Use Hooke's Law to determine the variable force in the spring problem. A force of 250 newtons stretches a spring 30 centimeters. How much work is done in stretching the spring from 20 centimeters to 50 centimeters? n-cm

Answers

Answer 1

The work done in stretching the spring from 20 cm to 50 cm is 11,250 n-cm.

Hooke’s Law states that the amount of deformation produced in a spring is proportional to the force applied to it. The equation that expresses Hooke’s Law is:

F = kxwhere F is the force applied to the spring, k is the spring constant, and x is the amount of deformation produced in the spring.

To determine the variable force in the spring problem, use Hooke's Law.

For the given problem, the force of 250 newtons stretches the spring 30 centimeters. So, the spring constant can be calculated by:k = F/x = 250 N/30 cm = 25/3 N/cm

Now, we need to find the amount of work done in stretching the spring from 20 cm to 50 cm. The work done in stretching the spring is given by the formula:W = (1/2)kx²

where W is the work done, k is the spring constant, and x is the displacement.

The spring is stretched by 50 – 20 = 30 cm.

So, substituting the values in the above formula:W = (1/2) (25/3) (30)²W = 11,250 n-cm

Know more about the Hooke’s Law

https://brainly.com/question/17068281

#SPJ11


Related Questions

factor the expression and use the fundamental identities to simplify. there is more than one correct form of the answer. 6 tan2 x − 6 tan2 x sin2 x

Answers

We will substitute this value of sin²x in our expression which will give;6 tan²x(1 - sin²x)6 tan²x(1 - (1 - cos²x))6 tan²x cos²x.

We need to simplify the given expression which is given below;

6 tan2 x − 6 tan2 x sin2 x

In order to solve this expression, we will first write it in a factored form which will be;

6 tan²x(1 - sin²x)

We know that the identity for sin²x is;sin²x + cos²x = 1

Which can be rearranged to give;

sin²x = 1 - cos²x

Now we will substitute this value of sin²x in our expression which will give;6 tan²x(1 - sin²x)6 tan²x(1 - (1 - cos²x))6 tan²x cos²x.

Know more about the expression here:

https://brainly.com/question/723406

#SPJ11

The cross-section of the prism below is an equilateral triangle.
a) What is the area of the shaded face?
b) How many rectangular faces does the prism have?
c) What is the total area of these rectangular faces?
7 cm Scroll down
8 cm

Answers

a.) The area of the shaded face would be =54cm²

b.) The number of rectangular faces that the prism has =3

c.) The total area of the rectangular faces would be=162cm².

How to calculate the area of the shaded face in the diagram above?

To calculate the area of the shaded face, the formula that should be used = length×width.

where;

Length = 9cm

width = 6cm

Area = 9×6 = 54cm²

The total number of rectangular faces = 3

The total area of these rectangular face would be area of one rectangular face multiplied by 3.

That is;

54×3 = 162cm²

Learn more about triangle here:

https://brainly.com/question/28470545

#SPJ1

x < -10 -10 < x < 30 30 x < 50 50 ≤ x 0 0.25 0.75 F(x) = 1 (a) P(X ≤ 50) (c) P(40 ≤X ≤ 60) (e) P(0 ≤X < 10) (b) P(X ≤ 40) (d) P(X< 0) (f) P(-10 < X < 10)

Answers

The probabilities are,

(a)  P(X ≤ 50) = 1

(b) P(X ≤ 40) = 0.75

(c) P(40 ≤ X ≤ 60) = 0.25

(d) P(X < 0) = 0

(e) P(0 ≤ X < 10) = 0.25

(f) P(-10 < X < 10) = 0.25

a) For P(X ≤ 50):

We have to add the probabilities of all the values of X that are less than or equal to 50.

Since F(x) = 1 when x is greater than or equal to 50, we have,

⇒ P(X ≤ 50) = P(X < -10) + P(-10 ≤ X < 30) + P(30 ≤ X < 50) + P(X ≥ 50)

⇒ P(X ≤ 50) = 0 + 0.25 + 0.75 + 1

⇒ P(X ≤ 50) = 2

Since, probabilities cannot be greater than 1.

Therefore, the correct answer is,

⇒ P(X ≤ 50) = P(X < -10) + P(-10 ≤ X < 30) + P(30 ≤ X < 50) + P(X ≤ 50)

⇒ P(X ≤ 50) = 0 + 0.25 + 0.75 + 0

⇒ P(X ≤ 50) = 1

So, the probability that X is less than or equal to 50 is 1.

b) For P(X ≤ 40):

We have to add the probabilities of all the values of X that are less than or equal to 40.

Since F(x) = 0.75 when x is greater than or equal to 30 and less than 50, and F(x) = 1 when x is greater than or equal to 50, we have,

⇒ P(X ≤ 40) = P(X < -10) + P(-10 ≤ X < 30) + P(30 ≤ X ≤ 40)

⇒ P(X ≤ 40) = 0 + 0.25 + 0.5

⇒ P(X ≤ 40) = 0.75

So, the probability that X is less than or equal to 40 is 0.75.

c) For P(40 ≤ X ≤ 60):

To find P(40 ≤ X ≤ 60), we have to subtract the probability of X being less than 40 from the probability of X being less than or equal to 60.

Since F(x) = 1 when x is greater than or equal to 50, we have,

⇒ P(40 ≤ X ≤ 60) = P(X ≤ 60) - P(X ≤ 40)

⇒ P(40 ≤ X ≤ 60) = 1 - 0.75

⇒ P(40 ≤ X ≤ 60) = 0.25

So, the probability that X is between 40 and 60 (inclusive) is 0.25.

d) For P(X < 0):

To find P(X < 0), we have to add the probabilities of all the values of X that are less than 0. Since F(x) = 0 when x is less than -10, we have,

⇒ P(X < 0) = P(X < -10)

⇒ P(X < 0) = 0

So, the probability that X is less than 0 is 0.

e) For P(0 ≤ X < 10):

To find P(0 ≤ X < 10), we have to subtract the probability of X being less than 0 from the probability of X being less than or equal to 10.

Since F(x) = 0.25 when x is greater than or equal to -10 and less than 30, we have,

⇒ P(0 ≤ X < 10) = P(X ≤ 10) - P(X < 0)

⇒ P(0 ≤ X < 10) = P(X ≤ 10)

⇒ P(0 ≤ X < 10) = F(10)

⇒ P(0 ≤ X < 10) = 0.25

So, the probability that X is between 0 (inclusive) and 10 (exclusive) is 0.25.

f) For P(-10 < X < 10):

To find P(-10 < X < 10), we have to subtract the probability of X being less than or equal to -10 from the probability of X being less than or equal to 10.

Since F(x) = 0.25 when x is greater than or equal to -10 and less than 30, we have,

⇒ P(-10 < X < 10) = P(X ≤ 10) - P(X ≤ -10)

⇒ P(-10 < X < 10) = F(10) - F(-10)

⇒ P(-10 < X < 10) = 0.25 - 0

⇒ P(-10 < X < 10) = 0.25

So, the probability that X is between -10 (exclusive) and 10 (exclusive) is 0.25.

Learn more about the probability visit:

https://brainly.com/question/13604758

#SPJ4

The complete question is attached below:

Data on 4400 college graduates show that the mean time required to graduate with a bachelor's degree is 6.24 years with a standard deviation of 1.58 years Use a single value to estimate the mean time

Answers

Thus, we can use the value 6.24 years as a single point estimate for the mean time required to graduate with a bachelor's degree based on the available data.

To estimate the mean time required to graduate with a bachelor's degree based on the given data, we can use the sample mean as a point estimate.

The sample mean is calculated as the sum of all the individual times divided by the total number of graduates:

Sample Mean = (sum of all individual times) / (total number of graduates)

In this case, the given data states that the mean time required to graduate is 6.24 years for 4400 college graduates. Therefore, the sample mean is:

Sample Mean = 6.24 years

To know more about mean,

https://brainly.com/question/16747717

#SPJ11

If Excel's sample kurtosis coefficient is negative, which of the following is not correct? Multiple Choice We know that the population is platykurtic. We know that the population is leptokurtic. We should consult a table of percentiles that takes sample size into consideration.

Answers

A table of percentiles that takes sample size into consideration is not required.Therefore, option C is not right when the sample kurtosis coefficient in Excel is negative.

If the sample kurtosis coefficient in Excel is negative, we can make certain inferences. These are the inferences we can make if the sample kurtosis coefficient in Excel is negative:We know that the population is platykurtic. When the sample kurtosis coefficient is negative, the distribution is flat-topped, which means that there are fewer outliers in the distribution. As a result, the population is platykurtic.

We can deduce that the population is flat and that there are fewer extreme values (tails) than a normal distribution.We know that the population is leptokurtic. When a sample kurtosis coefficient is negative, the tails of the population distribution are shorter than the tails of a normal distribution, indicating that the population is leptokurtic. It has more values than a standard normal distribution that fall in the extreme ranges.

We should consult a table of percentiles that takes sample size into consideration. There is no need to seek a table of percentiles that takes sample size into consideration. Because the sample kurtosis coefficient is negative, we can infer that the population is either platykurtic or leptokurtic.  Thus, option C is the incorrect option.

Know more about the percentiles

https://brainly.com/question/16952576

#SPJ11

evaluate the dot product of (-1 2) and (3 3)

Answers

The dot product of (-1, 2) and (3, 3) can be found by multiplying the corresponding elements together and then adding the products. So we have:$$(-1)(3) + (2)(3) = -3 + 6 = 3$$Therefore, the dot product of (-1, 2) and (3, 3) is 3. The dot product is an operation that takes two vectors and returns a scalar.

It is also known as the scalar product or inner product. It is useful in many areas of mathematics, physics, and engineering, including vector calculus, mechanics, and signal processing. The dot product has many applications, including computing the angle between two vectors, finding the projection of one vector onto another, and determining whether two vectors are orthogonal. It is an important concept in linear algebra, which is the branch of mathematics that deals with vectors, matrices, and linear transformations.

To know more about multiplying visit :-

https://brainly.com/question/30875464

#SPJ11

R is the region bounded by the functions f(x)=x2−3x−3 and g(x)=−2x+3. Find the area A of R. Enter an exact answer. Provide your answer below: A= units 2

Answers

Therefore, the area of the region R is A = -10.5/3 square units.

To find the area of the region bounded by the functions[tex]f(x) = x^2 - 3x - 3[/tex] and g(x) = -2x + 3, we need to determine the points of intersection between the two functions.

Setting f(x) equal to g(x), we have:

[tex]x^2 - 3x - 3 = -2x + 3[/tex]

Rearranging the equation and simplifying:

[tex]x^2 - x - 6 = 0[/tex]

Factoring the quadratic equation:

(x - 3)(x + 2) = 0

This gives us two solutions: x = 3 and x = -2.

To find the area, we integrate the difference between the two functions over the interval [x = -2, x = 3]:

A = ∫[from -2 to 3] (f(x) - g(x)) dx

Substituting the functions:

A = ∫[from -2 to 3] [tex]((x^2 - 3x - 3) - (-2x + 3)) dx[/tex]

Simplifying:

A = ∫[from -2 to 3] [tex](x^2 + x - 6) dx[/tex]

Integrating the polynomial:

A =[tex][(1/3)x^3 + (1/2)x^2 - 6x][/tex] [from -2 to 3]

Evaluating the integral:

[tex]A = [(1/3)(3^3) + (1/2)(3^2) - 6(3)] - [(1/3)(-2^3) + (1/2)(-2^2) - 6(-2)][/tex]

Simplifying further:

A = [(1/3)(27) + (1/2)(9) - 18] - [(1/3)(-8) + (1/2)(4) + 12]

A = [9 + 4.5 - 18] - [-8/3 - 2 + 12]

A = 4.5 - (8/3) + 2 - 12

A = -3.5 - (8/3)

A = -10.5/3

To know more about area,

https://brainly.com/question/31065413

#SPJ11

y(t) = 5 sin 4t + 3 cos 4t in terms of (a) a cosine term only and (b) a sine term only. For both functions, state i) the frequency in radians, ii) the amplitude, iii) the phase angle in radians.

Answers

Given the function y(t) = 5sin 4t + 3cos 4t. We need to rewrite it in terms of a cosine term only and sine term only.a) a cosine term only We can use the formula of sin (a + b) = sin a cos b + cos a sin b.

Using this formula, we can write, y(t) = 5sin 4t + 3cos 4t = √34 [√(5/17)sin 4t + √(12/17)cos 4t]We know, cos (90° - θ) = sin θ and sin (90° - θ) = cos θThus, we can rewrite the above equation as,y(t) = √34 [cos (90° - 4t) √(5/17) + sin (90° - 4t) √(12/17)]Thus, y(t) = √34 cos (4t - 0.37)b) a sine term only We can use the formula of cos (a + b) = cos a cos b - sin a sin b.

Using this formula, we can write, y(t) = 5sin 4t + 3cos 4t = √34 [√(12/17)sin 4t - √(5/17)cos 4t]We know, cos (90° - θ) = sin θ and sin (90° - θ) = cos θThus, we can rewrite the above equation as,y(t) = √34 [sin (4t + 1.18) √(12/17)]Thus, y(t) = √408/17 sin (4t + 1.18)The frequency of both sine and cosine functions is equal to 4 rad/s The amplitude of sine function = √408/17 = 2.73The amplitude of cosine function = √34 = 5.83The phase angle of cosine function = 0.37 rad The phase angle of sine function = 1.18 rad.

To know more about function visit:

brainly.com/question/21426493

#SPJ11

ProbabilityNPV Worst 0.25 ($30) Base 0.50 $20 Best 0.25 $30 Calculate the Standard deviation A$29.50 B$23.45 C$30.45 D$15.50 E$40.50

Answers

The standard deviation of the given probability distribution is $23.45.

The correct answer is option B.

What is the standard deviation?

The standard deviation of the given probability distribution is determined as follows:

Calculate the expected value (mean) of the distribution:

Expected Value = (Probability1 * Value1) + (Probability2 * Value2) + (Probability3 * Value3)

Expected Value = (0.25 * (-30)) + (0.50 * 20) + (0.25 * 30)

Expected Value = -7.50 + 10 + 7.50

Expected Value = 10

The squared deviation for each value:

Squared Deviation1 = (Value1 - Expected Value)² * Probability1

Squared Deviation2 = (Value2 - Expected Value)² * Probability2

Squared Deviation3 = (Value3 - Expected Value)² * Probability3

Squared Deviation1 = (-30 - 10)² * 0.25 = 1600 * 0.25 = 400

Squared Deviation2 = (20 - 10)² * 0.50 = 100 * 0.50 = 50

Squared Deviation3 = (30 - 10)² * 0.25 = 400 * 0.25 = 100

Variance = Squared Deviation1 + Squared Deviation2 + Squared Deviation3

Variance = 400 + 50 + 100 = 550

Standard Deviation = √Variance

Standard Deviation = √550

Now, calculating the square root of 550 gives us an approximate value of 23.45.

Learn more about probability at: https://brainly.com/question/25870256

#SPJ1

Suppose that the space shuttle has three separate computer control systems: the main system and two backup duplicates of it. The first backup would monitor the main system and kick in if the main system failed. Similarly, the second backup would monitor the first. We can assume that a failure of one system is independent of a failure of another system, since the systems are separate. The probability of failure for any one system on any one mission is known to be 0.01.
a. Find the probability that the shuttle is left with no computer control system on a mission.

Answers

The probability of the shuttle being left with no computer control systems on a mission is 0.000001.

The probability of failure for any one system on any one mission is known to be 0.01.

Since a failure of one system is independent of a failure of another system, the probability that the shuttle is left with no computer control system on a mission is 0.01 × 0.01 × 0.01 = 0.000001, or 1 in 1,000,000.

This is because the probability of three independent events occurring is the product of the individual probabilities.

Therefore, the probability of the shuttle being left with no computer control systems on a mission is 0.000001.

To learn more about the probability visit:

https://brainly.com/question/11234923.

#SPJ4

For a number of families, it has been investigated how many people the family consists of.. The following results were obtained: 1, 2, 4, 1, 1, 3, 2, 3, 6, 2, 5, 3, 2, 1, 3, 1, 4, 2, 5, 2

a) Determine the average number of children per household.
b) What is the central measure you calculated in the e-task called?
c) Determine values for the other two central measurements that exist.

Answers

A) Average number of children per household= Sum of all the number of children/number of households=> 2.35 children per household.B) The central measure calculated in the task is mean or the average number of children per household. C) the median of the data set is  3. The mode is 2.

a) Average number of children per household is calculated by summing up all the number of children per household and dividing it by the number of households.

Here,Sum of all the number of children = 1+2+4+1+1+3+2+3+6+2+5+3+2+1+3+1+4+2+5+2=47

Average number of children per household= Sum of all the number of children/number of households=> 47/20= 2.35 children per household.

b) The central measure calculated in the task is mean or the average number of children per household.

c) There are two other central measurements called the median and mode that exist.Median:

To calculate the median, we need to arrange the given data in the order of increasing magnitude. 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6.

The median is the middle value in the data set. Since we have an even number of data points, the median is the average of the two middle values.

Therefore, the median of the data set is (3+3)/2= 3.

Mode: The mode is the value that appears most frequently in a data set. Here, the mode is 2 because it appears the most number of times.

Know more about median here,

https://brainly.com/question/11237736

#SPJ11

for continuous RV, X 3 2 f(2) {{ find E(Y) where 1 ≤ x ²2 otherwise Y= 1/2 X

Answers

f(x) is not a valid PDF. Therefore, we can't compute E(Y) in this case.

Given X is a continuous random variable where X ∈ [3, 2] and f(2) = ? We have to find E(Y) where 1 ≤ X ≤ 2 and Y = (1/2)X otherwise Y = 0.

Since we don't have the PDF of the continuous random variable X, we can't compute the expected value E(Y) directly using the formula E(Y) = ∫yf(y)dy. However, we can use the Law of Total Probability to get the conditional PDF of Y given X and then use it to find E(Y).

So, let's find the conditional PDF f(Y|X) of Y given X. Since Y is a function of X, we have Y = g(X), where g(X) = (1/2)X for 1 ≤ X ≤ 2 and g(X) = 0 otherwise. Now, the conditional PDF f(Y|X) is given by: f(Y|X) = f(X,Y) / f(X)where f(X,Y) is the joint PDF of X and Y and f(X) is the marginal PDF of X.

The joint PDF f(X,Y) is given by: f(X,Y) = f(Y|X) * f(X)where f(Y|X) is given by: f(Y|X) = δ(Y - g(X)), where δ() is the Dirac delta function. Thus, f(X,Y) = δ(Y - g(X)) * f(X) Now, we need to find f(X). Since X is a continuous random variable, we have: f(X) = ∫f(X,Y)dy = ∫δ(Y - g(X))dy

Using the property of the Dirac delta function, we get: f(X) = δ(Y - g(X))|y=g(X) = δ(Y - (1/2)X) Therefore, f(Y|X) = δ(Y - g(X)) / δ(Y - (1/2)X) for 1 ≤ X ≤ 2 and f(Y|X) = 0 otherwise.

Now, we can use the formula for the conditional expected value to get E(Y|X = x):E(Y|X = x) = ∫yf(y|x)dy= ∫y * δ(Y - g(x)) / δ(Y - (1/2)x) dy= g(x) = (1/2)x for 1 ≤ x ≤ 2and E(Y|X = x) = 0 otherwise. Then, we can use the formula for the Law of Total Probability to get E(Y):E(Y) = ∫E(Y|X = x)f(x)dx = ∫(1/2)x * f(x) dx for 1 ≤ x ≤ 2and E(Y) = 0 otherwise.

Since we don't have the PDF of X, we can't compute E(Y) directly. However, we can use the fact that the integral of a PDF over its domain is equal to 1.

Therefore, we have:1 = ∫f(x)dx from which we can solve for f(x):f(x) = 1 / ∫dx from which we get: f(x) = 1 / [2 - 3] = 1/-1 = -1

To know more about probability density function (PDF) visit:

https://brainly.com/question/31039386

#SPJ11

Find the correlation coefficient using the following
information:
xx=Sxx=
38,
yy=Syy=
32,
xy=Sxy=
11
Note: Round your
answer to TWO decim

Answers

The correlation coefficient is 0.3161 (rounded to two decimal places).

Correlation is a statistical measure (expressed as a number) that describes the size and direction of a relationship between two or more variables.

To find the correlation coefficient using the given information xx=38,

yy=32

and xy=11, we need to use the formula for correlation coefficient:

[tex]r=\frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}[/tex]

Where r is the correlation coefficient,

Sxy is the sum of the cross-products,

Sxx is the sum of squares of x deviations, and

Syy is the sum of squares of y deviations.

Substituting the given values in the above formula, we have

[tex]r=\frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}[/tex]

[tex]r=\frac{11}{\sqrt{38}\sqrt{32}}$$$$[/tex]

[tex]r=\frac{11}{\sqrt{1216}}$$$$[/tex]

=[tex]0.3161$$[/tex]

Thus, the correlation coefficient is 0.3161 (rounded to two decimal places).

To know more about  correlation coefficient visit:

https://brainly.com/question/30116167

#SPJ11

Question Let g be a continuous, positive, decreasing function on [1, oo). Compare the values of the integral 2. BCA 3. ABC 4. A

Answers

Let g be a continuous, positive, decreasing function on [1,oo). We need to compare the values of the integral of the following options provided below:2.BCA3.ABC4.

ASince g is a decreasing function on [1, oo), we can show that ∫[n,n+1] g(x)dx ≥ g(n+1) for every positive integer n.Using this inequality and adding them all up gives us∫1n g(x)dx≥∑n=1∞ g(n)Therefore, the series ∑n=1∞ g(n) diverges (the terms are positive and do not go to zero), so the integral of option BCA is infinite.Option ABC is equal to∫1∞ g(x)dx=∫11g(x)dx+∫12g(x)dx+∫23g(x)dx+⋯+∫n,n+1g(x)dx+⋯

Since g is a positive function, we have 0 ≤∫n,n+1g(x)dx≤g(n)so the integral is bounded below by ∑n=1∞ g(n) which diverges. Thus the integral of option ABC is also infinite.Option A is equal to∫2∞g(x)dx=∫23g(x)dx+⋯+∫n,n+1g(x)dx+⋯and since g is a decreasing function, we have ∫n,n+1g(x)dx≤g(n+1)(n+1−n)=g(n+1)so the integral is bounded above by∑n=1∞g(n+1)(n+1−n)=∑n=1∞g(n+1)which converges since g is a positive, decreasing function. Hence the integral of option A is finite and less than infinity.Option A is less than option BCA and option ABC is infinite.

To know more about polygon visit:

https://brainly.com/question/24464711

#SPJ11

the wheels on an automobile are classified as a variable cost with respect to the volume of cars produced in an automobile assembly plant. (True or False)

Answers

"The given statement is False." The wheels on an automobile are not classified as a variable cost with respect to the volume of cars produced in an automobile assembly plant.

The statement is incorrect. The wheels on an automobile are not typically classified as a variable cost with respect to the volume of cars produced in an automobile assembly plant.

Variable costs are costs that vary in direct proportion to the level of production or activity. They increase or decrease as the volume of production changes.

Examples of variable costs in automobile manufacturing would include items such as raw materials, direct labor, and electricity costs.

On the other hand, the cost of wheels for an automobile assembly plant would typically be considered a fixed cost. Fixed costs are costs that do not vary with the level of production. These costs remain constant regardless of the number of cars produced.

Fixed costs in automobile manufacturing may include expenses like the purchase or lease of manufacturing equipment, facility rental, and salaries of administrative staff.

For more such questions on Automobile:

https://brainly.com/question/30541305

#SPJ8

find the value of sin∅
p=5cm
b=12cm
h=?​

Answers

The value of sin(∅) is 12/13.

To find the value of sin(∅), we can use the given measurements of a right triangle.

In a right triangle, sin(∅) is defined as the ratio of the length of the side opposite the angle (∅) to the length of the hypotenuse.

p = 5 cm (length of the side adjacent to ∅)

b = 12 cm (length of the side opposite ∅)

To find the value of h (length of the hypotenuse), we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Using the Pythagorean theorem:

h² = p² + b²

h² = 5² + 12²

h² = 25 + 144

h² = 169

Taking the square root of both sides:

h = √169

h = 13 cm

Now that we have the lengths of the sides of the right triangle, we can find the value of sin(∅) using the ratio mentioned earlier:

sin(∅) = b/h

sin(∅) = 12/13.

For similar question on hypotenuse.

https://brainly.com/question/25833572

#SPJ8

Winona paid $115 for a lifetime membership to the zoo, so that she could gain admittance to the zoo for $1.95 per visit. Write Winona's average cost per visit C as a function of the number of visits when she has visited x times. What is her average cost per visit when she has visited the zoo 115 times? Graph the function for x> 0. What happens to her average cost per visit if she starts when she is young and visits the zoo every day? Find Winona's average cost per visit C as a function of the number of visits when she has visited x times C(x)- (Type an expression.) What is her average cost per visit when she has visited the zoo 115 times?

Answers

Winona's average cost per visit C as a function of the number of visits when she has visited x times is C(x) = (115 + 1.95x) / x and when she visits the zoo 115 times, her average cost per visit will be $3 per visit.

Given, Winona paid $115 for a lifetime membership to the zoo, so that she could gain admittance to the zoo for $1.95 per visit.

Winona's average cost per visit C as a function of the number of visits when she has visited x times is given by;

C(x) = (115 + 1.95x) / xIf she has visited the zoo 115 times, then her average cost per visit is;

C(115) = (115 + 1.95(115)) / 115= 345 / 115= $3 per visit.

Graph of C(x) is shown below:

If Winona starts when she is young and visits the zoo every day, then she will visit the zoo 365 * n times, where n is the number of years she has visited the zoo.

Then, her average cost per visit C as a function of the number of visits when she has visited x times is given by;

C(x) = (115 + 1.95x) / x

If she starts when she is young and visits the zoo every day, then the number of times she visited will be;365n

Hence, her average cost per visit C as a function of the number of visits when she has visited 365n times is given by;C(365n) = (115 + 1.95(365n)) / (365n)= (115 + 711.75n) / (365n)

When she starts when she is young and visits the zoo every day, her average cost per visit as the number of times she visits increases will reduce.

Finally, Winona's average cost per visit C as a function of the number of visits when she has visited x times is;

C(x) = (115 + 1.95x) / x

When she visits the zoo 115 times, her average cost per visit will be $3 per visit.

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Find the remainder term Rn in the nth order Taylor polynomial centered at a for the given function. Express the result for a general value of n. f(x)=e-2x, a-2 Choose the correct answer below. (-2)" e -2c (x- 2)" for some c between x and 2. (-2)1+1 e -2c (n+ 1)! O B. Rn(x)- -(x-2)"+1 for some c between x and 2. (-2)1+1e 2c Rn(x)=?(n+1)!-(x-2)n + 1 for some c between x and 2. n -2c OD. (x-2)"+1 for some c between x and 2.

Answers

Here is the correct answer in LaTeX code:

The correct answer is [tex]$B[/tex]. [tex]R_n(x) = (-2)^{n+1} e^{-2c} (n+1)!$.[/tex] The remainder term, [tex]$R_n(x)$[/tex] , in the [tex]$n$th[/tex] order Taylor polynomial for the function [tex]$f(x) = e^{-2x}$[/tex] centered at [tex]$a = -2$[/tex] is given by the formula:

[tex]\[R_n(x) = \frac{f^{(n+1)}(c) \cdot (x-a)^{n+1}}{(n+1)!}\][/tex]

where [tex]$c$[/tex] is a value between [tex]$x$[/tex] and [tex]$a$[/tex]. In this case, [tex]$a = -2$.[/tex]

Taking the derivative of [tex]$f(x) = e^{-2x}$[/tex] , we have

[tex]$f'(x) = -2e^{-2x}$, $f''(x) = 4e^{-2x}$, $f'''(x) = -8e^{-2x}$[/tex] , and so on.

Substituting these derivatives into the remainder term formula, we get:

[tex]\[R_n(x) = (-2)^{n+1} e^{-2c} (n+1)! \cdot (x-(-2))^{n+1} / (n+1)!\][/tex]

Simplifying, we have:

[tex]\[R_n(x) = (-2)^{n+1} e^{-2c} \cdot (x+2)^{n+1}\][/tex]

So, the correct answer is [tex]$B[/tex]. [tex]R_n(x) = (-2)^{n+1} e^{-2c} (n+1)!$.[/tex]

To know more about derivative visit-

brainly.com/question/30080485

#SPJ11

PLEASE HELP ME ANSWER ASAP

Answers

The height of the tree, considering the similar triangles in this problem, is given as follows:

32.5 feet.

What are similar triangles?

Two triangles are defined as similar triangles when they share these two features listed as follows:

Congruent angle measures, as both triangles have the same angle measures.Proportional side lengths, which helps us find the missing side lengths.

The proportional relationship for the side lengths in this problem is given as follows:

25/5 = h/6.5

5 = h/6.5.

Hence the height of the tree is obtained applying cross multiplication as follows:

h = 6.5 x 5

h = 32.5 feet.

More can be learned about similar triangles at brainly.com/question/14285697

#SPJ1

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 234.1-cm and a standard deviation of 2.3-cm. Find P80, which is the length separating the shortest

Answers

The formula for calculating P80 is given by:P80 = Mean + (Z score x Standard deviation). The length separating the shortest 20% from the rest of the lengths of the steel rods is 231.7 cm (approx.).

We have been given that a company produces steel rods with lengths that are normally distributed with a mean of 234.1-cm and a standard deviation of 2.3-cm. We need to find P80, which is the length separating the shortest 20% from the rest of the lengths of the steel rods. To find P80, we first need to find the z-score corresponding to the 80th percentile. The formula for the z-score is given by:z = (x - μ) / σwhere x is the percentile we want to find, μ is the mean, and σ is the standard deviation. For the 80th percentile, x = 0.8, μ = 234.1-cm, and σ = 2.3-cm. Therefore,z = (0.8 - 234.1) / 2.3z = -0.845We can use the standard normal distribution table to find the area corresponding to the z-score. The table gives the area under the standard normal curve for different z-values. For a given percentage value, we first find the corresponding z-value and then look up the area corresponding to this z-value in the table. For the 80th percentile, the z-score is -0.845, and the area corresponding to this z-score is 0.1977. This means that 19.77% of the lengths of the steel rods are shorter than the 80th percentile length. To find the length separating the shortest 20% from the rest, we subtract the 80th percentile length from the mean and multiply the result by the z-score:P80 = 234.1-cm + (-0.845) × 2.3-cmP80 = 231.7-cm (approx.)

Therefore, the length separating the shortest 20% from the rest of the lengths of the steel rods is approximately 231.7 cm.

To know more about standard normal curve visit:

brainly.com/question/29184785

#SPJ11

Assume that a sample is used to estimate a population mean μ. Find the 98% confidence interval for a sample of size 67 with a mean of 43.1 and a standard deviation of 13.6. Enter your answer as an op

Answers

We are given a sample of size 67, the sample mean as 43.1 and the standard deviation as 13.6. The 98% confidence interval is [39.28, 46.92].

We need to find the 98% confidence interval.

The formula for the confidence interval for a population mean when the population standard deviation is known is as follows:

Confidence interval = sample mean ± z* (σ/√n)

where σ is the population standard deviation, n is the sample size, z* is the z-score associated with the desired level of confidence.

For 98% confidence interval, the z-value is 2.33 (from the z-table)

Substituting the given values, we get:

Confidence interval = 43.1 ± 2.33 * (13.6/√67)≈ 43.1 ± 3.82

Therefore, the correct answer is [39.28, 46.92].

To learn more about Confidence interval refer here

https://brainly.com/question/32278466#

#SPJ11

Suppose X and Y are two random variables with joint moment generating function MX,Y(t1,t2)=(1/3)(1 + et1+2t2+ e2t1+t2). Find the covariance between X and Y.

Answers

To find the covariance between X and Y, we need to use the joint moment generating function (MGF) and the properties of MGFs.

The joint MGF MX,Y(t1, t2) is given as:

[tex]MX,Y(t1, t2) = \frac{1}{3}(1 + e^{t1 + 2t2} + e^{2t1 + t2})[/tex]

To find the covariance, we need to differentiate the joint MGF twice with respect to t1 and t2, and then evaluate it at t1 = 0 and t2 = 0.

First, let's differentiate MX,Y(t1, t2) with respect to t1:

[tex]\frac{\partial^2(MX,Y(t1, t2))}{\partial t1^2} = \frac{\partial}{\partial t1}\left(\frac{\partial(MX,Y(t1, t2))}{\partial t1}\right)\\\\= \frac{\partial}{\partial t_1} \left(\frac{\partial}{\partial t_1} \left(\frac{1}{3} (1 + e^{t_1 + 2t_2} + e^{2t_1 + t_2})\right)\right)\\\\= \frac{\partial}{\partial t1}\left(\frac{1}{3}(2e^{t1 + 2t2} + 2e^{2t1 + t2})\right)\\\\= \frac{2}{3}(2e^{t1 + 2t2} + 4e^{2t1 + t2})[/tex]

Now, let's differentiate MX,Y(t1, t2) with respect to t2:

[tex]\frac{\partial^2(MX,Y(t1, t2))}{\partial t2^2} = \frac{\partial}{\partial t2}\left(\frac{\partial(MX,Y(t1, t2))}{\partial t2}\right)\\\\= \frac{\partial}{\partial t_2} \left(\frac{\partial}{\partial t_2} \left(\frac{1}{3} (1 + e^{t_1 + 2t_2} + e^{2t_1 + t_2})\right)\right)\\\\= \frac{\partial}{\partial t2}\left(\frac{1}{3}(4e^{t1 + 2t2} + 2e^{2t1 + t2})\right)\\\\= \frac{2}{3}(4e^{t1 + 2t2} + 2e^{2t1 + t2})[/tex]

Now, we can evaluate the second derivatives at t1 = 0 and t2 = 0:

[tex]\frac{\partial^2(MX,Y(t1, t2))}{\partial t1^2} = \frac{2}{3}(2e^{0 + 2(0)} + 4e^{2(0) + 0})\\\\= \frac{2}{3}(2 + 4)\\\\= 2\\\\\\\frac{\partial^2(MX,Y(t1, t2))}{\partial t2^2} = \frac{2}{3}(4e^{0 + 2(0)} + 2e^{2(0) + 0})\\\\= \frac{2}{3}(4 + 2)\\\\= \frac{4}{3}[/tex]

Finally, the covariance between X and Y is given by:

[tex]Cov(X, Y) = \frac{\partial^2(MX,Y(t1, t2))}{\partial t1^2} - \frac{\partial^2(MX,Y(t1, t2))}{\partial t2^2}\\\\= 2 - \frac{4}{3}\\\\= \frac{6}{3} - \frac{4}{3}\\\\= \frac{2}{3}[/tex]

Therefore, the covariance between X and Y is [tex]\frac{2}{3}[/tex].

To know more about Evaluate visit-

brainly.com/question/15442498

#SPJ11

Which one of the following sets of data does not determine a unique triangle? Choose the correct answer below. OA. A-30°, b = 8, a 4 O B. A 130°, b 4, a = 7 O C. A- 50°, b=21, a = 19 O D. A 45°, b 10, a 12

Answers

Both of these angles are possible, and there are two triangles that can be formed with the given data. Hence, option C, A- 50°, b=21, a = 19, does not determine a unique triangle.

Among the given options, the set of data that does not determine a unique triangle is option C, A- 50°, b=21, a = 19. Let's look at why this is the case. We use the Sine rule to find the missing side of a triangle when two sides and an angle are given, or two angles and a side are given. It is not possible to form a unique triangle with the given data in option C.

Let's see why!b/sin(B) = a/sin(A)We know angle A is -50 degrees (angle can never be negative, but it doesn't matter in this context because sin(-50) = sin(50)).b = 21a = 19Using these values, we get,b/sin(B) = 19/sin(50)This will result in two values of angle B: 112.14° and 67.86°.Therefore, both of these angles are possible, and there are two triangles that can be formed with the given data. Hence, option C, A- 50°, b=21, a = 19, does not determine a unique triangle.

To know more about triangle visit :-

https://brainly.com/question/2773823

#SPJ11

A researcher want to study the behaviours of post graduate student in australia in moblie phone usage. One of the goals of the study is to find out the first app the students open every morning.. The researcher collected a random sample of 1250 post graduate students from 3 big universities in sydney and asked them to fill in a questionnaire. Are the data collected by the researcher considered as primary or secondary dat? Explain.

Answers

The researcher's collection of data from post graduate students through a questionnaire makes it primary data.

The data collected by the researcher are considered as primary data. Primary data refers to original data that is collected firsthand by the researcher for a specific research purpose.

In this case, the researcher collected the data directly from the post graduate students through the questionnaire for the purpose of studying their behaviors in mobile phone usage.

Primary data is considered more reliable and accurate than secondary data because it is collected specifically for the research question at hand.

The researcher has control over the data collection process and can ensure that the data is relevant and accurate. However, primary data collection can be time-consuming and expensive compared to using secondary data.

In contrast, secondary data refers to data that has already been collected by someone else for a different purpose. Examples of secondary data include government reports, academic journals, and market research studies.

While secondary data can be useful in research, it may not always be relevant or accurate for the specific research question.

To know more about  primary data refer here:

https://brainly.com/question/20382314#

#SPJ11

What is the effect on Rand SSR if the coefficient of the added regressor is exactly 0? O A I the coefficient of the added regressor is exactly 0, both the R and SSR increase 3. the coefficient of the added regressor is exactly the R and SSR both do not change O C. If the coefficient of the added regressor is exactly the Rf increases and the SSR decreases O D. If the coefficient of the added regressor is exactly the decreases and the SSR increases

Answers

The correct option is (C). If the coefficient of the added regressor is exactly 0, the Rf increases and the SSR decreases.Rf is the F-statistic, which tests if there is a statistically significant relationship between the dependent and independent variables.

SSR is the sum of squared residuals, which measures the differences between the actual and predicted values of the dependent variable.When an additional variable is added to a regression model, the R-squared value (R²) increases, indicating that the new variable explains some of the variation in the dependent variable. The F-statistic, which tests the null hypothesis that all the coefficients of the independent variables are zero, also increases because of the additional variable.The coefficient of determination (R²) increases when the added variable is statistically significant. When a non-significant variable is included in a regression model, the R² does not change, but the F-statistic decreases.

To know more about coefficient visit :-

https://brainly.com/question/1594145

#SPJ11

Find the period, amplitude, and phase shift of the function. y = −3+ 1/{cos ( xx - ²) 3 Give the exact values, not decimal approximations. Period: 2 8 π Amplitude: Phase shift: 1 2 13 X Ś ?

Answers

The given function is:y = −3 + (1/cos(xx - ²))³ = - 3 + (1/cos(x- ²))³The function is shifted 2 units to the right.Phase shift, P = 2 Final answer:Period: 2πAmplitude: 1 Phase shift: 2

Given function is

y = −3 + (1/cos(xx - ²))³Period:

Period is the distance after which the function will repeat itself. For finding the period of the given function, use the formula:

T = 2π/b

Where T = period and b is the coefficient of x Here the coefficient of x is 1 Period,

T = 2π/1 = 2πAmplitude:

Amplitude of the given function can be determined by observing the graph of the function or it can be calculated using the formula

A = |1/b|

Here b is the coefficient of cosx, which is 1.Amplitude, A = |1/b| = 1Phase Shift:The general form of cosine function is:

y = A cos (bx - c) + d

Here A is the amplitude, b is the coefficient of x, c is the phase shift and d is the vertical shift. Phase shift is the horizontal shift of the graph of the given function.The given function is:

y = −3 + (1/cos(xx - ²))³ = - 3 + (1/cos(x- ²))³

The function is shifted 2 units to the right.Phase shift, P = 2 Final answer:

Period: 2πAmplitude: 1 Phase shift: 2

To know more about 2πAmplitude visit:

https://brainly.com/question/29118708

#SPJ11

Problem 1 (2 points). A large investment firm wants to review the distribution of the ages of its stock-brokers. The ages of a sample of 25 brokers are as follows: 53 42 63 70 35 47 55 58 41 49 44 61

Answers

By analyzing the given sample, we find that the mean age of the stock-brokers is approximately 52.6, the median age is 51, and there is no mode since no age appears more than once.

To review the distribution of the ages of the stock-brokers, we can analyze the given sample of ages: 53, 42, 63, 70, 35, 47, 55, 58, 41, 49, 44, 61.

One way to analyze the distribution is by calculating measures of central tendency, such as the mean, median, and mode.

Mean:

To find the mean, we sum up all the ages and divide by the total number of brokers (25 in this case):

Mean = (53 + 42 + 63 + 70 + 35 + 47 + 55 + 58 + 41 + 49 + 44 + 61) / 25 = 52.6

Median:

The median is the middle value when the ages are arranged in ascending order. In this case, the ages in ascending order are: 35, 41, 42, 44, 47, 49, 53, 55, 58, 61, 63, 70.

Since there are 12 values, the median is the average of the 6th and 7th values:

Median = (49 + 53) / 2 = 51

Mode:

The mode is the value that appears most frequently in the data. In this case, there is no value that appears more than once, so there is no mode.

These measures help provide an understanding of the central tendency and distribution of the ages in the sample.

For more such questions on median

https://brainly.com/question/14532771

#SPJ8

Note: The complete question is - A large investment firm wants to review the distribution of the ages of its stock-brokers. The ages of a sample of 25 brokers are as follows: 53 42 63 70 35 47 55 58 41 51 44 61 20 57 46 49 58 29 48 42 36 39 52 45 56. a/ Construct a relative frequency histogram for the data, using five class intervals and the value 20 as the lower limit of the 1st class, the value 70 as the upper limit of the 5th class. b/ What proportion of the total area under the histogram fall between 30 and 50, inclusive?

what is the volume of a right circular cylinder with a base diameter of 6 m and a height of 5 m? enter your answer in the box. express your answer using π. m³

Answers

To calculate the volume of a right circular cylinder, we can use the formula:

Volume = π * r^2 * h

Where:

π is the mathematical constant pi (approximately 3.14159)

r is the radius of the base of the cylinder (half the diameter)

h is the height of the cylinder

Given:

Base diameter = 6 m

Radius (r) = (base diameter) / 2 = 6 m / 2 = 3 m

Height (h) = 5 m

Substituting the values into the formula, we have:

Volume = π * (3 m)^2 * 5 m

= π * 9 m^2 * 5 m

= π * 45 m^3

Therefore, the volume of the cylinder is 45π cubic meters.

the volume of the right circular cylinder with a base diameter of 6 m and a height of 5 m is 45π m³ By using formula of

V = πr²h

The volume of a right circular cylinder with a base diameter of 6 m and a height of 5 m is given by:V = πr²hwhere r is the radius of the cylinder and h is the height of the cylinder. Since the base diameter of the cylinder is given as 6 m, we can find the radius by dividing it by 2:r = d/2 = 6/2 = 3 m Therefore, the volume of the cylinder is:V = π(3 m)²(5 m)V = π(9 m²)(5 m)V = 45π m³Therefore, the volume of the right circular cylinder with a base diameter of 6 m and a height of 5 m is 45π m³.

To know more about right circular cylinder Visit:

https://brainly.com/question/30298453

#SPJ11

Consider the parabola y = 4x - x2. Find the slope of the tangent line to the parabola at the point (1, 3). Find an equation of the tangent line in part (a).

Answers

The given parabolic equation is y = 4x - x² and the point is (1, 3). We are to determine the slope of the tangent line at (1, 3) and then obtain an equation of the tangent line.  we must first calculate the derivative of the given equation.

We can do this by using the power rule of differentiation. The derivative of x² is 2x. So the derivative of y = 4x - x² is dy/dx = 4 - 2x.Since we want to find the slope of the tangent line at (1, 3), we need to substitute x = 1 into the equation we just obtained. dy/dx = 4 - 2x = 4 - 2(1) = 2. Therefore, the slope of the tangent line at (1, 3) is 2.We can now write the equation of the tangent line. We know the slope of the tangent line, m = 2, and we know the point (1, 3).

We can use the point-slope form of the equation of a line to obtain the equation of the tangent line. The point-slope form of the equation of a line is given as: y - y₁ = m(x - x₁)where m is the slope, (x₁, y₁) is a point on the line.Substituting in the values we have, we get:y - 3 = 2(x - 1)We can expand this equation to obtain the slope-intercept form of the equation of the tangent line:y = 2x + 1Therefore, the equation of the tangent line to the parabola y = 4x - x² at the point (1, 3) is y = 2x + 1.

To Know about intercept visit:

brainly.com/question/14180189

#SPJ11

what was the percentage change in operating cash flows. (round your answers to 2 decimal places.) (percentage decrease in the operating cash flows should be indicated with minus sign.)

Answers

Operating cash flows, also known as OCFs, show the total inflows and outflows of cash that come from the operations of a company. It is used to evaluate a company's ability to produce enough cash to pay for its expenses and debt. To calculate the percentage change in operating cash flows, you can use the following formula:Percentage change in operating cash flows = [(Current operating cash flows - Previous operating cash flows) ÷ Previous operating cash flows] x 100%For example, if a company had operating cash flows of $100,000 in the previous year and $80,000 in the current year, the percentage change in operating cash flows would be:Percentage change in operating cash flows = [($80,000 - $100,000) ÷ $100,000] x 100%Percentage change in operating cash flows = [-0.20] x 100%Percentage change in operating cash flows = -20.00%Therefore, in this example, the percentage change in operating cash flows is a decrease of 20.00%.

The percentage change in operating cash flows is obtained by subtracting the present cash flow with the initial cash flow, dividing this by the initial cashflow and multiplying the result by 100.

How to obtain the percentage change

To calculate the percentage change in operating cash flows, we have to first obtain the present operating cash flow.

Next we subtract this from the inital operating cash flow, divide the result by the initial operating cash flow and multiply the result by 100. As the question requires, we will round the result obtained to 2 decimal places.

Learn more about percentage change here:

https://brainly.com/question/11360390

#SPJ4

Other Questions
In the article, the CEO, Reed Hastings mentioned the following steps that have been or would be taken to ensure healthy revenue growth in Netflix. Among them are:a. Rises in priceb. To include advertisement as part of the content for certain subscription tiers.c. Stricter password sharing for streaming.d. Change in products by exploring beyond original and licensed film and TV.How would these steps affect Netflix's growth as a whole? In not more than 250 words, discuss the implications of the 4 steps on:i. the revenues of Netflixii. the total costs of Netflixiii. the overall performance of Netflix in the coming years Given the information in the accompanying table, calculate the correlation coefficient between the returns on Stocks A and B. Stock A Stock B E(RA) A = 8.48 E(R) = 6.58 0A 10.80% On 7.298 Cov(RARB) what is the proper line notation for the following reaction? 2ag (aq) cd(s) cd2 (aq) 2ag(s); ecell = 1.20 v QUESTION 1: Your answer must be TYPED and submitted in the space below. Do NOT attach/submit separately. (elsewhere or via email). [15 points] Discuss the Financial Crisis of 2008, what were the cause Helpful Hardware sells windows (80% of sales) and doors (20% of sales). The selling price of each window is $480 and of each door is $1,080. The variable cost of each window is $310 and of each door is $780. Fixed costs are $1.571,920 The weighted average contribution margin is: Multiple Choice A.$196 B.$470 C.$306 D.$144 E.$234 ABC limited company looking to invest in one of the Project cost that project is $50,000 and cash inflows and outflows of a project for 5 years, as shown in the below table. Calculate Profitability Index using a 5% discount rate and estimate Internal Rate of Return of the Project using Discount rates of 8% and 5%.YEAR cash inflows cash outflows and initial investment $50,000 (1) $20,000 $5,000 (2) $14,000 $2,000 (3) $12,000 $2,000 (4) $12,000 $2,000 (5) $15,000 $1,000 And interest rate 5.00% describe the context surrounding each source. i fyou are unable to determine the context expalin how you would find it the world's greatest per-capita consumers of tea are found in: what are the ""only three things to think about"" that make a bomb so dangerous? All other things equal, an increase in the demand for loanable funds would MOST likely be caused by a(n): O forecast by the Federal Reserve of solid economic growth increase in the cost of new capital goods. increase in the market interest rate, O forecast by the Federal Reserve of a recession Which of the following items decreases the basis of property received in a partly noxtaxable exchange? Find the Fourier series of the given function f(x), which is assumed to have the period 2pi Show the details of your work. Sketch or graph the partial sums up to that including cos 5x and sin 5x12. f(x) in Prob. 613. f(x) in Prob. 914. f(x) = x ^ 2 (- pi < x < pi)15. f(x) = x ^ 2 (0 < x < 2pi) An endothermic reaction with positive entropy change can be spontaneous only at low temperatures True or false Which of the following statements is true?Jefferson's embargo on foreign trading crippled the Atlantic economy to the benefit of America.The Treaty of Ghent included a promise that Britain would end for good the practice of impressment.Washington D.C. was burned to the ground by British troops during the War of 1812.The United States was briefly disbanded and reabsorbed into Great Britain. Show transcribed dataYou are the CEO of a lumber company. You were reviewing the current monthly financials and you noticed something that you feel you should investigate. You decide to perform a horizontal analysis and notice that sales have been increasing at a rate of 5% per year, while inventory has risen at a rate of 29 percent per year. 1. Could fraud be occurring? Why or why not? 2. Assuming that fraud is being committed. How would you investigate? Samuel Gumede earns 39,000 a year working for a building company as a project manager. He is considering the possibility of leaving the company and starting his own business. To do this, he will have to use all his 60,000 savings that are currently invested at an interest rate of 2%. He estimates that the annual profit from his own business will be 50,000. Other relevant costs in starting his own business amount to 1,750. Required: Using the information above, calculate the net relevant benefit of Samuel starting his own business. Calculate the number of moles of excess reactant that will be left-over when 56.0g of CaCl2 reacts with 64.0g of Na2SO4: CaCl2+Na2SO4 -->CaSO4+2NaCl Find the least-squares regression line y^=b0+b1xy^=b0+b1xthrough the points(1 point) Find the least-squares regression line = b + b through the points (-1,2), (2, 9), (5, 15), (8, 19), (12, 27). For what value of a is = 0? I = An analyst used Excel to investigate the relationship between "Weekly Sales" (in $million) of a store and the "Hours" the store is open per week.Comment on the suggested relationship. What is the predicted effect on weekly sales of a store being open one extra hour?Hint: Refer to the direction of the relationship between the 2 variables & use an appropriate regression statistic to assess how well the regression equation fits the sample data.ii) Note: Unrelated to part i.At a company, employees receive 200 (GBP/pounds) commission even if they sell nothing, plus 1% for all sales made under 20,000 and 4% for all sales over 20,000.Which graph (A, B or C) best represents this scenario? Please explain your answer with reference to the vertical intercept and slope/gradients. anwser ii pls.A convenience store recently started to carry a new brand of soft drink. Management is interested in estimating future sales volume to determine whether it should continue to carry the new brand or re