We want to build an isosceles triangle with a height of 3 cm and
a perimeter of exactly 10 cm. What should be the length of the base
of the triangle? use Pythagoras

Answers

Answer 1

The length of the base of the isosceles triangle is 8 cm.

Given, the height of the isosceles triangle = 3 cm

And the perimeter of the isosceles triangle = 10 cm

As the given triangle is an isosceles triangle, the two equal sides are of length a and the base is of length b.

Let the base of the isosceles triangle = b cm

So, we can find out the length of each of the equal sides, using the formula for the perimeter of the isosceles triangle as follows:

                        2a + b = 10 ---------------(1)

Let the height of the triangle divide the isosceles triangle into two congruent triangles.

Each of these triangles is a right triangle with hypotenuse a and height 3/2 cm.

Draw a perpendicular from the vertex angle to the base of the triangle.

The two triangles formed are congruent, by HL Congruency criterion.

Hence, each of these triangles is a 3-4-5 right triangle with:

      hypotenuse a = 5 cm

      base = (4/5) × a

               = 4 cm.

By Pythagoras Theorem:

     (b/2)² + (3)² = a²

         b²/4 + 9 = 25

         b² + 36  = 100

              b² = 64

               b = 8 cm

The length of the base of the isosceles triangle is 8 cm.

Therefore, the conclusion is that the length of the base of the isosceles triangle is 8 cm.

To know more about  Pythagoras Theorem, visit:

https://brainly.com/question/21926466

#SPJ11

Answer 2

Using Pythagoras, the length of the base of the isosceles triangle with a height of 3 cm and a perimeter of exactly 10 cm is approximately 4.32 cm.

Given that an isosceles triangle has a height of 3cm and a perimeter of exactly 10cm, we are to find the length of the base of the triangle using Pythagoras.

We can draw a rough diagram of the triangle as follows:

An isosceles triangle with a height of 3cm and a perimeter of 10cm

From the diagram, we can see that the triangle has two equal sides of length x, and a base of length b. We can then use the Pythagorean theorem to write:

x² = b² - (3)²x²

= b² - 9x² + 9

= b² ...(1)

Also, we know that the perimeter of the triangle is given by:

P = 2x + b

= 10b

= 10 - 2x ...(2)

Substituting equation (2) into equation (1),

we have:x² = (10 - 2x)² - 9x²x²

= 100 - 40x + 4x² - 9x²x² - 4x² + 9x²

= 100 - 40xx² + 5x²

= 100 - 40x6x²

= 100 - 40x3x²

= 50 - 20x x²

= (50 - 20x)/3

From equation (2), we have:b = 10 - 2x

Substituting this into equation (1), we have:

x² = (10 - 2x)² - 9x²x²

= 100 - 40x + 4x² - 9x²x² - 4x² + 9x²

= 100 - 40xx² + 5x²

= 100 - 40x6x²

= 100 - 40x3x²

= 50 - 20x x²

= (50 - 20x)/3

Hence, the length of the base of the triangle is approximately 4.32cm (to 2 decimal places).

Therefore, using Pythagoras, the length of the base of the isosceles triangle with a height of 3 cm and a perimeter of exactly 10 cm is approximately 4.32 cm.

To know more about isosceles triangle, visit:

https://brainly.com/question/29774496

#SPJ11


Related Questions

which of the following statistical distributions is used for the test for the slope of the regression equation?
a. z statistic
b. F statistic
c. t statistic
d. π statistic

Answers

The statistical distribution that is used for the test for the slope of the regression equation is the t statistic.

This is because the slope of the regression equation is estimated using the sample data, and the t distribution is used to test the significance of the estimated slope coefficient. The t statistic measures the ratio of the estimated slope to its standard error, and the distribution of this ratio follows the t distribution. The F statistic, on the other hand, is used to test the overall significance of the regression model, while the z statistic is used when the population standard deviation is known. The π statistic is not a commonly used statistical distribution in regression analysis. In summary, the t statistic is the appropriate distribution to use when testing the significance of the slope coefficient in a regression equation.

To know more about t statistic visit:

https://brainly.com/question/30765535

#SPJ11

if 50 m of 10c water is added to 40 ml of 65c water, calculate the final temperature

Answers

To calculate the final temperature when 50 ml of 10c water is added to 40 ml of 65c water, we can use the principle of energy conservation.

The total energy of the system before and after mixing should remain the same. We can express this as: Total Energy before mixing = Total Energy after mixing The energy can be calculated using the formula: Energy = mass x specific heat capacity x temperature where mass is the amount of water and specific heat capacity is a constant value that represents how much energy is required to raise the temperature of a given mass of water by 1 degree Celsius. We can write the equation for the system before mixing as: (50 x 4.18 x 10) + (40 x 4.18 x 65) = Total Energy before mixing And the equation for the system after mixing as: (Total mass x 4.18 x T) = Total Energy after mixing where T is the final temperature and 4.18 is the specific heat capacity of water. Solving for T, we get: T = (50 x 4.18 x 10 + 40 x 4.18 x 65) / (50 x 4.18 + 40 x 4.18) T = 41.6 degrees Celsius Conclusion: The final temperature when 50 ml of 10c water is added to 40 ml of 65c water is 41.6 degrees Celsius.

To know more about equation visit:

brainly.com/question/10724260

#SPJ11

consider the curve y=x^-2 on the interval -4 -1/2, recall that two given points

Answers

The curve y = x^(-2) represents a hyperbola that is symmetric about the y-axis. Let's examine the two given points on the curve, (-4, 1/16) and (-1/2, 4), within the interval -4 to -1/2.

The point (-4, 1/16) means that when x is -4, y (or f(x)) is 1/16. This indicates that at x = -4, the corresponding y-value is 1/16. Similarly, the point (-1/2, 4) signifies that when x is -1/2, y is 4.

By plotting these two points on a graph, we can visualize the curve and its behavior within the given interval.

The point (-4, 1/16) is located in the fourth quadrant, close to the x-axis. The point (-1/2, 4) is in the second quadrant, closer to the y-axis. Since the curve y = x^(-2) is symmetric about the y-axis, we can infer that it extends further into the first and third quadrants.

As x approaches -4 from the interval (-4, -1/2), the values of y decrease rapidly. As x approaches -1/2, y approaches positive infinity. This behavior is consistent with the shape of the hyperbola y = x^(-2), where y becomes increasingly large as x approaches zero.

It's worth noting that the given interval (-4, -1/2) does not include x = 0, as x^(-2) is undefined at x = 0 due to division by zero. Therefore, we do not have information about the behavior of the curve at x = 0 within this interval.

To summarize, the given points (-4, 1/16) and (-1/2, 4) lie on the curve y = x^(-2) within the interval -4 to -1/2. Plotting these points reveals the shape and behavior of the hyperbola, showing a rapid decrease in y as x approaches -4 and an increase in y as x approaches -1/2.

Learn more about hyperbola here

https://brainly.com/question/26250569

#SPJ11

Consider the curve y=x^-2 on the interval -4 -1/2, recall that the two given points on the curve y = x^(-2) on the interval -4 to -1/2 are (-4, 1/16) and (-1/2, 4).

220 marbles were shared between some boys and 3 girls. the 3 girls shared their marbles in the ratio 2:4:5. what was the smallest share received by the girls

Answers

The smallest share of marbles received by the girls is A = 40

Given data ,

To determine the smallest share received by the girls, we need to find the smallest value among the three ratios given for the girls.

The total number of marbles shared is 220.

Let's assign the values for the ratios as follows:

Ratio 1: 2x

Ratio 2: 4x

Ratio 3: 5x

On simplifying the proportions , we get

The sum of the ratios should equal the total number of marbles:

2x + 4x + 5x = 220

Combining like terms, we have:

11x = 220

Dividing both sides of the equation by 11, we get:

x = 20

Now, let's substitute the value of x back into the ratios:

Ratio 1: 2x = 2(20) = 40

Ratio 2: 4x = 4(20) = 80

Ratio 3: 5x = 5(20) = 100

Hence , the smallest share received by the girls is 40 marbles

To learn more about proportion click :

https://brainly.com/question/7096655

#SPJ1

if project 5 must be completed before project 6, the constraint would be x5 − x6 ≤ 0.
T/F

Answers

The statement "if project 5 must be completed before project 6, the constraint would be x5 − x6 ≤ 0" is true.

In project management, project dependencies are used to define relationships between different tasks. A dependency indicates that one task cannot start until another task is completed. In this case, the question states that project 5 must be completed before project 6. This means that project 6 is dependent on project 5, and therefore, project 5 is a predecessor to project 6.

To represent this dependency mathematically, we can use variables to represent the start and end times of each project. Let x5 be the end time of project 5, and let x6 be the start time of project 6. The constraint x5 - x6 ≤ 0 means that the end time of project 5 must be less than or equal to the start time of project 6. This constraint ensures that project 6 cannot start until project 5 is completed.

Therefore, the statement "if project 5 must be completed before project 6, the constraint would be x5 − x6 ≤ 0" is true.

To learn more about constraint here:

brainly.com/question/17156848#

#SPJ11

Given the functions f and g below, find g(ƒ(-1)). Do not include "g(f(-1)) =" in your answer. Provide your answer below: f(x) = -x-4 g(x) = −x² – 3x - 1

Answers

We have found the value of g(-3) = -1. Therefore, the value of g(ƒ(-1)) is -1.

We have found ƒ(-1) = -3.
Now, we can substitute this value in place of x in g(x) to get

g(ƒ(-1)).g(ƒ(-1)) = g(-3).

Now, we need to find the value of g(-3).

Given the functions f(x) = -x-4 and g(x) = −x² – 3x - 1,

we have to find the value of g(ƒ(-1)).

To find g(ƒ(-1)),

we first need to find ƒ(-1) and then substitute that value in g(x).

To find ƒ(-1), we need to substitute -1 in place of x in f(x) and simplify it. f(x) = -x-4f(-1) = -(-1) - 4= 1 - 4= -3.

We have found ƒ(-1) = -3.

Now, we can substitute this value in place of x in g(x) to get g(ƒ(-1)).g(ƒ(-1)) = g(-3).

Now, we need to find the value of g(-3).

We can substitute -3 in place of x in g(x) and simplify it. g(x) = −x² – 3x - 1g(-3) = −(-3)² – 3(-3) - 1= -9 + 9 - 1= -1.

We have found the value of g(-3) = -1. Therefore, the value of g(ƒ(-1)) is -1.

To know more about value visit:

https://brainly.com/question/30145972

#SPJ11

The best line is the Least Squares Line because it has the largest sum of squares error (SSE) A. True B. False

Answers

Answer:

False

explain:

The statement "The best line is the Least Squares Line because it has the largest sum of squares error (SSE)" is false.In fact, the Least Squares Line is chosen to minimize the sum of squared errors (SSE), which is the sum of the squared differences between the predicted values and the actual values of the response variable. This line is obtained by finding the line that minimizes the sum of the squared residuals, which is also known as the sum of squared errors or SSE.The SSE represents the amount of variability in the response variable that is not explained by the regression model. Therefore, the goal of regression analysis is to find the line that minimizes this variability, and the least squares line is the line that achieves this goal.Therefore, the statement that the best line is the Least Squares Line because it has the largest sum of squares error (SSE) is false. In fact, the Least Squares Line is the line that minimizes the SSE, and it is considered to be the best line for fitting a linear regression model to a set of data points.

Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point. (a) 8, π 3 , −4 WebAssign Plot WebAssign Plot WebAssign Plot WebAssign Plot x, y, z = (b) 4, − π 2 , 3 WebAssign Plot WebAssign Plot WebAssign Plot WebAssign Plot x, y, z =

Answers

The rectangular coordinates of the point in  (a) are (4, 4√3, -4) and in (b) are (0, -4, 3).

(a) Given the cylindrical coordinates (8, π/3, -4), we can plot the point as follows:

- The radial distance from the origin is 8.

- The angle in the xy-plane, measured from the positive x-axis, is π/3.

- The height from the xy-plane is -4.

Using these coordinates, we can find the rectangular coordinates (x, y, z) of the point.

To convert cylindrical coordinates to rectangular coordinates, we use the following formulas:

x = r*cos(θ)

y = r*sin(θ)

z = z

Applying these formulas, we get:

x = 8*cos(π/3) = 8*(1/2) = 4

y = 8*sin(π/3) = 8*(√3/2) = 4√3

z = -4

Therefore, the rectangular coordinates of the point in (a) are (4, 4√3, -4).

(b) Given the cylindrical coordinates (4, -π/2, 3), we can plot the point as follows:

- The radial distance from the origin is 4.

- The angle in the xy-plane, measured from the positive x-axis, is -π/2.

- The height from the xy-plane is 3.

Using the conversion formulas, we find:

x = 4*cos(-π/2) = 4*0 = 0

y = 4*sin(-π/2) = 4*(-1) = -4

z = 3

Therefore, the rectangular coordinates of the point in (b) are (0, -4, 3).

To learn more about rectangular coordinates from the given link

https://brainly.com/question/31403490

#SPJ4

50. Write the given expression as the sine of an angle. sin 105ºcos 35° + sin 35° cos 105° a. sin(-70) b. sin(140) (350) d. sin(70) e. sin(105°)

Answers

The answer is option (b).

Thus, we have found that the sine of an angle for the given expression, sin 105ºcos 35° + sin 35° cos 105°, is equal to sin(140°).

We know that the formula for sine (A+B) is:

                       sin(A+B) = sin(A)cos(B) + cos(A)sin(B)

Let's apply this formula to the given expression, which is sin 105ºcos 35° + sin 35° cos 105°:

              sin 105ºcos 35° + sin 35° cos 105° = sin(105 + 35)

using the formula sin(A+B) = sin(A)cos(B) + cos(A)sin(B)

                                                                     = sin 105° cos 35° + cos 105° sin 35°

Now, the expression is in the form:

               sin(A)cos(B) + cos(A)sin(B) = sin(A+B)

Therefore, the given expression is equal to sin(105° + 35°).

The sum of the angles 105° and 35° is 140°.

Hence, the expression is equal to sin(140°).

Therefore, the answer is option (b).

Thus, we have found that the given expression, sin 105ºcos 35° + sin 35° cos 105°, is equal to sin(140°).

To know more about sine of an angle, visit:

https://brainly.com/question/30339243

#SPJ11

The given expression can be written as the sine of an angle is sin(70°). The correct option is (d) sin(70).

The given expression can be written as the sine of an angle is sin(70°).

The given expression is sin 105ºcos 35° + sin 35° cos 105°.

The expression sin 105ºcos 35° + sin 35° cos 105° is of the form sin A cos B + sin B cos A, which is equal to sin (A + B).Now, substitute

A = 105° and

B = 35°sin 105ºcos 35° + sin 35° cos 105°

= sin (105° + 35°)

= sin 140°The value of sin 140° is the same as that of sin (-40°). It can be seen from the standard unit circle below that the sine function is symmetric across the x-axis.

It follows that sin (-40°) = -sin 40°.

Therefore, sin 140° = - sin 40°It is not one of the given options.

The correct option is (d) sin(70).Thus, the given expression can be written as the sine of an angle is sin(70°).

Answer: The correct option is (d) sin(70).

To know more about angle, visit:

https://brainly.com/question/31818999

#SPJ11

Question 3
Select all that are rational

Answers

Okay i think its C,D,F (sorry if im wrong)

Help please and thank you!

Answers

The solution to the line coordinates is calculated as:

a) D = √34

b) (x, y) = (-5/2, 3/2)

c) Slope = -1.3

d) (x, y) = (-3, 3.5)

How to find the distance between two coordinates?

A) The formula for the distance between two coordinates is:

D = √[(y₂ - y₁)² + (x₂ - x₁)²)]

Thus, the distance between (-2, 5) and (3, 8) is:

D = √[(8 - 5)² + (3 + 2)²)]

D = √34

b) The formula for the coordinate of the midpoint between two coordinates is:

(x, y) = (x₂ - x₁)/2, (y₂ - y₁)/2

Thus:

(x, y) = (-4 - 1)/2, (-6 + 9)/2

(x, y) = (-5/2, 3/2)

c) The slope here is -1.3

d) The formula for the coordinate of the midpoint between two coordinates is:

(x, y) = (x₂ - x₁)/2, (y₂ - y₁)/2

Thus:

(x, y) = (-4 - 2)/2, (8 - 1)/2

(x, y) = (-3, 3.5)

Read more about Distance between two coordinates at: https://brainly.com/question/7243416

#SPJ1

Question 1
Assume all symbols are proposition statement labels.
Take reference to the following example,
(p → ) ↔ ( → )
≡ ~[~(p ∧ ~) ∧ ( ∧ ~)] ∧ ~[~( ∧ ~) ∧ (p ∧ ~)]
Rewrite (p → ( → )) ↔ ((p ∧ ) → ) by using only logical operators ∧ and ~ .

Answers

The logical symbols, such as[tex]↔, →, ∧, and ~[/tex], represent logical operations. In the given question, we are to rewrite the proposition[tex](p → ( → )) ↔ ((p ∧ ) → )[/tex] by utilizing only logical operators ∧ and ~.

The following steps can be used to solve the given problem: We can first make use of the implication law, which states that p → q is equivalent to ~p ∨ q to obtain:
[tex]~p ∨ ( → ) ↔ (~p ∧ ~) ∨ ( ∧ )[/tex]

Next, we can make use of De Morgan's law to eliminate disjunctions and make use of the conjunction law, which states that p ∧ q is equivalent to ~[tex](~p ∨ ~q)[/tex], to get:
[tex]~[~(~p ∨ ( → )) ∨ ( ∧ ~)] ∧ ~[~( ∧ ~) ∨ (~(p ∧ ~))][/tex]
We can now distribute the negation and obtain:
[tex][~(~p ∨ ( → )) ∧ ~( ∧ ~)] ∧ [( ∧ ~) ∧ ~(p ∧ ~)][/tex]

To know more about logical operations visit:-

https://brainly.com/question/13382082

#SPJ11

If a 0.5 liter solution of bichloride contains 1 gram of bichloride, then 250 mL will contain how many grams of bichloride?

Answers

250 mL will contain 0.5 grams of bichloride.

If a 0.5 liter solution contains 1 gram of bichloride, we can set up a proportion to find the number of grams of bichloride in 250 mL:

0.5 liters is to 1 gram as 0.25 liters (250 mL) is to x grams.

Using the proportion:

0.5/1 = 0.25/x

Cross-multiplying:

0.5x = 1×0.25

0.5x = 0.25

Dividing both sides by 0.5:

x = 0.25/0.5

x = 0.5

To learn more on Ratios click:

https://brainly.com/question/13419413

#SPJ1

find the maclaurin series of f (by any method). f(x) = cos(x4) f(x) = [infinity] n = 0

Answers

The Maclaurin series expansion of f(x) = cos(x⁴) is f(x) = 1 - (x⁸)/2! + (x¹⁶)/4! - (x²⁴)/6! + ... . This expansion provides an approximation of the original function in the form of an infinite sum of powers of x.

The Maclaurin series expansion of f(x) = cos(x⁴) can be found by substituting the series expansion of cosine function into the given function. The series expansion of cosine function is cos(x) = 1 - (x²)/2! + (x⁴)/4! - (x⁶)/6! + ... .

To find the Maclaurin series of f(x) = cos(x⁴), we substitute x^4 in place of x in the cosine series expansion. Thus, f(x) = cos(x⁴) = 1 - [(x⁴)²]/2! + [(x⁴)⁴]/4! - [(x⁴)⁶]/6! + ... .

Simplifying further, we get f(x) = 1 - (x⁸)/2! + (x¹⁶)/4! - (x²⁴)/6! + ... .

In summary, the Maclaurin series expansion of f(x) = cos(x⁴) is f(x) = 1 - (x⁸)/2! + (x¹⁶)/4! - (x²⁴)/6! + ... .

This expansion provides an approximation of the original function in the form of an infinite sum of powers of x. The more terms we include in the series, the more accurate the approximation becomes within a certain range of x values.

Learn more about Maclaurin series :

brainly.com/question/31745715

#SPJ11

a sequence a0, a1, . . . satisfies the recurrence relation ak = 4ak−1 − 3ak−2 with initial conditions a0 = 1 and a1 = 2.

Answers

Using the recurrence relation, we can find the subsequent terms as follows: a2 = 4a1 - 3a0 = 4(2) - 3(1) = 5, a3 = 4a2 - 3a1 = 4(5) - 3(2) = 14, a4 = 4a3 - 3a2 = 4(14) - 3(5) = 37, a5 = 4a4 - 3a3 = 4(37) - 3(14) = 98. The given sequence, denoted by a0, a1, ... , satisfies the recurrence relation ak = 4ak-1 - 3ak-2, with initial conditions a0 = 1 and a1 = 2.

1. To determine the values of the sequence, we can use the recurrence relation and the initial conditions. Starting with the given initial conditions, we have a0 = 1 and a1 = 2. Using the recurrence relation, we can find the subsequent terms as follows:

a2 = 4a1 - 3a0 = 4(2) - 3(1) = 5

a3 = 4a2 - 3a1 = 4(5) - 3(2) = 14

a4 = 4a3 - 3a2 = 4(14) - 3(5) = 37

a5 = 4a4 - 3a3 = 4(37) - 3(14) = 98

2. Continuing this process, we can find the values of the sequence for subsequent terms. The recurrence relation provides a formula to calculate each term based on the previous two terms, allowing us to generate the sequence iteratively.

Learn more about recurrence relation here: brainly.com/question/30895268

#SPJ11

Use integration by parts to calculate ... fraction numerator cos to the power of 5 x over denominator 5 end fraction minus fraction. b. fraction numerator ...

Answers

The results back into the original expression: ∫ [tex](cos^5(x) / 5) dx - ∫ (x^2 * e^x) dx = (cos^5(x) / 5) * x - (5/4) * cos^5(x) + C - ∫ (x^2 * e^x)[/tex]dx where C represents the constant of integration.

How we integrate the expression?

To integrate the expression using integration by parts, I'll assume that you're referring to the following integral:

∫ [tex](cos^5(x) / 5) dx - ∫ (x^2 * e^x) dx[/tex]

Integration by parts involves choosing one part of the integrand as the "u" term and the other part as the "dv" term. We can apply the formula: ∫ u dv = u * v - ∫ v du

Let's proceed with the calculation.

For the first integral:

[tex]u = cos^5(x)[/tex]

dv = dx

Differentiating u:

[tex]du = -5 * cos^4(x) * sin(x) dx[/tex]

Integrating dv:

v = x

Applying the integration by parts formula, we have:

∫ [tex](cos^5(x) / 5) dx = u * v - ∫ v du[/tex]

= [tex](cos^5(x) / 5) * x - ∫ x * (-5 * cos^4(x) * sin(x)) dx[/tex]

Simplifying the expression inside the integral:

∫ x *[tex](-5 * cos^4(x) * sin(x)) dx = -5 ∫ x * cos^4(x) * sin(x) dx[/tex]

Now, we need to apply integration by parts again to the remaining integral:

u = x

[tex]dv = -5 * cos^4(x) * sin(x) dx[/tex]

Differentiating u:

du = dx

Integrating dv:

[tex]v = ∫ (-5 * cos^4(x) * sin(x)) dx[/tex]

This integral can be solved using standard trigonometric identities. After evaluating the integral, we can substitute the values back into the integration by parts formula:

[tex]∫ x * (-5 * cos^4(x) * sin(x)) dx = -5 * (-(1/4) * cos^5(x)) + C= (5/4) * cos^5(x) + C[/tex]

Learn more about Integration

brainly.com/question/31401227

#SPJ11

PLEASE HELP PLEASE ITS A DEADLINE PLEASE

Answers

Answer: (4, -1) -- All real numbers -- [-1, ∞) -- (3,0) and (5,0). -- (0,15) -- x = 4 -- y = x^2-8x+15

Step-by-step explanation:

[tex]y = (x-4)^2 - 1[/tex]

a) Vertex: (4, -1). In a quadratic in vertex form: [tex](x-h)^2 + k[/tex], the vertex is the point (h,k)

b) Domain: Since it is a valid quadratic function, the graph extends for all x values. (in other words, you can plug in any value for x). The domain is thus all real numbers.

c) Range: You can plug in any value for x, but since x is being squared, you wont get every value out, you will only get positives out. But there is another condition; there is a -1 constant trailing the equation. this means the graph is shifted one unit down. thus, the y values, the range, is taken down by one as well. the range is thus all numbers from -1 to ∞, or in interval notation, [-1, ∞)

d) X-intercepts: from the graph we can see the intercepts are (3,0) and (5,0).

e) Also from the graph, the y-intercept can be seen as: (0,15)

f) Axis of Symmetry: It is always the line x = x-coordinate of vertex.

so in this case, the line will be x = 4

g) to find a congruent equation, simply expand this equation:

[tex]y = (x-4)^2 - 1[/tex]

[tex]y = x^2-8x+16 - 1[/tex]

[tex]y = x^2-8x+15[/tex]

there ya go!

Solve please don’t know how to get the answer

Answers

Answer:

5.9 mph

Step-by-step explanation:

The boat's speed is 15 mph

Given the current's speed is x, then

Boat's speed going upstream: 15 - x

=> time going upstream = 130/(15 - x)

Boat's speed going downstream: 15 + x

=> time going downstream = 130/(15 + x)

Total time

130/(15 - x) + 130/(15 + x) = 20.5

130(15 + x) + 130(15 - x ) = 20.5(15 + x)(15 - x)

130(15 + x + 15 - x) = 20.5(225 - x^2)

20.5(225 - x^2) = 130(30)

225 - x^2 = 3900/20.5

x^2 = 225 - 3900/20.5

x = square root of (225 - 3900/20.5)

x = ±5.895 or ±5.9

since speed can't be negative, speed of current is 5.9

How do we find the HCF of 2×2×3×3×3×3×5×5×5×11 and 2×2×2×2×2×3×3×5×7×13​

Answers

Answer:

Step-by-step explanation:

Let A = 2×2×3×3×3×3×5×5×5×11

Let B = 2×2×2×2×2×3×3×5×7×13​

Highest Common factors = 2 x 2 x 3 x 3 x 5

                                            = 180

Calculate ∬f(x,y,z)dS For x^2+y^2=25,0≤z≤8;f(x,y,z)=e^(−z) ∬f(x,y,z)dS

Answers

The double integral ∬ f(x, y, z) dS is equal to (-e^(-8) + 1) (25π).

To calculate the double integral ∬ f(x, y, z) dS, we need to evaluate the integral over the surface defined by x^2 + y^2 = 25, and 0 ≤ z ≤ 8, where f(x, y, z) = e^(-z).

We can express the surface in cylindrical coordinates, where x = r cos(θ), y = r sin(θ), and z = z. The bounds for the variables are r ∈ [0, 5] (since x^2 + y^2 = 25 corresponds to r = 5), θ ∈ [0, 2π], and z ∈ [0, 8].

The differential element of surface area in cylindrical coordinates is given by dS = r dz dr dθ. Thus, the double integral becomes:

∬ f(x, y, z) dS = ∫∫∫ f(x, y, z) r dz dr dθ

Substituting f(x, y, z) = e^(-z) and the bounds, we have:

∬ f(x, y, z) dS = ∫[0,2π] ∫[0,5] ∫[0,8] e^(-z) r dz dr dθ

Now, let's evaluate the integral step by step:

∫[0,2π] ∫[0,5] ∫[0,8] e^(-z) r dz dr dθ

= ∫[0,2π] ∫[0,5] [-e^(-z)] [0,8] r dr dθ

= ∫[0,2π] ∫[0,5] (-e^(-8) + e^(-0)) r dr dθ

= ∫[0,2π] ∫[0,5] (-e^(-8) + 1) r dr dθ

= (-e^(-8) + 1) ∫[0,2π] ∫[0,5] r dr dθ

Now, evaluate the inner integral:

∫[0,5] r dr = [(1/2) r^2] [0,5] = (1/2) (5^2 - 0^2) = (1/2) (25) = 12.5

Substitute this result back into the expression:

(-e^(-8) + 1) ∫[0,2π] 12.5 dθ

= (-e^(-8) + 1) (12.5θ) [0,2π]

= (-e^(-8) + 1) (12.5)(2π - 0)

= (-e^(-8) + 1) (25π)

Therefore, the double integral ∬ f(x, y, z) dS is equal to (-e^(-8) + 1) (25π).


Learn more about double integral  here:

https://brainly.com/question/2289273

#SPJ11

PreCalc- Solving Trigonometric Equations


Can anyone explain the steps, I have the answer but doesn’t throughly explain how.

Answers

Answer:

[tex]x=\dfrac{\pi}{2},\quad x=\dfrac{3\pi}{2}[/tex]

Step-by-step explanation:

Given trigonometric equation:

[tex]\boxed{2\cos^2(x) \csc(x)-\cos^2(x)=0}[/tex]

To solve the equation, begin by factoring out cos²(x) from the left side of the equation:

[tex]\cos^2(x) \left(2\csc(x)-1\right)=0[/tex]

Apply the zero-product property to create two equations to solve:

[tex]\cos^2(x)=0\quad \textsf{and} \quad 2\csc(x)-1=0[/tex]

[tex]\hrulefill[/tex]

Solve cos²(x) = 0:

[tex]\begin{aligned}\cos^2(x)&=0\\\\\sqrt{\cos^2(x)}&=\sqrt{0}\\\\\cos(x)&=0\\\\x&=\dfrac{\pi}{2}+2\pi n, \dfrac{3\pi}{2}+2\pi n\end{aligned}[/tex]

[To find the solutions using a unit circle, locate the points where the x-coordinate is zero, since each (x, y) point on the unit circle is equal to (cos θ, sin θ).]

Therefore, the solutions on the interval [0, 2π] are:

[tex]x=\dfrac{\pi}{2},\; \dfrac{3\pi}{2}[/tex]

[tex]\hrulefill[/tex]

Solve 2csc(x) - 1 = 0:

[tex]\begin{aligned}2 \csc(x)-1&=0\\\\2\csc(x)&=1\\\\\csc(x)&=\dfrac{1}{2}\\\\\dfrac{1}{\sin(x)}&=\dfrac{1}{2}\\\\\sin(x)&=2\end{aligned}[/tex]

As the range of the sine function is  -1 ≤ sin(x) ≤ 1, there is no solution for x ∈ R.

[tex]\hrulefill[/tex]

Solutions

Therefore, the solutions to the given trigonometric equation on the interval [0, 2π] are:

[tex]\boxed{x=\dfrac{\pi}{2},\quad x=\dfrac{3\pi}{2}}[/tex]

A function g(x) = -2x²+3x-9. What is the value of g(-3)?

Answers

[tex]g(-3)=-2\cdot(-3)^2+3\cdot(-2)-9=-2\cdot9-6-9=-18-15=-33[/tex]

Suppose X1 and X2 have a Poisson distribution with parameters λ1
and λ2 respectively. After finding the mgf's for these variables,
use these functions to find the distribution of Y= X1 + X2.

Answers

The distribution of Y is a poisson distribution with parameter λ = λ1 + λ2.

What is the moment generating functions of x₁ and x₂?

To find the distribution of Y = X1 + X2, we can use the moment-generating functions (MGFs) of X1 and X2.

The moment-generating function (MGF) of a random variable X is defined as:

[tex]M_X(t) = E(e^(^t^X^))[/tex]

Given that X1 and X2 have Poisson distributions with parameters λ1 and λ2, respectively, their MGFs can be determined as follows:

For X₁:

[tex]M_X_1(t) = E(e^(^t^X^_1))[/tex]

[tex]M_x(t)= \sum[x=0 to \infty] e^(^t^x^) * P(X1 = x)\\M_x(t) = \sum[x=0 to \infty] e^(^t^x^) * (e^(^-^\lambda^1) * (\lambda^1^x) / x!)\\M_x(t)= e^(^-^\lambda1) * \sum[x=0 to \infty] (e^(^t^) * \lambda1)^x / x!\\M_x(t)= e^(^-^\lambda1) * e^(e^(^t^) *\lambda_1)\\M_x(t) = e^(^\lambda^1 * (e^(^t^) - 1))\\[/tex]      

Similarly, for X2:

[tex]M_X2(t) = e^(^\lambda^2 * (e^(^t^) - 1))[/tex]

To find the MGF of Y = X1 + X2, we can use the property that the MGF of the sum of independent random variables is the product of their individual MGFs:

[tex]M_Y(t) = M_X_1(t) * M_X_2(t)\\M_Y(t)= e^(^\lambda1 * (e^(^t^) - 1)) * e^(^\lambda_2 * (e^(^t^) - 1))\\M_Y(t)= e^(^(^\lambda^1 + \lambda^2^) * (e^(^t^) - 1))[/tex]

The MGF of Y is in the form of a Poisson distribution with parameter λ = λ1 + λ2. T

Learn more on moment-generating function here;

https://brainly.com/question/32704942

#SPJ4

Find fx and fy, and evaluate each at the given point.
f(x, y) =
9xy
2x2 + 2y2
, (1, 1)

Answers

The partial derivatives of the function f(x, y) are fx = 9y^2 and fy = 4yx^2 + 18xy, and evaluating them at the point (1, 1) gives fx(1, 1) = 9 and fy(1, 1) = 22.

To find fx and fy, we need to compute the partial derivatives of the function f(x, y) with respect to x and y, respectively.

Taking the partial derivative of f(x, y) with respect to x (fx), we treat y as a constant and differentiate each term separately:

fx = (d/dx) [9xy^2 + 2y^2]

= 9y^2 (d/dx) [x] + 0 (since 2y^2 is a constant)

= 9y^2

Taking the partial derivative of f(x, y) with respect to y (fy), we treat x as a constant and differentiate each term separately:

fy = 2 (d/dy) [y^2x^2] + (d/dy) [9xy^2]

= 2(2yx^2) + 9x(2y)

= 4yx^2 + 18xy

To evaluate fx and fy at the given point (1, 1), we substitute x = 1 and y = 1 into the expressions we obtained:

fx(1, 1) = 9(1)^2 = 9

fy(1, 1) = 4(1)(1)^2 + 18(1)(1) = 4 + 18 = 22

Therefore, fx(1, 1) = 9 and fy(1, 1) = 22.

To know more about partial derivatives,

https://brainly.com/question/13502079

#SPJ11

HELP ASAP! 30 points!
Of the 120 participants participating in a case study of an experimental treatment, 55 of them experienced no significant side effects from the treatment. What is the probability of a person receiving the treatment to experience significant side effects?

Explain your reasoning.
PLEASE SHOW ALL WORK thanks.

Answers

Answer:

54.17%

Step-by-step explanation:

The probability of a person receiving the treatment experiencing significant side effects is calculated by dividing the number of people who experienced significant side effects by the total number of participants. Since 55 out of 120 participants experienced no significant side effects, then 120 - 55 = 65 participants experienced significant side effects. Therefore, the probability of a person receiving the treatment experiencing significant side effects is 65/120 = 0.54 or 54%.

A manufacturer knows that their items have a lengths that are skewed right, with a mean of 12.6 inches, and standard deviation of 0.6 inches. If 37 items are chosen at random, what is the probability that their mean length is greater than 12.3 inches? (Round answer to four decimal places)

Answers

The probability that the mean length of 37 randomly chosen items is greater than 12.3 inches is approximately 0.9981 (rounded to four decimal places).

To find the probability that the mean length of 37 randomly chosen items is greater than 12.3 inches, we can use the central limit theorem and approximate the sampling distribution of the sample mean as a normal distribution.

The mean of the sampling distribution will be the same as the population mean, which is 12.6 inches. The standard deviation of the sampling distribution, also known as the standard error of the mean, can be calculated by dividing the population standard deviation by the square root of the sample size:

Standard Error (SE) = σ / √n

where σ is the population standard deviation (0.6 inches) and n is the sample size (37).

SE = 0.6 / √37 ≈ 0.0985

Next, we can standardize the value 12.3 inches using the sampling distribution parameters:

Z = (X - μ) / SE

where X is the value we want to standardize (12.3 inches), μ is the population mean (12.6 inches), and SE is the standard error.

Z = (12.3 - 12.6) / 0.0985 ≈ -3.045

To find the probability that the mean length is greater than 12.3 inches, we need to calculate the probability that the standardized value (Z) is greater than -3.045. Using a standard normal distribution table or calculator, we find that this probability is approximately 0.9981.

Therefore, the probability that the mean length of 37 randomly chosen items is greater than 12.3 inches is approximately 0.9981 (rounded to four decimal places).

To know more about probability refer here:

https://brainly.com/question/31828911

#SPJ11

set up the triple integral of an arbitrary continuous function f(x, y, z) in spherical coordinates over the solid shown. (assume a = 1 and b = 6. )

Answers

The triple integral in spherical coordinates for an arbitrary continuous function f(x, y, z) over the given solid with limits ρ: 1 to 6, θ: unspecified, and φ: 0 to 2π, is ∫∫∫ f(ρ, θ, φ) ρ² sinθ dρ dθ dφ.

In spherical coordinates, we represent points in 3D space using three coordinates: ρ (rho), θ (theta), and φ (phi).

To set up the triple integral of an arbitrary continuous function f(x, y, z) in spherical coordinates over the given solid, we follow these steps:

Identify the limits of integration for each coordinate:

The radial coordinate, ρ (rho), represents the distance from the origin to the point in space. In this case, the solid is defined by a and b, where a = 1 and b = 6. Thus, the limits for ρ are from 1 to 6.

The azimuthal angle, φ (phi), represents the angle between the positive x-axis and the projection of the point onto the xy-plane. It ranges from 0 to 2π, covering a full revolution.

The polar angle, θ (theta), represents the angle between the positive z-axis and the line segment connecting the origin to the point. The limits for θ depend on the boundaries or description of the solid. Without that information, we cannot determine the specific limits for θ.

Express the volume element in spherical coordinates:

The volume element in spherical coordinates is given by ρ² sinθ dρ dθ dφ. It represents an infinitesimally small volume element in the solid.

Set up the triple integral:

The triple integral over the solid is then expressed as:

∫∫∫ f(ρ, θ, φ) ρ² sinθ dρ dθ dφ.

Evaluate the triple integral:

Once the limits of integration for each coordinate are determined based on the solid's boundaries, the triple integral can be evaluated by iteratively integrating over each coordinate, starting from the innermost integral.

It is important to note that without specific information about the boundaries or description of the solid, we cannot determine the limits for θ and provide a complete evaluation of the triple integral.

To know more about spherical coordinates refer here:

https://brainly.com/question/31745830

#SPJ11

Graph the integrand and use known area formulas to evaluate the integral. AY 10 요. j xl ax 6 -5 Use the graphing tool to graph the function.

Answers

The integral of the function f(x) = j xl ax^6 - 5 can be evaluated using known area formulas. The graphing tool can be used to plot the function and visualize its behavior.

To evaluate the integral ∫[a, b] f(x) dx, where f(x) = j xl ax^6 - 5, we can follow these steps:

Graph the function: Use a graphing tool to plot the function f(x) = j xl ax^6 - 5. This will help us visualize the shape of the curve and identify any important points or regions.

Identify the limits of integration: Determine the values of a and b, which represent the lower and upper limits of integration, respectively. These values will define the interval over which we will calculate the area under the curve.

Use known area formulas: Since the function f(x) is given, we can find the area under the curve by utilizing known area formulas based on the shape of the curve. Depending on the specific form of f(x), we can apply appropriate formulas such as the definite integral, geometric formulas, or other techniques.

Evaluate the integral: Apply the area formulas to calculate the definite integral ∫[a, b] f(x) dx. This will give us the value of the area under the curve within the specified interval.

It's important to note that the original question contains a mix of characters that are not clear or recognizable (e.g., "j," "xl," "ay," etc.). If you can provide more information or clarify these terms, I can assist you further in evaluating the integral using the correct mathematical notation.

For more questions like Function click the link below:

https://brainly.com/question/16008229

#SPJ11

A and b are two disjoint set . If n(A)= y, find n(A U B)​

Answers

The Value of n(A U B) is equal to y.

If A and B are two disjoint sets, it means that they have no elements in common. In other words, their intersection is an empty set, denoted as A ∩ B = ∅.

We ahve,

n(A) = y, which represents the number of elements in set A, we can find n(A U B), the number of elements in the union of sets A and B.

The union of two sets includes all the elements that are in either set A or set B (or both).

Since A and B are disjoint, we know that all elements of set A are exclusive to set A and do not belong to set B.

Therefore, n(A U B) would be the sum of the number of elements in set A (n(A) = y) and the number of elements in set B (since they are disjoint, n(B) = 0):

n(A U B) = n(A) + n(B) = y + 0 = y.

Therefore, n(A U B) is equal to y.

Learn more about Disjoint set here:

https://brainly.com/question/29190252

#SPJ1

in the past year, 13% of business have eliminated jobs. if five businesses are selected at random, what is the probability that at least three have eliminated jobs during the last year?

Answers

The probability that at least three have eliminated jobs during the last year is 1.2 %

This is a binomial probability problem, where the probability of success is p = 0.13 (the proportion of businesses that have eliminated jobs), and the number of trials is n = 5 (the number of businesses selected at random).

To find the probability that at least three of the businesses have eliminated jobs, we need to find the probability of three, four, or five successes. We can calculate this using the binomial probability formula or a binomial probability table:

P(X ≥ 3) = P(X = 3) + P(X = 4) + P(X = 5)

Using the binomial probability formula, we can find the probability of each individual outcome and then add them up:

P(X = k) = (n choose k) * p^k * (1 - p)^(n-k)

where (n choose k) is the binomial coefficient, which represents the number of ways to choose k successes from n trials.

P(X = 3) = (5 choose 3) * 0.13^3 * 0.87^2 = 0.0115

P(X = 4) = (5 choose 4) * 0.13^4 * 0.87^1 = 0.0004

P(X = 5) = (5 choose 5) * 0.13^5 * 0.87^0 = 0.00001

Therefore, the probability that at least three of the businesses have eliminated jobs during the last year is:

P(X ≥ 3) = 0.0115 + 0.0004 + 0.00001 = 0.0119

So the probability is approximately 0.012 or 1.2%.

Learn more about probability at https://brainly.com/question/31101185

#SPJ11

Other Questions
demographic factors, discoveries and inventions, and are three of the main ways by which social change occurs. a. war b. major physical events c. political regime changes d. disease Fixed costs divided by weighted average contribution margin per unit equals 10) ______A) contribution margin ratio. B) breakeven sales in dollars.C) margin of safety ratio. D) breakeven sales in units. how often shoudl you meet with peer helpers to teach social skills a low value of the correlation coefficient r implies that x and y are unrelated. a. true b. false The cylinder has base radius 3x cm and height h cm. The metal cylinder is melted. All the metal is then used to make 270 spheres. Each sphere has a radius of 1/2x cmFind an expression, in its simplest form, for h in terms of x. the pacer test is a fitness assessment used for what special population? A. pregnant womenB. youthC. seniorsD. athletes T/F Spiritual organizations discourage flexible thinking and creativity among employees. after reviewing the admission assessment of a client with chronic pain, which intervention should the nurse include in the client's plan of care? The retail gas market hos_______ This market has few producers and all are dominant producers. Which market is an oligopoly? Which market is monopolistically competitive? t/f weisbord believed that questionnaires were the best wat to diagnose the organization Carry out the following conversions: a) 65.2 mg = _______________g = ______________pg b) 1.25 x 10^4 into m into km c) 95.0 s into hrd) 37 mg into kg our bodies have, as endemic organisms, both yeast (candida albicans) and molds. when a fungus invades the skin of our body, what is used as a confirmatory diagnostic tool? a product is said to have achieved brand preference when: a hydrogen flowmeter reads 8.7 nlpm. calculate the molar flow rate. Section 7.3 9) When constructing a confidence interval for a population proportion,what is the formula for standard error? 10) In a survey of 360 parents,295said they think their children spend too much time on technology Construct a 95% confidence interval for the proportion of parents who think their children spend too much time on technology During the 1700s the "miasmas theory" held that___A) disease was caused when vapors rising from rotting refuse were inhaled.B) an imbalance of the mind, body, and spirit caused disease.C) disease was caused by four humours: blood, phlegm, yellow bile, and black bile.D) parasites in the water caused most diseases (figure 1) shows a 17-cm-diameter loop in three different magnetic fields. the loop's resistance is 0.90 . Which of the following best describes fixed-period settlement option?a. Only the principal amount will be paid out within a specified period of time.b. Income is guaranteed for the life of the beneficiary.c. The death benefit must be paid out in a lump sum within a certain time period.d. Both the principal and interest will be liquidated over a selected period of time. In this project you will be creating your own simple shell, with basic functionality. This project is expected to be less than 200 lines, including code and comments. Interactive vs Batch Shell Interactive - User types commands in, hits return to invoke them Batch - shell reads from an input file What is the difference? - where the commands come from You need to implement the Interactive shell model only. Input/Output . C has 3 standard files to be used for input and output. - stdin = input - stdout = output - stderr = error output printf("foo") == fprintf(stdout,"foo") scanf("%s",str) == fscanf(stdin,"%s", str) fprintf(stderr,"Panic!") prints an error message separately . For signal safety, in some cases, you may want to use Sio_puts or similar functions defined in csapp.c Process Control . Your shell should execute the next command line after the previous one terminates - you must wait for any programs that you launch to finish You don't have to provide the functionality of launching multiple simultaneous commands with ";" separating them Hints Starter code - You can use the code supplied by the textbook. Or you can start from scratch. - Goto: http://csapp.cs.cmu.edu/3e/code.html Download shellex.c Replace execvp with execv or execvp function so that, you don't have issues with environment variables. Also download csapp.c and csapp.h files. Compile as gcc -pthread csapp.c shellex.c -o shellex A shell is a loop read input - execute program - wait program - repeat D Useful routines - fgets() for string input - strtok() for parsing - exit() for exiting the shell - raise() for sending signal to self - getpid() for finding the current process ID - getppid() for finding the parent process ID - getcwd() for getting the current working directory - getenv()/setenv() - chdir() for changing directories Executing commands - fork() creates a new process - execup() or other exec family commands runs a new program and does path processing - wait(), waitpid() waits for a child process to terminate Requirements: -p should allow the user to select a user-defined prompt. Otherwise, the default should be "my257sh>". O Shell functions to be implemented separately as built in commands : exit, pid, ppid, cd, help. o exit: Exits the shell. For implementing "exit" from the shell, use the raise() system call. o pid: prints the process id of the shell o ppid: prints the parent process id of the shell o help: prints developer name for shell, usage (how to change shell prompt, maybe list of built-in commands) refer user to use man to get help if they are looking for non-built-in commands. o cd prints the current working directory; whereas "cd " will change the current working directory. o All other shell commands will need a child process using fork() and then calling execup() (or another exec family function). Inputs are guaranteed to be less than 100 characters. Only the interactive system needs to be implemented (batch system is not needed) Background process execution (using &) is NOT required. Each time a child process is created, evaluate its exit status and print it out. AC should not take us out of the shell; use a signal handler. Hint: you can use the same signal handler code from the slides. What to turn in When you're ready to turn in your assignment, do the following: 1. Put your files into a folder named pr3 2. Prepare a make file, which creates executable shell file when typed make, and cleans everything except source and header files when typed make clean. 3. Executable name generated for shell must be my257sh 4. In the pr3 directory: $ make clean $ cd .. $tar czf pr3_.tar.gz pr3 make sure the tar file has no compiler output files in it, but does have all your source. Following command will show them. $ tar tzf pr3_.tar.gz 5. Turn in pr3_.tar.gz and a screenshot or screenshots of sample run showing - ls - - ps w pid ppid cd .. 3. imagine that the students and teacher meet at a coffee shop. the teacher collects everyone's order and purchases them at the counter. this can best be described as a: