1 / 182


The given difference equation represents a second-order linear time-invariant system, which can be solved using Z-transform. By taking the Z-transform of the given equation and solving for H(z), we obtain the Z-transform of the system's impulse response, which is h[n].

To know more about Z-transform click on below link:

https://brainly.com/question/31133641#

#SPJ11

if a distribution has a mean of 100 and a standard deviation of 15, what value would be 2 standard deviations from the mean? a. 85 b. 130 c. 115 d. 70

Answers

The value that is 2 standard deviations from the mean can be calculated as follows:

2 standard deviations = 2 x 15 = 30

So, the value that is 2 standard deviations from the mean is either 30 points below the mean or 30 points above the mean.

Mean - 30 = 100 - 30 = 70

Mean + 30 = 100 + 30 = 130

Therefore, the value that is 2 standard deviations from the mean is either 70 or 130.

The correct answer is d. 70 or b. 130, depending on whether you are looking for the value that is 2 standard deviations below or above the mean.

To know more about Standard Deviation:

https://brainly.com/question/475676

#SPJ11

true or false: a disadvantage of electronic questionnaires is that this way of surveying is relatively expensive.

Answers

The statement "A disadvantage of electronic questionnaires is that this way of surveying is relatively expensive." is: B. False.

What is a sample survey?

In Science, a sample survey simply refers to a type of observational study that uses various data collection methods such as questionnaires and interviews, which favors it in revealing correlations between two data variables.

In Science, a question can be defined as a group of words or sentence that are developed, so as to elicit an information in the form of answer from an individual such as a student.

In conclusion, an advantage of of electronic questionnaires is that it is a form of sample survey that is relatively less expensive in comparison with other forms of survey.

Read more on questionnaires here: https://brainly.com/question/27972710

#SPJ1

Convert (xy)^9 = 7| to an equation in polar coordinates =r^18 |

Answers

To convert (xy)^9 = 7 to an equation in polar coordinates, we first need to substitute x = r cos θ and y = r sin θ. So, we get (r cos θ × r sin θ)^9 = 7. Simplifying this expression, we get r^18 (sin θ cos θ)^9 = 7. Now, using the double angle formula for sine, sin 2θ = 2 sin θ cos θ, we get (r^18 sin^9 θ cos^9 θ) (sin 2θ/2)^9 = 7. Finally, substituting sin 2θ/2 = √((1-cos θ)/2), we get the equation in polar coordinates r^18 = (7/sin^9 θ cos^9 θ) √((1-cos θ)/2)^9.

To convert an equation from rectangular coordinates to polar coordinates, we need to substitute x = r cos θ and y = r sin θ. Using this substitution, we can convert the equation into an expression in terms of r and θ. In this case, we are given (xy)^9 = 7, which becomes (r cos θ × r sin θ)^9 = 7 after substitution. Simplifying this expression, we get r^18 (sin θ cos θ)^9 = 7.

Next, we use the double angle formula for sine to simplify the expression. The double angle formula for sine is sin 2θ = 2 sin θ cos θ. Using this formula, we can write sin θ cos θ as sin 2θ/2, which simplifies the expression further.

Finally, we substitute sin 2θ/2 = √((1-cos θ)/2) to get the equation in polar coordinates.

To convert an equation from rectangular coordinates to polar coordinates, we need to substitute x = r cos θ and y = r sin θ. After substitution, we simplify the expression using trigonometric identities. In this case, we used the double angle formula for sine to simplify the expression (r cos θ × r sin θ)^9 = 7. We ended up with the equation in polar coordinates r^18 = (7/sin^9 θ cos^9 θ) √((1-cos θ)/2)^9, which can be used to graph the equation in polar coordinates.

To know more about polar coordinates visit:

https://brainly.com/question/31422978

#SPJ11

Matthew has 3. 5 pounds of clay to make ceramic objects. He needs 1/2 of a pound of clay to make one bowl. A. How many bowls can Matthew make with his clay

Answers

Matthew can make a total of 7 bowls with the 3.5 pounds of clay he has.

To find the number of bowls Matthew can make, we need to divide the total amount of clay he has by the amount of clay needed to make one bowl. Matthew has 3.5 pounds of clay, and he needs 1/2 of a pound to make one bowl. To divide these two values, we can write the division equation as:

3.5 pounds ÷ 1/2 pound per bowl

To simplify this division, we can multiply the numerator and denominator by the reciprocal of 1/2, which is 2/1. This gives us:

3.5 pounds ÷ 1/2 pound per bowl × 2/1

Multiplying across, we get:

3.5 pounds × 2 ÷ 1 ÷ 1/2 pound per bowl

Simplifying further, we have:

7 pounds ÷ 1/2 pound per bowl

Now, to divide by a fraction, we multiply by its reciprocal. So we can rewrite the division equation as:

7 pounds × 2/1 bowl per 1/2 pound

Multiplying across, we get:

7 pounds × 2 ÷ 1 ÷ 1/2 pound

Simplifying gives us:

14 bowls ÷ 1/2 pound

Dividing by 1/2 is the same as multiplying by its reciprocal, which is 2/1. So we have:

14 bowls × 2/1

Multiplying across, we find:

28 bowls

Therefore, Matthew can make a total of 28 bowls with the 3.5 pounds of clay he has.

Learn more about numerator here:

https://brainly.com/question/7067665

#SPJ11

What other state joined the Union as a free state at this time

Answers

The other state that joined the Union as a free state at the same time as Kansas was Minnesota.

How to explain the information

Minnesota was admitted on May 11, 1858, and Kansas was admitted on January 29, 1861. Both states were admitted as free states as a result of the Compromise of 1850. The Compromise of 1850 was a series of laws that were passed in order to avoid a civil war over the issue of slavery.

The Compromise of 1850 included the admission of California as a free state, the admission of Utah and New Mexico as territories, and the Fugitive Slave Act. The Fugitive Slave Act required all citizens to return runaway slaves to their owners. The Fugitive Slave Act was very unpopular in the North, and it helped to fuel the abolitionist movement.

The admission of Minnesota and Kansas as free states upset the balance of power between the slave states and the free states. This led to increased tensions between the North and the South, and it eventually led to the Civil War.

Learn more about Union on

https://brainly.com/question/881501

#SPJ1

the relationship between marketing expenditures (x) and sales (y) is given by the following formula, y = 9x - 0.05

Answers

The relationship between marketing expenditures (x) and sales (y) is represented by the formula y = 9x - 0.05. In this equation, 'y' represents the sales, and 'x' stands for the marketing expenditures. The formula indicates that for every unit increase in marketing expenditure, there is a corresponding increase of 9 units in sales, while 0.05 is a constant .

To answer this question, we first need to understand the given formula, which represents the relationship between marketing expenditures (x) and sales (y). The formula states that for every unit increase in marketing expenditures, there will be a 9 unit increase in sales, minus 0.05. In other words, the formula is suggesting a linear relationship between marketing expenditures and sales, where increasing the former will lead to a proportional increase in the latter.
To use this formula to predict sales based on marketing expenditures, we can simply substitute the value of x (marketing expenditures) into the formula and solve for y (sales). For example, if we want to know the sales generated from $10,000 of marketing expenditures, we can substitute x = 10,000 into the formula:
y = 9(10,000) - 0.05 = 89,999.95
Therefore, we can predict that $10,000 of marketing expenditures will generate $89,999.95 in sales based on this formula.
In conclusion, the formula y = 9x - 0.05 represents a linear relationship between marketing expenditures and sales, and can be used to predict sales based on the amount of marketing expenditures. By understanding this relationship, businesses can make informed decisions about how much to spend on marketing to generate the desired level of sales.

To know more about linear relationship  visit:

https://brainly.com/question/11663530

#SPJ11

four out of every seven trucks on the road are followed by a car, while one out of every 5 cars is followed by a truck. what proportion of vehicles on the road are cars?

Answers

The proportion of vehicles on the road that are cars for the information given about the ratio of trucks to cars is  20 out of every 27 vehicles

We know that four out of every seven trucks on the road are followed by a car, which means that for every 7 trucks on the road, there are 4 cars following them.

We also know that one out of every 5 cars is followed by a truck, which means that for every 5 cars on the road, there is 1 truck following them.

Let T represent the total number of trucks and C represent the total number of cars on the road. From the information given, we know that:

(4/7) * T = the number of trucks followed by a car,
and
(1/5) * C = the number of cars followed by a truck.

Since there is a 1:1 correspondence between trucks followed by cars and cars followed by trucks, we can say that:
(4/7) * T = (1/5) * C

Now, to find the proportion of cars on the road, we need to express C in terms of T:
C = (5/1) * (4/7) * T = (20/7) * T

Thus, the proportion of cars on the road can be represented as:
Proportion of cars = C / (T + C) = [(20/7) * T] / (T + [(20/7) * T])

Simplify the equation:
Proportion of cars = (20/7) * T / [(7/7) * T + (20/7) * T] = (20/7) * T / (27/7) * T

The T's cancel out:
Proportion of cars = 20/27

So, approximately 20 out of every 27 vehicles on the road are cars.

Know more about the proportion

https://brainly.com/question/1496357

#SPJ11

Which are correct representations of the inequality –3(2x – 5) < 5(2 – x)? Select two options. x < 5 –6x – 5 < 10 – x –6x + 15 < 10 – 5x A number line from negative 3 to 3 in increments of 1. An open circle is at 5 and a bold line starts at 5 and is pointing to the right. A number line from negative 3 to 3 in increments of 1. An open circle is at negative 5 and a bold line starts at negative 5 and is pointing to the left.

Answers

The correct representations of the inequality –3(2x – 5) < 5(2 – x) are:

-6x - 5 < 10 - x-6x + 15 < 10 - 5x

How to explain the inequality

Option 1 can be obtained by distributing the -3 on the left-hand side and the 5 on the right-hand side, which gives:

-6x - 5 < 10 - x

Option 2 can be obtained by simplifying the expression on the left-hand side first and then by subtracting 5x from both sides, which gives:

-6x + 15 < 10 - 5x

The number line representations are not correct for this inequality, as they show the solutions to x > 5 and x < -5 respectively.

Learn more about inequalities on

https://brainly.com/question/24372553

#SPJ1

if two identical dice are rolled n successive times, how many sequences of outcomes contain all doubles (a pair of 1s, of 2s, etc.)?

Answers

1 sequence of outcomes that contains all doubles when two identical dice are rolled n successive times.

There are 6 possible doubles that can be rolled on a pair of dice (1-1, 2-2, 3-3, 4-4, 5-5, 6-6).

Let's consider the probability of rolling a double on a single roll:

The probability of rolling any specific double (such as 2-2) on a single roll is 1/6 × 1/6 = 1/36 since each die has a 1/6 chance of rolling the specific number needed for the double.

The probability of rolling any double on a single roll is the sum of the probabilities of rolling each specific double is 1/36 + 1/36 + 1/36 + 1/36 + 1/36 + 1/36 = 1/6.

Let's consider the probability of rolling all doubles on n successive rolls. Since each roll is independent the probability of rolling all doubles on a single roll is (1/6)² = 1/36.

The probability of rolling all doubles on n successive rolls is (1/36)ⁿ.

The number of sequences of outcomes that contain all doubles need to count the number of ways to arrange the doubles in the sequence.

There are n positions in the sequence, and we need to choose which positions will have doubles.

There are 6 ways to choose the position of the first double 5 ways to choose the position of the second double (since it can't be in the same position as the first) and so on.

The total number of sequences of outcomes that contain all doubles is:

6 × 5 × 4 × 3 × 2 × 1 = 6!

This assumes that each double is different.

Since the dice are identical need to divide by the number of ways to arrange the doubles is also 6!.

The final answer is:

6!/6! = 1

For similar questions on sequence

https://brainly.com/question/7882626

#SPJ11

Melanie is at the fair and she is on a budget. She knows she will spends $5 to get in, $8 on snacks and the rest on tickets for games which sell for $0. 75 per ticket. If she can spend a maximum of $20, then what is the most amount of tickets she can buy?

Answers

Melanie can purchase a maximum of 9 tickets because she cannot buy a fraction of a ticket.

Melanie plans on spending a maximum of $20 at the fair, $5 of which will be spent on entrance fee and $8 on snacks. The remaining balance after taking care of entrance fees and snacks is $20 - $5 - $8 = $7. Therefore, Melanie can purchase tickets worth $7 at $0.75 per ticket.However, to determine how many tickets she will get with the $7, we need to divide $7 by the cost of each ticket:$7 ÷ $0.75 = 9.33Therefore, Melanie can purchase a maximum of 9 tickets because she cannot buy a fraction of a ticket. Therefore, the most amount of tickets Melanie can purchase at the fair is 9.Hence, we have determined that the most amount of tickets Melanie can buy at the fair is 9. This is because she can purchase tickets worth $7 at $0.75 per ticket and this will total to 9 tickets.

Learn more about Budget here,Why is budgeting so important? Explain and provide examples

https://brainly.com/question/6663636

#SPJ11

Evaluate the surface integral\int \int F \cdot dS(flux of F across S)∫∫F(x,y,x) = yi-xj+2zkis the hemisphere x2+y2+z2=4, z>0,oriented downward.

Answers

To evaluate the surface integral, use the divergence theorem which states "the flux of a vector field F across a closed surface S is equal to the triple integral of the divergence of F over the enclosed volume V".

Since the hemisphere x^2 + y^2 + z^2 = 4, z > 0, is a closed surface, we can apply the divergence theorem. First, we need to find the divergence of F:

div F = ∂(yi)/∂x + ∂(-xi)/∂y + ∂(2zk)/∂z

     = 0 + 0 + 2

     = 2

Next, we need to find the enclosed volume V. The hemisphere x^2 + y^2 + z^2 = 4, z > 0, has radius 2 and is centered at the origin. Thus, its enclosed volume is half the volume of a sphere of radius 2:

V = (1/2)(4/3)π(2^3)

 = (32/3)π

Now, we can use the divergence theorem to evaluate the surface integral:

∬F · dS = ∭div F dV

        = 2V

        = (64/3)π

Therefore, the flux of F across the hemisphere x^2 + y^2 + z^2 = 4, z > 0, oriented downward is (64/3)π.

To know more about flux, visit:

https://brainly.com/question/14527109

#SPJ11

The specified dimension of a part is. 150 inch. The blueprint indicates that all decimal tolerances are ±. 005 inch. Determine the acceptable dimensions for this to be a quality part. ___

Answers

The acceptable dimensions for this to be a quality part is 149.995 inch and 150.005 inch.

Given, Specified dimension of a part is 150 inch .Blueprint indicates that all decimal tolerances are ±0.005 inch. Tolerances are the allowable deviation in the dimensions of a component from its nominal or specified value. The acceptable dimensions for this to be a quality part is calculated as follows :Largest acceptable size of the part = Specified dimension + Tolerance= 150 + 0.005= 150.005 inch .Smallest acceptable size of the part = Specified dimension - Tolerance= 150 - 0.005= 149.995 inch

Know more about decimal tolerances  here:

https://brainly.com/question/32202718

#SPJ11

(1 point) use stokes' theorem to find the circulation of f⃗ =6yi⃗ 7zj⃗ 6xk⃗ around the triangle obtained by tracing out the path (4,0,0) to (4,0,6), to (4,3,6) back to (4,0,0).

Answers

The circulation of the vector field F around the triangle is -324.

Stokes' theorem relates the circulation of a vector field around a closed curve to the curl of the vector field over the surface enclosed by the curve.

Therefore, to use Stokes' theorem to find the circulation of the vector field F = 6yi + 7zj + 6xk around the triangle obtained by tracing out the path from (4,0,0) to (4,0,6), to (4,3,6), and back to (4,0,0), we need to find the curl of F and the surface enclosed by the triangle.

The curl of F is given by:

curl F = ∇ x F

= (d/dx)i x (6yi + 7zj + 6xk) + (d/dy)j x (6yi + 7zj + 6xk) + (d/dz)k x (6yi + 7zj + 6xk)

= -6i + 6j + 7k

To find the surface enclosed by the triangle, we can take any surface whose boundary is the triangle.

One possible choice is the surface of the rectangular box whose bottom face is the triangle and whose top face is the plane z = 6.

The normal vector of the bottom face of the box is -xi, since the triangle is in the yz-plane, and the normal vector of the top face of the box is +zk. Therefore, the surface enclosed by the triangle is the union of the bottom face and the top face of the box, plus the four vertical faces of the box.

Applying Stokes' theorem, we have:

∮C F · dr = ∬S curl F · dS

where C is the boundary of the surface S, which is the triangle in this case.

Since the triangle lies in the plane x = 4, we can parameterize it as r(t) = (4, 3t, 6t) for 0 ≤ t ≤ 1.

Then, dr/dt = (0, 3, 6) and we have:

∮C F · dr = [tex]\int 0^1[/tex] F(r(t)) · dr/dt dt

= [tex]\int 0^1[/tex](0, 18y, 42x) · (0, 3, 6) dt

=   [tex]\int 0^1[/tex]378x dt

= 378/2

= 189.

On the other hand, the surface S has area 6 x 3 = 18, and its normal vector is +xi, since it points outward from the box.

Therefore, we have:

∬S curl F · dS = ∬S (-6i + 6j + 7k) · xi dA

[tex]= \int 0^6 ∫0^3 (-6i + 6j + 7k) .xi $ dy dx[/tex]

[tex]= \int 0^6 \int 0^3 (-6x) dy dx[/tex]

= -54 x 6

= -324

Thus, we have:

∮C F · dr = ∬S curl F · dS = -324.

For similar question on vector field.

https://brainly.com/question/31400892

#SPJ11

Stokes' theorem relates the circulation of a vector field around a closed path to the curl of the vector field over the surface bounded by that path. The circulation of the given vector field F around the given triangular path can be calculated as follows:

First, we find the curl of the vector field F:

curl(F) = ( ∂Fz/∂y - ∂Fy/∂z )i + ( ∂Fx/∂z - ∂Fz/∂x )j + ( ∂Fy/∂x - ∂Fx/∂y )k

= 6i + 7j + 6k

Next, we find the surface integral of the curl of F over the triangular surface bounded by the given path. The surface normal vector for this surface can be calculated as the cross product of the tangent vectors at two arbitrary points on the surface, say (4,0,0) and (4,0,6):

n = ( ∂r/∂u x ∂r/∂v ) / | ∂r/∂u x ∂r/∂v |

= (-6i + 0j + 4k) / 6

where r(u,v) = <4,0,u+v> is a parameterization of the surface.

Then, the surface integral of the curl of F over the triangular surface can be calculated as:

∫∫(S) curl(F) ⋅ dS = ∫∫(D) curl(F) ⋅ n dA

where D is the projection of the surface onto the xy-plane, which is a rectangle with vertices (4,0), (4,3), (4,6), and (4,0), and dA is the differential area element on D. The circulation of F around the given path is then given by:

∫(C) F ⋅ dr = ∫∫(D) curl(F) ⋅ n dA

= (6i + 7j + 6k) ⋅ (-i/6) (area of D)

= -19/2

Therefore, the circulation of the vector field F around the given triangular path is -19/2.

To learn more about cross product click here, brainly.com/question/29164170

#SPJ11

A chocolate factory produces 19,56,870 chocolates in 2009. it produced 2,67,002 variety with coffee flavour; 6,54,512 with nuts; 3,21,785 with wafer and the rest were caramel flavour. how many chocolates were caramel flavoured

Answers

The number of chocolates that were caramel flavored is 7,13,571.

To find the number of chocolates that were caramel flavored, we can subtract the number of chocolates with the other three flavors from the total number of chocolates produced:

The total number of chocolates produced in 2009 was 19,56,870.

The number of chocolates produced with coffee flavour was 2,67,002, with nuts was 6,54,512, and with wafer was 3,21,785.

Therefore, the total number of chocolates produced with these three flavours is,

2,67,002 + 6,54,512 + 3,21,785 = 12,43,299.

To find out how many chocolates were caramel flavoured, we need to subtract this number from the total number of chocolates produced:

19,56,870 - 12,43,299

Total number of chocolates produced = 19,56,870

Number of chocolates with coffee flavor = 2,67,002

Number of chocolates with other flavors = Number of chocolates produced - (Number of chocolates with coffee flavor + Number of chocolates with nuts + Number of chocolates with wafer)

Number of chocolates with other flavors = 19,56,870 - (2,67,002 + 6,54,512 + 3,21,785)

Number of chocolates with other flavors = 19,56,870 - 12,43,299

Number of chocolates with other flavors = 7,13,571

For similar question on caramel flavored:

https://brainly.com/question/30693458

#SPJ11

Other Questions
T/F: all else being equal, you are safer living next to a volcano that produces a more silica rich magma that one that produces a less silica rich magma. The cost of putting a fence around a square field at 2.50 per metre is 200.The length of each side of the field is: Use the following data to estimate Hffor potassium bromide.K(s) + 1/2 Br2(g) KBr(s)Lattice energy691 kJ/molIonization energy for K419 kJ/molElectron affinity of Br325 kJ/molBond energy of Br2193 kJ/molEnthalpy of sublimation for K90. kJ/mol determine whether the series converges or diverges. [infinity] 8n 1 7n 5 n = 1 Small sacs that store and transport a variety of materials within cells are called:. An effective use of cost drivers to support a low-cost generic strategy involves?a. signaling the value proposition of the companys offering to buyers.b. coordinating with downstream channel allies to enhance customer value.c. coordinating with suppliers to better meet customer needs.d. incorporating intangible features that enhance buyer satisfaction in noneconomic ways.e. using lower-cost inputs wherever doing so will not entail too great a sacrifice in quality. If A X then the boundary Bd(A) is defined by the expressionBd(A) = A X Aa) show that inf(A) and Bd(B) are disjoint and their union is the closure of A.b) show that Bd(A) is empty if and only if A is both open and closed 2r If the potential energy of groundstate of hydrogen atom is taken to be equal to zero, then the total energy of electron in 1st excited state is (1) +3.2 eV 2. 10.2 ev 3. 20.4 ev 4. 23.8 ev Roughly 20% (1 in 5) of Americans have a functional disability that inhibits their mobility. A historical district estimated that roughly 50% of it is buildings met accessibility requirements. An independent review team showed that of 100 randomly selected buildings, 46 met standards. Create a 95% confidence interval. Do we have evidence that the districts estimation was correct?Group of answer choicesYes, because 20% falls on the intervalNo, because 46% is not close to 20%Yes, because 50% falls on the intervalNo, because 46% is not close to 50% true/false. let f be a composition of two reflections in two hyperbolic lines prove that if the two lines are parallel, then f is parabolic. *4. Write the chemical formula for sinister (IV) solariumide Find the area enclosed by y = 3x and y=x^2. Round your answer to one decimal place. AWS' S3 beats its competitors in most storage aspects, including for frequently accessed data. (true or false) find the period of the following functions. g ( x ) = cos ( x 4 ) for the formation of your photchromic imine you use ammonium bromide. why? 2 reasons. how many grams of aluminum can be formed by passage of 305c through an electrolytic cell containing a molten aluminum salt Find the vector x if =(8,8,0),=(1,8,1),=(3,2,4). compute the price of a 5.0 percent coupon bond with 10 years left to maturity and a market interest rate of 7.8 Wangden has been working on as an interpreter in a trekking company for five years. He prepares a report on how the company has undergone change over time. Complete the report. the temperatures at midday on march 1st in five cities are shown in the bar chart below. What is the difference in temperature between rome and munich?