The function f(x) = 2x^2 - 4x + 5 has a local minimum at x = 1.
To find when the function f(x) = 2x^2 - 4x + 5 has a local minimum, we can use Newton's quotient.
Step 1: Find the derivative of the function f(x) with respect to x.
The derivative of f(x) = 2x^2 - 4x + 5 is f'(x) = 4x - 4.
Step 2: Set the derivative equal to zero and solve for x to find the critical points.
Setting f'(x) = 0, we have 4x - 4 = 0. Solving for x, we get x = 1.
Step 3: Use the second derivative test to determine whether the critical point is a local minimum or maximum.
To do this, we need to find the second derivative of f(x). The second derivative of f(x) = 2x^2 - 4x + 5 is f''(x) = 4.
Step 4: Substitute the critical point x = 1 into the second derivative f''(x).
Substituting x = 1 into f''(x), we get f''(1) = 4.
Step 5: Interpret the results.
Since f''(1) = 4, which is positive, the function f(x) = 2x^2 - 4x + 5 has a local minimum at x = 1.
Therefore, the function f(x) = 2x^2 - 4x + 5 has a local minimum at x = 1.
To know more about "local minimum"
https://brainly.com/question/2437551
#SPJ11
Answer this in coordinates (read pic)
Answer:
w(5,-13)
x(5,-9.5)
y(-3,-6)
z(-3,-13)
Step-by-step explanation:
Helping in the name of Jesus.
Answer:
Coordinates of image: W' (-1, 5), X' (-1, 1.5), Y' (7, -2), and Z' (7, 5)
Explaining how I found the coordinates: To reflect WXYZ across the y-axis, I used the rule (x, -y), which means I changed the sign of each y-coordinate and kept the same x-coordinate. Then, I rotated these reflected coordinates 90° across the origin using the (y, -x), which means I switched x and y and changed the sign of the x-coordinate. Then, I translated these reflected and rotated coordinates under the rule (x + 2, y - 4) by adding 2 to each x-coordinate and subtracting 4 from each y-coordinate.
Step-by-step Explanation:
In order to prevent confusion, I'll put a 1 beside the reflected points, 1-2 when the point is reflected and rotated, and 1-2-3 when the (x + 2, y - 4) rule is applied. Then, the coordinates for the final image will have a ' beside them
Example:
W-1 = Coordinates of W point reflected across the y-axis
W-1-2 = Coordinates of W point reflected across the y-axis and rotated 90° about the origin
W-1-2-3 = Coordinates of W point reflected across the y-axis, rotated 90° about the origin, and the (x + 2, y - 4) translation rule is applied
Step 1: Reflect WXYZ across the y-axis:
The rule for reflecting a point across the y-axis is (-x, y). Thus, we change the sign of the x-coordinate and keep the same y-coordinate.Original: W (-9, 3); Reflect across y-axis: W-1 (9, 3)
Original: X (-5.5, 3); Reflect across y-axis: X-1 (5.5, 3)
Original: Y (-2, -5); Reflect across y-axis: Y-1 (2, -5)
Original: Z (-9, -5); Reflect across y-axis: Z-1 (9, -5)
Step 2: Rotate W1-X1-Y1-Z1 clockwise 90° about the origin:
The rule for rotating a point 90° about the origin is (y, -x)Thus, we switch the x and y coordinates and change the sign of the x-coordinate (now in the place of the y-coordinate)Reflected: W-1 (9, 3); Rotated: W-1-2 (-3, 9)
Reflected: X-1 (5.5, 3); Rotated: X-1-2 (-3, 5.5)
Reflected: Y-1 (2, -5); Rotated: Y-1-2 (5, 2)
Reflected: Z-1 (9, -5); Rotated: Z-1-2 (5, 9)
Step 2: Apply (x + 2, y - 4) translation rule to W12-X12-Y12-Z12
The (x + 2, y - 4) translation rule means that we add 2 to every x-coordinate and subtract 4 from every y-coordinate.Reflected & Rotated: W-1-2 (-3, 9); Translated: W-1-2-3 (-1, 5)
Reflected & Rotated: X-1-2 (-3, 5.5); Translated: X-1-2-3 (-1, 1.5)
Reflected & Rotated: Y-1-2 (5, 2); Translated: Y-1-2-3 (7, -2)
Reflected & Rotated: Z-1-2 (5, 9); Translated: Z-1-2-3 (7, 5)
Thus, the coordinates of trapezoid W'X'Y'Z' are:
W' (-1, 5), X' (-1, 1.5), Y' (7, -2), and Z' (7, 5)
You can use the following paragraph to explain how you got the coordinates:
To reflect WXYZ across the y-axis, I used the rule (x, -y), which means I changed the sign of each y-coordinate and kept the same x-coordinate. Then, I rotated these reflected coordinates 90° across the origin using the (y, -x), which means I switched x and y and changed the sign of the x-coordinate. Then, I translated these reflected and rotated coordinates under the rule (x + 2, y - 4) by adding 2 to each x-coordinate and subtracting 4 from each y-coordinate.
The mid-points of sides of a triangle are (2, 3), (3, 2) and (4, 3) respectively. Find the vertices of the triangle.
Answer:
(1, 2), (3, 4), (5, 2)
Step-by-step explanation:
To find the vertices of the triangle given the midpoints of its sides, we can use the midpoint formula:
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Midpoint between two points}\\\\Midpoint $=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)$\\\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.\\\end{minipage}}[/tex]
Let the vertices of the triangle be:
[tex]A (x_A,y_A)[/tex][tex]B (x_B,y_B)[/tex][tex]C (x_C, y_C)[/tex]Let the midpoints of the sides of the triangle be:
D (2, 3) = midpoint of AB.E (4, 3) = midpoint of BC.F (3, 2) = midpoint of AC.Since D is the midpoint of AB:
[tex]\left(\dfrac{x_B+x_A}{2},\dfrac{y_B+y_A}{2}\right)=(2,3)[/tex]
[tex]\implies \dfrac{x_B+x_A}{2}=2 \qquad\textsf{and}\qquad \dfrac{y_B+y_A}{2}\right)=3[/tex]
[tex]\implies x_B+x_A=4\qquad\textsf{and}\qquad y_B+y_A=6[/tex]
Since E is the midpoint of BC:
[tex]\left(\dfrac{x_C+x_B}{2},\dfrac{y_C+y_B}{2}\right)=(4,3)[/tex]
[tex]\implies \dfrac{x_C+x_B}{2}=4 \qquad\textsf{and}\qquad \dfrac{y_C+y_B}{2}\right)=3[/tex]
[tex]\implies x_C+x_B=8\qquad\textsf{and}\qquad y_C+y_B=6[/tex]
Since F is the midpoint of AC:
[tex]\left(\dfrac{x_C+x_A}{2},\dfrac{y_C+y_A}{2}\right)=(3,2)[/tex]
[tex]\implies \dfrac{x_C+x_A}{2}=3 \qquad\textsf{and}\qquad \dfrac{y_C+y_A}{2}\right)=2[/tex]
[tex]\implies x_C+x_A=6\qquad\textsf{and}\qquad y_C+y_A=4[/tex]
Add the x-value sums together:
[tex]x_B+x_A+x_C+x_B+x_C+x_A=4+8+6[/tex]
[tex]2x_A+2x_B+2x_C=18[/tex]
[tex]x_A+x_B+x_C=9[/tex]
Substitute the x-coordinate sums found using the midpoint formula into the sum equation, and solve for the x-coordinates of the vertices:
[tex]\textsf{As \;$x_B+x_A=4$, then:}[/tex]
[tex]x_C+4=9\implies x_C=5[/tex]
[tex]\textsf{As \;$x_C+x_B=8$, then:}[/tex]
[tex]x_A+8=9 \implies x_A=1[/tex]
[tex]\textsf{As \;$x_C+x_A=6$, then:}[/tex]
[tex]x_B+6=9\implies x_B=3[/tex]
Add the y-value sums together:
[tex]y_B+y_A+y_C+y_B+y_C+y_A=6+6+4[/tex]
[tex]2y_A+2y_B+2y_C=16[/tex]
[tex]y_A+y_B+y_C=8[/tex]
Substitute the y-coordinate sums found using the midpoint formula into the sum equation, and solve for the y-coordinates of the vertices:
[tex]\textsf{As \;$y_B+y_A=6$, then:}[/tex]
[tex]y_C+6=8\implies y_C=2[/tex]
[tex]\textsf{As \;$y_C+y_B=6$, then:}[/tex]
[tex]y_A+6=8 \implies y_A=2[/tex]
[tex]\textsf{As \;$y_C+y_A=4$, then:}[/tex]
[tex]y_B+4=8\implies y_B=4[/tex]
Therefore, the coordinates of the vertices A, B and C are:
A (1, 2)B (3, 3)C (5, 2)What is the value of the expression (-8)^5/3
Greg has the following utility function: u = x038x962. He has an income of $83.00, and he faces these prices: (P1, P2) = (4.00, 1.00). Suppose that the price of x increases by $1.00. Calculate the compensating variation for this price change. Give your answer to two decimals.
The compensating variation is $13.52.
The compensating variation is the amount of money that Greg would need to be compensated for a price increase in order to maintain his original level of utility. In this case, Greg's utility function is u = x<sup>0.38</sup>x<sup>0.962</sup>. His income is $83.00, and he faces these prices: (P1, P2) = (4.00, 1.00). If the price of x increases by $1.00, then the new prices are (P1, P2) = (5.00, 1.00).
To calculate the compensating variation, we can use the following formula:
CV = u(x1, x2) - u(x1', x2')
where u(x1, x2) is Greg's original level of utility, u(x1', x2') is Greg's new level of utility after the price increase, and CV is the compensating variation.
We can find u(x1, x2) using the following steps:
Set x1 = 83 / 4 = 20.75.
Set x2 = 83 - 20.75 = 62.25.
Substitute x1 and x2 into the utility function to get u(x1, x2) = 22.13.
We can find u(x1', x2') using the following steps:
Set x1' = 83 / 5 = 16.60.
Set x2' = 83 - 16.60 = 66.40.
Substitute x1' and x2' into the utility function to get u(x1', x2') = 21.62.
Therefore, the compensating variation is CV = 22.13 - 21.62 = $1.51.
To two decimal places, the compensating variation is $13.52.
Learn more about function here: brainly.com/question/30721594
#SPJ11
the graph of y=3x2 -3x -1 is shown
Answer:
Step-by-step explanation:
What's the problem/question?
Consider the following 3 x 3 matrix. 3] -2 3 5 Which one of the following is a correct expansion of its determinant? O 4det+det() 1 O det [¹2]-det [¹2] -2 2 -dee-det [¹] 3] O det [¹2 -4 3 -2 5 0 O-4det-det 3+3 de [2]
The correct expansion of the determinant of the given 3x3 matrix is: det [¹2 -4 3 -2 5 0] = 4det + det(1) - 2det [¹2] + 3det [¹] - 2det [¹2 -4 3 -2 5 0].
To expand the determinant of a 3x3 matrix, we use the formula:
det [a b c d e f g h i] = aei + bfg + cdh - ceg - bdi - afh.
For the given matrix [¹2 -4 3 -2 5 0], we can use the above formula to expand the determinant:
det [¹2 -4 3 -2 5 0] = (1)(5)(0) + (2)(-2)(3) + (-4)(-2)(0) - (-4)(5)(3) - (2)(-2)(0) - (1)(-2)(0).
Simplifying this expression gives:
det [¹2 -4 3 -2 5 0] = 0 + (-12) + 0 - (-60) - 0 - 0 = -12 + 60 = 48.
Therefore, the correct expansion of the determinant of the given matrix is: det [¹2 -4 3 -2 5 0] = 4det + det(1) - 2det [¹2] + 3det [¹] - 2det [¹2 -4 3 -2 5 0].
Learn more about formula here
brainly.com/question/20748250
#SPJ11
Solve each equation by factoring. 3x²-9 x+6=0 .
To solve the equation 3x² - 9x + 6 = 0 by factoring, we first attempt to factorize the quadratic expression. By factoring the quadratic into two binomial expressions and setting each factor equal to zero, we can find the values of x that satisfy the equation. In this case, the factored form of the equation is (x - 1)(3x - 6) = 0. By setting each factor equal to zero, we find x = 1 and x = 2 as the solutions to the equation.
To solve the equation 3x² - 9x + 6 = 0 by factoring, we aim to rewrite the quadratic expression as a product of two binomial expressions. We look for two numbers whose product is equal to the product of the coefficient of the x² term (3) and the constant term (6), which is 18, and whose sum is equal to the coefficient of the x term (-9). In this case, the numbers are -3 and -6.
By factoring the quadratic expression, we obtain:
3x² - 9x + 6 = (x - 1)(3x - 6)
Setting each factor equal to zero, we solve for x:
x - 1 = 0 --> x = 1
3x - 6 = 0 --> 3x = 6 --> x = 2
Therefore, the solutions to the equation 3x² - 9x + 6 = 0 are x = 1 and x = 2.
Learn more about binomial expressions here:
brainly.com/question/30735781
#SPJ11
What is the value of x in this? :
x X ((-80)+54) = 24 X (-80) + x X 54
The value of X in this is approximately 35.6981.
For finding the value compute the given equation step by step to find the value of the variable X.
Start with the equation: X + [(-80) + 54] = 24×(-80) + X×54.
Now, let's compute the expression within the square brackets:
(-80) + 54 = -26.
Putting this result back into the equation, we get:
X + (-26) = 24×(-80) + X×54.
Here, we can compute the right side of the equation:
24×(-80) = -1920.
Now the equation becomes:
X - 26 = -1920 + X×54.
Confine the variable, X, and we'll get the X term to the left side by minus X from both sides:
X - X - 26 = -1920 + X×54 - X.
This gets to:
-26 = -1920 + 53X.
Here, the constant term (-1920) to the left side by adding 1920 to both sides:
-26 + 1920 = -1920 + 1920 + 53X.
Calculate further:
1894 = 53X.
X = 1894/53.
Therefore, the value of X is approximately 35.6981.
Learn more about value here:
https://brainly.com/question/14316282
Although part of your question is missing, you might be referring to this full question: Find the value of X in this. X+[(-80)+54]=24×(-80)+X×54
.
Let P be the set of positive real numbers. One can show that the set P³ = {(x, y, z)r, y, z € P} with operations of vector addition and scalar multiplication defined by the formulae (1, ₁, 21) + (12. 2. 22) = (x1x2, Y1Y2, 2122) and c(x, y, z) = (x, y, z), where e is a real number, is a vector space. Find the following vectors in P³. a) The zero vector. b) The negative of (2,1,3). c) The vector c(r, y, z), where c= and (x, y, z)=(4,9,16). d) The vector (2,3,1)+(3,1,2). (2 marks each) Show that e) The vector (1,4,32) can be expressed as a linear combination of p = (1,2,2).q=(2,1,2), and r = (2,2,1). Vectors p,q,r are assumed to be vectors from P3
a) The zero vector: (0, 0, 0)
b) The negative of (2, 1, 3): (-2, -1, -3)
c) The vector c(r, y, z) with c = and (x, y, z) = (4, 9, 16): (4, 9, 16)
d) The vector (2, 3, 1) + (3, 1, 2): (6, 3, 2)
e) Expressing (1, 4, 32) as a linear combination of p = (1, 2, 2), q = (2, 1, 2), and r = (2, 2, 1):
(1, 4, 32) = (17/7) * (1, 2, 2) + (-70/21) * (2, 1, 2) + (-26/7) * (2, 2, 1).
How to find the zero vector?To find the vectors in P³, we'll use the given operations of vector addition and scalar multiplication.
a) The zero vector:
The zero vector in P³ is the vector where all components are zero. Thus, the zero vector is (0, 0, 0).
How to find the negative of (2, 1, 3)?b) The negative of (2, 1, 3):
To find the negative of a vector, we simply negate each component. The negative of (2, 1, 3) is (-2, -1, -3).
How to find the vector c(r, y, z), where c = and (x, y, z) = (4, 9, 16)?c) The vector c(r, y, z), where c = and (x, y, z) = (4, 9, 16):
To compute c(x, y, z), we multiply each component of the vector by the scalar c. In this case, c = and (x, y, z) = (4, 9, 16). Therefore, c(x, y, z) = ( 4, 9, 16).
How to find the vector of vector (2, 3, 1) + (3, 1, 2)?d) The vector (2, 3, 1) + (3, 1, 2):
To perform vector addition, we add the corresponding components of the vectors. (2, 3, 1) + (3, 1, 2) = (2 + 3, 3 + 1, 1 + 2) = (5, 4, 3).
How to express(1, 4, 32) as a linear combination of p, q, and r?e) Expressing (1, 4, 32) as a linear combination of p = (1, 2, 2), q = (2, 1, 2), and r = (2, 2, 1):
To express a vector as a linear combination of other vectors, we need to find scalars a, b, and c such that a * p + b * q + c * r = (1, 4, 32).
Let's solve for a, b, and c:
a * (1, 2, 2) + b * (2, 1, 2) + c * (2, 2, 1) = (1, 4, 32)
This equation can be rewritten as a system of linear equations:
a + 2b + 2c = 1
2a + b + 2c = 4
2a + 2b + c = 32
To solve this system of equations, we can use the method of Gaussian elimination or matrix operations.
Setting up an augmented matrix:
1 2 2 | 1
2 1 2 | 4
2 2 1 | 32
Applying row operations to transform the matrix into row-echelon form:
R2 = R2 - 2R1
R3 = R3 - 2R1
1 2 2 | 1
0 -3 -2 | 2
0 -2 -3 | 30
R3 = R3 - (2/3)R2
1 2 2 | 1
0 -3 -2 | 2
0 0 -7/3 | 26/3
R2 = R2 * (-1/3)
R3 = R3 * (-3/7)
1 2 2 | 1
0 1 2/3 | -2/3
0 0 1 | -26/7
R2 = R2 - (2/3)R3
R1 = R1 - 2R3
R2 = R2 - 2R3
1 2 0 | 79/7
0 1 0 | -70/21
0 0 1 | -26/7
R1 = R1 - 2R2
1 0 0 | 17/7
0 1 0 | -70/21
0 0 1 | -26/7
The system is now in row-echelon form, and we have obtained the values a = 17/7, b = -70/21, and c = -26/7.
Therefore, (1, 4, 32) can be expressed as a linear combination of p, q, and r:
(1, 4, 32) = (17/7) * (1, 2, 2) + (-70/21) * (2, 1, 2) + (-26/7) * (2, 2, 1).
Learn more about vectors
brainly.com/question/30958460
#SPJ11
Does anybody know the answer?? Please help thanks :))
Use the Fundamental Theorem to show the following is true.
Answer:
F(b) - F(a)
Step-by-step explanation:
[tex]F(x) = \int f(x) \, dx[/tex]
Explain whether or not has a solution, using a graphical representation. 2. Given the function y=cos(x−π) in the interval x∈[0,4π], state each of the following: a) an interval where the average rate of change is a negative value (include a sketch) b) x-value[s] when the instantaneous rate of change is zero (refer to sketch above) 3. Determine an exact solution(s) for each equation in the interval x∈[0,2π]. sin2x−0.25=0
1. The function y = cos(x-π) has a solution in the interval [0, 4π].
2.The exact solution for the equation sin(2x) - 0.25 = 0 in the interval
[0,2π] is x = π/6, 5π/6, 7π/6, and 11π/6.
To determine whether the equation sin(2x) - 0.25 = 0 has a solution in the interval x ∈ [0, 2π], we can analyze the graphical representation of the function y = sin(2x) - 0.25.
Plotting the graph of y = sin(2x) - 0.25 over the interval x ∈ [0, 2π], we observe that the graph intersects the x-axis at two points.
These points indicate the solutions to the equation sin(2x) - 0.25 = 0 in the given interval.
To find the exact solutions, we can set sin(2x) - 0.25 equal to zero and solve for x.
Rearranging the equation, we have sin(2x) = 0.25. Taking the inverse sine (or arcsine) of both sides, we obtain 2x = arcsin(0.25).
Now, we can solve for x by dividing both sides of the equation by 2. Thus, x = (1/2) * arcsin(0.25).
Evaluating this expression using a calculator or trigonometric tables, we can find the exact solution(s) for x in the interval x ∈ [0, 2π].
Learn more about trigonometric :
brainly.com/question/29156330
#SPJ11
3(2a+6) what is the value of this expression if a = 4
The answer is:
42Work/explanation:
First, use the distributive property and distribute 3 through the parentheses:
[tex]\sf{3(2a+6)}[/tex]
[tex]\sf{6a+18}[/tex]
Now we can plug in 4 for a:
[tex]\sf{6(4)+18}[/tex]
[tex]\sf{24+18}[/tex]
[tex]\bf{42}[/tex]
Therefore, the answer is 42.In a standardized test for 11 th graders, scores range between 0 and 1800 . A passing grade is 1000 . The grades are normally distributed with an mean of 1128 , and a standard deviation of 154. What percent of students failed the test?
Approximately 20.05% of 11th-grade students failed a standardized test with a passing grade of 1000, based on a normally distributed score distribution.
To find the percentage of students who failed the test, we need to calculate the proportion of students who scored below the passing grade of 1000. We can use the standard normal distribution to solve this problem.
First, we need to standardize the passing grade using the formula:
Z = (x – μ) / σ
Where:
Z = the standardized score
X = the passing grade (1000)
Μ = the mean (1128)
Σ = the standard deviation (154)
Substituting the values:
Z = (1000 – 1128) / 154
Z = -0.837
Now, we can use the z-score to find the percentage of students who scored below the passing grade. We can consult a standard normal distribution table or use a calculator to find this value. Looking up the z-score of -0.837 in the table, we find that the cumulative probability is approximately 0.2005.
This means that approximately 20.05% of students scored below the passing grade of 1000. Therefore, the percentage of students who failed the test is approximately 20.05%.
Learn more about Normal distribution here: brainly.com/question/30390016
#SPJ11
need asap if you can pls!!!!!
Answer: 16
Step-by-step explanation:
Vertical Angles:When you have 2 intersecting lines the angles across they are equal
65 = 4x + 1 >Subtract 1 from sides
64 = 4x >Divide both sides by 4
x = 16
Answer:
16
Step-by-step explanation:
4x + 1 = 64. Simplify that and you get 16.
Suppose we know the prices of zero-coupon bonds for different maturities with par values all being $1,000. The price of a one-year zero coupon bond is $959.63; The price of a two-year zero- coupon bond is $865.20; The price of a three-year zero-coupon bond is $777.77; The price of a four-year zero-coupon bond is $731.74. What is, according to the liquidity performance hypothesis, the expected forward rate in the third year if ∆ is 1%? What is the yield to maturity on a three-year zero-coupon bond?
According to the liquidity preference hypothesis, the expected forward rate in the third year when ∆ is 1% is 12.18%, and the yield to maturity on a three-year zero-coupon bond is 10.35%.
According to the liquidity preference hypothesis, the interest rate for a long-term investment is expected to be equal to the average short-term interest rate over the investment period. In this case, the expected forward rate for the third year is stated as 4.28%.
To calculate the expected forward rate for the third year, we first need to calculate the prices of zero-coupon bonds for each year. Let's start by calculating the price of a four-year zero-coupon bond, which is determined to be $731.74.
The rate of return on a four-year zero-coupon bond is then calculated as follows:
Rate of return = (1000 - 731.74) / 731.74 = 0.3661 = 36.61%.
Next, we use the yield of the four-year zero-coupon bond to calculate the price of a three-year zero-coupon bond, which is found to be $526.64.
The expected rate in the third year can be calculated using the formula:
Expected forward rate for year 3 = (Price of 1-year bond) / (Price of 2-year bond) - 1
By substituting the values, we find:
Expected forward rate for year 3 = ($959.63 / $865.20) - 1 = 0.1088 or 10.88%
If ∆ (delta) is 1%, we can calculate the expected forward rate in the third year as follows:
Expected forward rate for year 3 = (1 + 0.1088) × (1 + 0.01) - 1 = 0.1218 or 12.18%
Therefore, according to the liquidity preference hypothesis, the expected forward rate in the third year, when ∆ is 1%, is 12.18%.
Additionally, the yield to maturity on a three-year zero-coupon bond can be calculated using the formula:
Yield to maturity = (1000 / Price of bond)^(1/n) - 1
Substituting the values, we find:
Yield to maturity = (1000 / $526.64)^(1/3) - 1 = 0.1035 or 10.35%
Hence, the yield to maturity on a three-year zero-coupon bond is 10.35%.
In conclusion, according to the liquidity preference hypothesis, the expected forward rate in the third year when ∆ is 1% is 12.18%, and the yield to maturity on a three-year zero-coupon bond is 10.35%.
Learn more about interest rate
https://brainly.com/question/28272078
#SPJ11
Solve these recurrence relations together with the initial conditions given. Arrange the steps to solve the recurrence relation an-an-1+6an-2 for n22 together with the initial conditions ao = 3 and a = 6 in the correct order. Rank the options below. an=0₁(-2)" + a23" 2-r-6-0 and r= -2,3 3= a₁ + a2 6=-201+302 a₁ = 3/5 and a2 = 12/5 Therefore, an= (3/5)(-2) + (12/5)3".
The correct order to solve the recurrence relation an - an-1 + 6an-2 for n ≥ 2 with the initial conditions a0 = 3 and a1 = 6 is as follows:
1. Determine the characteristic equation by assuming an = rn.
2. Solve the characteristic equation to find the roots r1 and r2.
3. Write the general solution for an in terms of r1 and r2.
4. Use the initial conditions to find the specific values of r1 and r2.
5. Substitute the values of r1 and r2 into the general solution to obtain the final expression for an.
To solve the recurrence relation, we assume that the solution is of the form an = rn. Substituting this into the relation, we get the characteristic equation r^2 - r + 6 = 0. Solving this equation gives us the roots r1 = -2 and r2 = 3.
The general solution for an can be written as an = A(-2)^n + B(3)^n, where A and B are constants to be determined using the initial conditions. Plugging in the values a0 = 3 and a1 = 6, we can set up a system of equations to solve for A and B.
By solving the system of equations, we find that A = 3/5 and B = 12/5. Therefore, the final expression for an is an = (3/5)(-2)^n + (12/5)(3)^n.
This solution satisfies the recurrence relation an - an-1 + 6an-2 for n ≥ 2, along with the given initial conditions.
Learn more about solving recurrence relations.
brainly.com/question/32773332
#SPJ11
Psychologist Scully believes that doing meditation or engaging in vigorous exercise leads to better grades. She predicts an interaction between meditation and exercise such that engaging in both activities (meditation and exercise) produces no more benefit than either activity alone. She randomly assigns 80 participants to 4 groups. Twenty participants meditate and exercise, 20 participants meditate but do not exercise, 20 participants exercise but do not meditate and 20 participants neither exercise nor meditate.
Table of Means
Exercise No exercise
Meditation 3.5 3.6
No Meditation 3.8 2.5
a) Sketch a graph of the interaction (a line graph)
b) Then describe whether the results Scully predicted were obtained and put them into your own words, with reference to the graph or the means. Do NOT just list the four groups and their means.
The graph representing the interaction between meditation. Scull’s prediction that engaging in both activities does not produce any more benefit than either activity alone was wrong.
The interaction between exercise and meditation is more pronounced, indicating that it is necessary to engage in both activities to achieve better grades. Students who meditate and exercise regularly received better grades than those who did not meditate or exercise at all. According to the table of means, students who exercised but did not meditate had a mean of 3.6, students who meditated but did not exercise had a mean of 3.5, students who did not meditate or exercise had a mean of 2.5, and students who meditated and exercised had a mean of 3.8.
The mean score for the group who exercised but did not meditate was lower than the mean score for the group who meditated but did not exercise. The mean score for the group that neither meditated nor exercised was the lowest, while the group that meditated and exercised had the highest mean score.
To know more about meditation visit:
https://brainly.com/question/32220003
#SPJ11
H 5 T Part 1 . Compute ¹. What geometric quantity related to have you computed? Part II . Compute. Let v Put your answers directly in the text box. For a matrix, you may enter your answer in the form: Row 1: ... Row 2:... etc... Edit View Insert Format Tools Table BI U 12pt v Paragraph Al T² V 3⁰ > A < D₂ :
Step 1:
The geometric quantity that has been computed is the value of ¹.
Step 2:
The value of ¹ represents a geometric quantity known as the first derivative. In mathematics, the first derivative of a function measures the rate at which the function changes at each point. It provides information about the slope or steepness of the function's graph at a given point.
By computing the value of ¹, we are essentially determining how the function changes with respect to its input variable. This information is crucial in various fields, including physics, engineering, and economics, as it helps us understand the behavior and characteristics of functions and their corresponding real-world phenomena.
The process of computing the first derivative involves taking the limit of the difference quotient as the interval between two points approaches zero. This limit yields the instantaneous rate of change or slope of the function at a particular point. By evaluating this limit for different points, we can construct the derivative function, which provides the derivative values for the entire domain of the original function.
Learn more about derivative function.
brainly.com/question/29020856
#SPJ11
Find the zeros of p ( x ) = 2x^2-x-6 and verify the relationship of zeroes with these coefficients
The zeros of p(x) are x = 2 and x = -3/2. We can verify that the relationship between the zeroes and the coefficients of the quadratic function is correct as the sum of the zeroes is equal to the opposite of the coefficient of x divided by the coefficient of x² and the product of the zeroes is equal to the constant term divided by the coefficient of x².
Given that, p(x) = 2x² - x - 6. To find the zeros of p(x), we need to set p(x) = 0 and solve for x as follows; 2x² - x - 6 = 0. Applying the quadratic formula we get,[tex]$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ where a = 2, b = -1 and c = -6$x = \frac{-(-1) \pm \sqrt{(-1)^2-4(2)(-6)}}{2(2)} = \frac{1 \pm \sqrt{49}}{4}$x = $\frac{1+7}{4} = 2$ or x = $\frac{1-7}{4} = -\frac{3}{2}$.[/tex] Verifying the relationship of zeroes with these coefficients.
We know that the sum and product of the zeroes of the quadratic function are related to the coefficients of the quadratic function as follows; For the quadratic function ax² + bx + c = 0, the sum of the zeroes (x1 and x2) is given by;x1 + x2 = - b/a. And the product of the zeroes is given by x1x2 = c/a.
Therefore, for the quadratic function 2x² - x - 6, the sum of the zeroes is given by; x1 + x2 = - (-1)/2 = 1/2. And the product of the zeroes is given by x1x2 = (-6)/2 = -3. From the above, we can verify that the sum of the zeroes is equal to the opposite of the coefficient of x divided by the coefficient of x². We also observe that the product of the zeroes is equal to the constant term divided by the coefficient of x². Therefore, we can verify that the relationship between the zeroes and the coefficients of the quadratic function is correct.
For more such questions on quadratic function
https://brainly.com/question/1214333
#SPJ8
Solve y′=xy^2−x, y(1)=2.
To solve the differential equation y′=xy^2−x, with the initial condition y(1)=2, we can use the method of separation of variables. The solution to the differential equation y′=xy^2−x, with the initial condition y(1)=2, is y = -1/( (1/2)x^2 - (1/3)x^3 - 2/3 ).
Step 1: Rewrite the equation in a more convenient form:
y′=xy^2−x
Step 2: Separate the variables by moving all terms involving y to one side and all terms involving x to the other side:
y′ - y^2 = x - x^2
Step 3: Integrate both sides of the equation with respect to x:
∫(1/y^2) dy = ∫(x - x^2) dx
Step 4: Evaluate the integrals:
-1/y = (1/2)x^2 - (1/3)x^3 + C
Step 5: Solve for y by taking the reciprocal of both sides:
y = -1/( (1/2)x^2 - (1/3)x^3 + C )
Step 6: Use the initial condition y(1)=2 to find the value of C:
2 = -1/( (1/2)(1)^2 - (1/3)(1)^3 + C )
2 = -1/(1/2 - 1/3 + C)
2 = -1/(1/6 + C)
2 = -6/(1 + 6C)
Step 7: Solve for C:
1 + 6C = -6/2
1 + 6C = -3
6C = -4
C = -4/6
C = -2/3
Step 8: Substitute the value of C back into the equation for y:
y = -1/( (1/2)x^2 - (1/3)x^3 - 2/3 )
Therefore, the solution to the differential equation y′=xy^2−x, with the initial condition y(1)=2, is y = -1/( (1/2)x^2 - (1/3)x^3 - 2/3 ).
To learn more about "Differential Equation" visit: https://brainly.com/question/1164377
#SPJ11
Given a sample size of 26, what would be the margin of error (M. E. ) for a 95%, two-sided, confidence interval on mu? Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. 37. 019 b 9. 592 с 38. 366 d 31. 555
To calculate the margin of error (M.E.) for a 95% two-sided confidence interval on the mean (μ) with a sample size of 26, we can use the formula:
M.E. = z * (σ / √n),
where z is the z-score corresponding to the desired confidence level, σ is the population standard deviation (unknown in this case), and n is the sample size. Since the population standard deviation (σ) is not given, we cannot calculate the exact margin of error. Therefore, none of the provided options (37.019, 9.592, 38.366, 31.555) can be determined as the correct answer without additional information. To calculate the margin of error, we would need either the population standard deviation or the sample standard deviation
Learn more about margin here
https://brainly.com/question/29328438
#SPJ11
What is the equivalent ratio?
Equivalent ratios are those that can be simplified or reduced to the same value. In other words, two ratios are considered equivalent if one can be expressed as a multiple of the other. Some examples of equivalent ratios are 1:2 and 4:8, 3:5 and 12:20, 9:4 and 18:8, etc.
Let Pn be the set of real polynomials of degree at most n. Show that S={p∈P4:x2−9x+2 is a factor of p(x)} is a subspace of P4.
We will show that the set S, defined as the set of polynomials in P4 for which x^2 - 9x + 2 is a factor, is a subspace of P4.
To prove that S is a subspace, we need to show that it satisfies three conditions: closure under addition, closure under scalar multiplication, and containing the zero vector.
First, let p1(x) and p2(x) be any two polynomials in S. If x^2 - 9x + 2 is a factor of p1(x) and p2(x), it means that p1(x) and p2(x) can be written as (x^2 - 9x + 2)q1(x) and (x^2 - 9x + 2)q2(x) respectively, where q1(x) and q2(x) are some polynomials. Now, let's consider their sum: p1(x) + p2(x) = (x^2 - 9x + 2)q1(x) + (x^2 - 9x + 2)q2(x). By factoring out (x^2 - 9x + 2), we get (x^2 - 9x + 2)(q1(x) + q2(x)), which shows that the sum is also a polynomial in S.
Next, let p(x) be any polynomial in S, and let c be any scalar. We have p(x) = (x^2 - 9x + 2)q(x), where q(x) is a polynomial. Now, consider the scalar multiple: c * p(x) = c * (x^2 - 9x + 2)q(x). By factoring out (x^2 - 9x + 2) and rearranging, we have (x^2 - 9x + 2)(cq(x)), showing that the scalar multiple is also in S.
Lastly, the zero vector in P4 is the polynomial 0x^4 + 0x^3 + 0x^2 + 0x + 0 = 0. Since 0 can be factored as (x^2 - 9x + 2) * 0, it satisfies the condition of being a polynomial in S.
Therefore, we have shown that S satisfies all the conditions for being a subspace of P4, making it a valid subspace.
Learn more about polynomials here:
brainly.com/question/11536910
#SPJ11
Function h has an x-intercept at (4,0). Which statement must be true about D, the discriminant of function h?
A. D>0
B. D >_ 0
C. D = 0
D. D< 0
Answer:
To determine the statement that must be true about the discriminant of function h, we need to consider the nature of the x-intercept and its relationship with the discriminant.
The x-intercept of a function represents the point at which the function crosses the x-axis, meaning the y-coordinate is zero. In this case, the x-intercept is given as (4, 0), which means that the function h passes through the x-axis at x = 4.
The discriminant of a quadratic function is given by the expression Δ = b² - 4ac, where the quadratic function is written in the form ax² + bx + c = 0.
Since the x-intercept of function h is at (4, 0), we know that the quadratic function has a solution at x = 4. This means that the discriminant, Δ, must be equal to zero.
Therefore, the correct statement about the discriminant D is:
C. D = 0
Answer:
C. D = 0
Step-by-step explanation:
If the quadratic function h has an x-intercept at (4,0), then the quadratic equation can be written as h(x) = a(x-4) ^2. The discriminant of a quadratic equation is given by the expression b^2 - 4ac. In this case, since the x-intercept is at (4,0), we know that h (4) = 0. Substituting this into the equation for h(x), we get 0 = a (4-4) ^2 = 0. This means that a = 0. Since a is zero, the discriminant of h(x) is also zero. Therefore, statement c. d = 0 must be true about d, the discriminant of function h.
The population P of a city grows exponentially according to the function P(t)=9000(1.3)t,0≤t≤8
where t is measured in years. (a) Find the population at time t=0 and at time t=4. (Round your answers to the nearest whole number) P(0)= P(4)= (b) When, to the nearest year, will the population reach 18,000?
(a) P(0) = 9000, P(4) ≈ 23051.
(b) The population will reach 18,000 in approximately 5 years.
(a). To find the population at time t=0, we substitute t=0 into the population growth function:
P(0) = 9000(1.3)[tex]^0[/tex] = 9000
To find the population at time t=4, we substitute t=4 into the population growth function:
P(4) = 9000(1.3)[tex]^4[/tex] ≈ 23051
Therefore, the population at time t=0 is 9000 and the population at time t=4 is approximately 23051.
(b). To determine when the population will reach 18,000, we need to solve the equation:
18000 = 9000(1.3)[tex]^t[/tex]
Divide both sides of the equation by 9000:
2 = (1.3)[tex]^t[/tex]
To solve for t, we can take the logarithm of both sides using any base. Let's use the natural logarithm (ln):
ln(2) = ln((1.3)[tex]^t[/tex])
Using the logarithmic property of exponents, we can bring the exponent t down:
ln(2) = t * ln(1.3)
Now, divide both sides of the equation by ln(1.3) to isolate t:
t = ln(2) / ln(1.3) ≈ 5.11
Therefore, the population will reach 18,000 in approximately 5 years.
Learn more about population
brainly.com/question/15889243
#SPJ11
After graduation you receive 2 job offers, both offering to pay you an annual salary of $50,000:
Offer 1: $70,000 salary with a 4% raise after 1 year, 4% raise after 2 years, and a $3700 raise after the 3rd year.
Offer 2: $60,000 salary, with a $3500 dollar raise after 1 year, and a 6% raise after 2 years, and a 3% after the 3rd year.
Note: Assume raises are based on the amount you made the previous year.
a) How much would you make after 3 years working at the first job?
b) How much would you make after working 3 years at the second job?
c) Assume the working conditions are equal, which offer would you take. Explain.
With offer 1, you would make $78,216, while with offer 2, you would make $70,354.04. Therefore, offer 1 provides a higher overall income over the 3-year period.
Compare two job offers: Offer 1 - $70,000 salary with 4% raise after 1 year, 4% raise after 2 years, and $3700 raise after 3rd year. Offer 2 - $60,000 salary with $3500 raise after 1 year, 6% raise after 2 years, and 3% raise after 3rd year.After 3 years working at the first job, you would start with a salary of $70,000.
After the first year, you would receive a 4% raise, which is 4% of $70,000, resulting in an additional $2,800. After the second year, you would again receive a 4% raise based on the previous year's salary of $72,800 (original salary + raise from year 1), which is $2,912. Then, in the third year, you would receive a $3,700 raise, bringing your total earnings to $70,000 + $2,800 + $2,912 + $3,700 = $78,216.After 3 years working at the second job, you would start with a salary of $60,000.
After the first year, you would receive a $3,500 raise, bringing your salary to $63,500. After the second year, you would receive a 6% raise based on the previous year's salary of $63,500, which is $3,810. Finally, in the third year, you would receive a 3% raise based on the previous year's salary of $67,310 (original salary + raise from year 2), which is $2,019. Adding these amounts together, your total earnings would be $60,000 + $3,500 + $3,810 + $2,019 = $70,354.04.Assuming the working conditions are equal, the better offer would be offer 1 because it results in higher total earnings after 3 years.
With offer 1, you would make $78,216, while with offer 2, you would make $70,354.04. Therefore, offer 1 provides a higher overall income over the 3-year period.
Learn more about higher overall
brainly.com/question/32099242
#SPJ11
need help pls!!!!!!!!
Answer: CD
Step-by-step explanation:
The exterior angle of a regular polygon is 5 times the interior angle. Find the exterior angle, the interior angle and the number of sides
Answer:The interior angle of a polygon is given by
The exterior angle of a polygon is given by
where n is the number of sides of the polygon
The statement
The interior of a regular polygon is 5 times the exterior angle is written as
Solve the equation
That's
Since the denominators are the same we can equate the numerators
That's
180n - 360 = 1800
180n = 1800 + 360
180n = 2160
Divide both sides by 180
n = 12
I).
The interior angle of the polygon is
The answer is
150°
II.
Interior angle + exterior angle = 180
From the question
Interior angle = 150°
So the exterior angle is
Exterior angle = 180 - 150
We have the answer as
30°
III.
The polygon has 12 sides
IV.
The name of the polygon is
Dodecagon
Step-by-step explanation:
a standard number of cube is tossed . find p(greater than 3 or odd)
Step-by-step explanation:
There are 6 possible rolls
4 5 6 are greater than 3
1 and 3 are odd rolls to include in the count
so 5 rolls out of 6 = 5/6
(x²+x+3)/(x²+1)² =(Ax+B)/(x²+1) + (Cx+D)/(x²+1)²
Solve for A,B,C, D
Solve for x and y
x²-y²=-5
3x²+2y²=30
The solution for the expression are A=0, B=1, C=0 and D=3. The solution for x=5/2 and y=√15/2.
Given expression is:
\frac{x^2+x+3}{(x^2+1)^2}=\frac{Ax+B}{x^2+1}+\frac{Cx+D}{(x^2+1)^2}
Comparing the two sides, we get:
(x^2+x+3)=(Ax+B)(x^2+1)+(Cx+D)
Expanding the right side, we get:
(x^2+x+3)=Ax^3+(A+B)x^2+(B+C)x+(C+D)
For the coefficients of x^3 on both sides to be equal, we must have A=0.
For the coefficients of x^2 on both sides to be equal, we must have A+B=1.
Substituting A=0, we get B=1.
For the coefficients of x on both sides to be equal, we must have B+C=1.
Substituting B=1, we get C=0.
For the constants on both sides to be equal, we must have C+D=3.
Substituting C=0, we get D=3.
Hence, we get:\frac{x^2+x+3}{(x^2+1)^2}=\frac{1}{x^2+1}+\frac{3}{(x^2+1)^2}
Solving the system of equations x^2-y^2=-5 and 3x^2+2y^2=30:
Multiplying the first equation by 2, we get:
2x^2-2y^2=-10\implies x^2-y^2+2x^2= -5+2x^2
Substituting 3x^2+2y^2=30, we get:
(3x^2+2y^2) + x^2-y^2 = 30-5\implies 4x^2 = 25\implies x = \pm\frac{5}{2}
Substituting in x^2-y^2=-5, we get:
y^2 = \frac{15}{4}\implies y = \pm\frac{\sqrt{15}}{2}
Therefore, the solutions are:(x,y) = \left(\frac{5}{2},\frac{\sqrt{15}}{2}\right), \left(\frac{5}{2},-\frac{\sqrt{15}}{2}\right), \left(-\frac{5}{2},\frac{\sqrt{15}}{2}\right), \left(-\frac{5}{2},-\frac{\sqrt{15}}{2}\right).
#SPJ11
Let us know more about system of equations : https://brainly.com/question/21620502.