What actions do we take if we are converging at an angle with another aircraft?

Answers

Answer 1

When converging at an angle with another aircraft, it is essential to take appropriate actions to ensure safety. When you find yourself converging at an angle with another aircraft, it is crucial to prioritize safety.

The first step is to establish visual contact with the other aircraft, if possible. Then, follow the "see and avoid" principle, maneuvering to the right to avoid a potential collision. Maintain constant vigilance and communicate your intentions through radio transmissions if available.

When you find yourself converging at an angle with another aircraft, it is crucial to prioritize safety by taking immediate and appropriate actions. First, attempt to establish visual contact with the other aircraft. If visual contact is established, adhere to the "see and avoid" principle, which entails taking action to avoid a collision. In this scenario, it is recommended to maneuver to the right, as this is the standard practice. This ensures that both aircraft alter their paths in a predictable and consistent manner. Simultaneously, maintain a vigilant watch for any further changes in the situation and utilize radio communication, if available, to coordinate intentions and ensure mutual awareness. These proactive measures are critical for effective collision avoidance during converging flight paths.

To learn more about aircraft

https://brainly.com/question/29563991

#SPJ11


Related Questions

A reverse osmosis (RO) system, with 100 tubes of 10 m length and 1.0 cm diameter, is used to concentrate orange juice from 11 to 40% total solids. The permeability coefficient for the RO membrane is 0.2 kg water/m² h kPa and the product feed rate is 200 kg/min. Determine the flux of water (kg water/h) through the membrane needed to accomplish the magnitude of concentration indicated. b. Estimate the difference in transmembrane hydrostatic pressure (AP) needed for the system to operate.

Answers

Flux of water (kg water/h) through the membrane needed to accomplish the magnitude of concentration indicated:

The flux of water through the membrane is given by the equation below:

Jv = A[(P1 - P2) - σ(π1 - π2)]

where,

Jv = the flux of water

A = the membrane area

P1 = the feed side hydrostatic pressure

P2 = the permeate side hydrostatic pressure

σ = the reflection coefficient

π1 = the feed side osmotic pressure

π2 = the permeate side osmotic pressure

Let's calculate the different parameters first:

P1 = 400 kPa

P2 = 100 kPa

π1 = (0.11 kg solid/kg solution) (1000 kg/m³) (8.31 J/mol K) (298 K) = 24,397

JP2 = (0.40 kg solid/kg solution) (1000 kg/m³) (8.31 J/mol K) (298 K) = 71,826 J

σ = 1 since sugar cannot pass through the membrane and

π2 = 0Jv = (A/P) [(P1 - P2) - σ(π1 - π2)]

the difference in transmembrane hydrostatic pressure (AP) needed for the system to operate is 300 kPa.

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

what is the exchange particle for the electromagnetic force?

Answers

The exchange particle for the electromagnetic force is the photon.

What is electromagnetic force? Electromagnetic force is the force that is generated by electrically charged particles that have been at rest or moving. It's one of the four fundamental forces in physics. These forces help in describing the fundamental forces of nature. The electromagnetic force is very important for everything around us. Without this force, we wouldn't have the electricity and magnetism that we use in our daily lives.

What is a photon? The photon is the exchange particle for the electromagnetic force. It's a particle that has zero rest mass and moves at the speed of light. It has both wave-like and particle-like characteristics. It was the first particle of light to be identified. It is considered the quantum of the electromagnetic field and is also referred to as an elementary particle. It has no electric charge, a spin of 1, and is an unstable particle.

Learn more about the photon here: https://brainly.com/question/30820906

#SPJ11

The electrons in the beam of a television tube have an energy of 15keV. The tube is oriented so that the electrons move horizontally from east to west. At the electron's latitude the vertical component of the Earth's magnetic field points down with a magnitude of 40.4μT. What is the direction of the force on the electrons due to this component of the mannatic field? You have attempted this problem 0 times. You have unlimited attempts remaining.

Answers

The direction of the force on the electrons due to the vertical component of the Earth's magnetic field is northward or upward relative to the electrons' motion.

The right-hand rule states that if you point your right thumb in the direction of the positive charge's velocity (east to west in this case), and your fingers in the direction of the magnetic field (downward in this case), then the direction in which your palm faces represents the direction of the force acting on the positive charge.

Given that the vertical component of the Earth's magnetic field points down and has a magnitude of 40.4 μT, we can determine the direction of the force on the electrons.

Using the right-hand rule:

Point your right thumb to the west (the direction of electron velocity).

Point your fingers downward (the direction of the magnetic field).

The palm of your hand will face north (out of the page) or up from the perspective of the electrons.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

On a ship of 12,000 tonnes displacement with KG 9.0m, 200 tonnes of cargo was shifted from the upper deck Kg 12.0m to the lower hold, Kg 2.0m. Calculate the final KG of the ship.

Answers

The final KG of the ship is 9.01639 m.The ship of 12,000 tonnes displacement with KG 9.0m, 200 tonnes of cargo was shifted from the upper deck Kg 12.0m to the lower hold, Kg 2.0m.

We need to calculate the final KG of the ship.

We know that; Moment before = Moment after

Moment before = (total weight on the ship) x (KG of ship)Moment after = (total weight on the ship) x (KG of ship).

The total weight of the ship is 12000 tonnes + 200 tonnes = 12200 tonnes

Moment before = (12000 x 9) + (200 x 12) = 108000 + 2400 = 110400 tonne-meter

Moment after = (12000 x KG) + (200 x 2)12200 KG = 110400 / 12200 KG = 9.01639 m (final KG of ship).

Hence, the final KG of the ship is 9.01639 m.

Learn more about displacement here ;

https://brainly.com/question/29957379

#SPJ11

Consider two masses m1 and m2 each of radius a, and separated by a distance d. The
masses are then released. How long will it be before the masses hit each other?

Answers

The time taken for two masses to hit each other after being released is directly proportional to the square root of the separation between them, inversely proportional to the square root of the sum of their masses, and dependent on the radius of each mass.Let us consider two masses, m1 and m2, of radius a and separated by distance d.

The separation between the two masses is given by (2a - d).The distance between the two masses, x, decreases at a rate of v, which is equal to the difference between their velocities. Their acceleration, a, is given by F / m, where F is the force of attraction between the two masses and m is their mass. Hence, we have, F = Gm1m2 / d2. Thus, a is given by a = (Gm2 / d2) * x, where G is the gravitational constant.The two masses start at rest. After time t, the velocity of mass m1 is given by v1 = a * t, and the velocity of mass m2 is given by v2 = a * (t - (2a - d) / a), since the total distance travelled by each mass is equal to the radius of the mass times the angle swept out by the mass, which is equal to 1 / 2 * (2a - d) / a * 2π = π(2a - d) / a. Hence, the difference between their velocities, v = v1 - v2, is given by v = a * (2a - d - t)Using the formula d = 2a - (2a - d), the time taken for the masses to hit each other is t = π / (2 * √(G * (m1 + m2) / d3)).This expression tells us that the time taken for the masses to hit each other is dependent on the radii of the masses, their masses, and the separation between them. The closer they are, the shorter the time taken. The heavier they are, the longer the time taken. The larger their radii, the longer the time taken. The formula is derived using the principles of Newton's law of gravitation.

To Learn more about masses  Click this!

brainly.com/question/29730523

#SPJ11

. A cliff diver from the top of a 120 m cliff. He begins his dive by jumping up with a velocity of 5 m/s. a. How long does it take for him to hit the water below? b. What is his velocity right before he hits the water? 5. Michael Jordan slam dunks a basketball and a physics student observes that Iverson's feet are 1 m above the floor at his peak height. At what upward velocity must Iverson leave the floor to achieve this? 6. A bullet is shot vertically into the air with a velocity of +422 m/s. Neglecting air resistance, a. How long is the bullet in the air? b. How high does the bullet go? 7. A sandbag is dropped from a hot air balloon that is 330 m above the ground and rising at a rate of 3.5 m/s. a. How long does it take for the sandbag to hit the ground? b. How fast is the sand bag going when it hits the ground? At what height is the balloon when the sand bag hits the

Answers

The diver begins his dive by jumping up with a velocity of 5 m/s and it is given that the height of the cliff is 120 m. The acceleration of gravity is 9.81 m/s².

Therefore, using the kinematic equation,

v² = u² + 2as,

we can find the time taken by the cliff diver to reach the water below.

v² = u² + 2as

120 = 5² + 2(9.81)s

120 = 25 + 19.62s

19.62s = 95s = 4.84 s

Therefore, it takes 4.84 s for the cliff diver to hit the water.b. We can find the velocity of the diver right before he hits the water using the kinematic equation,

v = u + at, where

a = acceleration due to gravity,

t = time taken,

u = initial velocity, and

v = final velocity.

v = u + at

v = 5 + (9.81)(4.84)

v = 50.63 m/s

Therefore, the velocity of the cliff diver right before he hits the water is 50.63 m/s.5. The vertical velocity of the basketball player when he reaches his maximum height is zero because the vertical velocity at the highest point is zero.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

an electrically charged object can be used to attract:

Answers

An electrically charged object can be used to attract any object with an opposite charge.

This is due to the fundamental principle that opposites attract and repel in physics.

Electric charge is a fundamental property of matter that gives rise to electromagnetic interactions. An electric charge, whether positive or negative, produces an electric field that surrounds it. This field exerts a force on any other charge in its vicinity that is either attracted to or repelled from it. Electric charge is a fundamental property of matter that produces a variety of electric phenomena. When the charge is concentrated in a localized region of space, the object is electrically charged. When there is a net accumulation of charge in an object, it becomes electrically charged. An electrically charged object produces an electric field in its vicinity, which exerts a force on other charged objects. An electrically charged object can be used to attract objects with an opposite charge or repel objects with the same charge.

To know more about electric charge please refer to:

https://brainly.com/question/2373424

#SPJ11


What is the meaning of the following statement : the charge is
always associated with mass ?

Answers

The statement "the charge is always associated with mass" refers to the fundamental property of matter and the way it interacts with electromagnetic forces. Charge is a fundamental property of matter that can either be positive or negative.

It is a property that interacts with electromagnetic fields, which is why it is called an electromagnetic charge. In addition to charge, matter also has mass, which is a measure of how much matter is present. Mass is an essential property of matter because it determines how much force is needed to move an object.

The concept of charge is very important in the field of particle physics. It plays a vital role in the interactions between particles, which is what makes the universe the way it is. The most fundamental particles in the universe are quarks, which have an electric charge. Protons and electrons also have an electric charge. When these particles interact, they exchange photons, which are particles of light. These photons carry the electromagnetic force between particles.

To know more about electromagnetic forces visit:

https://brainly.com/question/13967686

#SPJ

Assume that the global mean changes in temperature and precipitation found above are applicable to Toronto. How would these changes influence the rate of physical weathering of the Toronto sidewalk pictured below? Would the rate of physical weathering be affected by changes in other types of weathering (i.e. biological and chemical weathering)? If so how? (Picture from CBC News.)

Answers

The changes in temperature and precipitation, as indicated by the global mean changes, would likely impact the rate of physical weathering of the Toronto sidewalk pictured below. Additionally, changes in other types of weathering, such as biological and chemical weathering, may also be affected.

The increased temperature and precipitation can lead to accelerated physical weathering of the sidewalk. Higher temperatures can cause thermal expansion and contraction, which can result in the expansion and contraction of minerals and rocks on the sidewalk. This expansion and contraction process can weaken the structural integrity of the sidewalk, leading to cracks, fractures, and eventual disintegration.

Moreover, increased precipitation can introduce additional moisture into the sidewalk, promoting the process of freeze-thaw weathering. When water enters the cracks and pores of the sidewalk and subsequently freezes, it expands, exerting pressure on the surrounding materials. This expansion weakens the sidewalk, causing further damage and erosion.

Furthermore, changes in temperature and precipitation can also influence biological and chemical weathering processes. Higher temperatures can enhance the growth of vegetation, such as mosses and lichens, which can contribute to the physical breakdown of the sidewalk through root penetration and expansion. Additionally, increased moisture from precipitation can facilitate chemical reactions that lead to the dissolution and decomposition of minerals within the sidewalk.

In summary, the changes in temperature and precipitation can accelerate the rate of physical weathering of the Toronto sidewalk through processes like thermal expansion, freeze-thaw weathering, and vegetation growth. These changes may also have indirect effects on other types of weathering, such as biological and chemical weathering, further contributing to the degradation of the sidewalk over time.

Learn more about weathering at:

https://brainly.com/question/12426129

#SPJ11

2kg block is projected up an inclined plane, inclined at an angle of 25

with respect to the horizontal, with an initial speed of 5 m/s. The coefficient of kinetic friction between the block and the plane is .15. Calculate the time it takes for the block to reach its maximum height and the total time from launch until the block returns to its starting point.

Answers

The time it takes for the block to reach its maximum height is approximately 0.992.  Therefore, the total time is twice the time calculated for the upward motion

To calculate the time it takes for the block to reach its maximum height and the total time from launch until the block returns to its starting point, we can break down the problem into two parts: the upward motion and the downward motion.

Upward Motion:

To find the time taken to reach the maximum height, we can use the kinematic equation:

vf = vi + at

Given:

Initial velocity (vi) = 5 m/s (upwards)

Acceleration (a) = -g * sin(theta), where g is the acceleration due to gravity and theta is the angle of inclination.

Final velocity (vf) = 0 m/s (at maximum height)

We can calculate the acceleration:

a = -9.8 m/s^2 * sin(25°)

Using the kinematic equation, we have:

0 = 5 - 9.8 * sin(25°) * t_max

t_max ≈ 0.992

Therefore, t_max is approximately 0.992.

Solving for t_max, we find the time taken to reach the maximum height.

Downward Motion:

To calculate the total time from launch until the block returns to its starting point, we need to consider both the upward and downward motions. The block will reach its maximum height and then fall back to its starting point.

The time taken for the downward motion is the same as the time taken for the upward motion, as the block will follow the same path. Therefore, the total time is twice the time calculated for the upward motion.

By solving these equations, you can find the time it takes for the block to reach its maximum height and the total time from launch until the block returns to its starting point. It's important to note that the coefficient of kinetic friction between the block and the plane is not directly relevant to these time calculations.

Learn more about downward motion here:

https://brainly.com/question/29512803

#SPJ11


When the tension in a cord is 75 N, the wave speed is 140 m/s.
If the cord is 5 m long, what is its mass? ANS:0.019 kg

Answers

When the tension in a cord is 75 N and the wave speed is 140 m/s, find its mass when its length is 5 m. The formula to use for this problem is as follows:

[tex]\[v = \sqrt {\frac {T}{\mu }}\][/tex]

where, v is the wave speed.

T is the tension in the cord, and μ is the mass per unit length of the cord.

To solve for the mass per unit length, we can use the formula below:μ = T / v²

To determine the mass of the cord, we need to find the mass per unit length, then multiply it by the length of the cord.μ = T / v²μ = 75 N / (140 m/s)²μ = 75 / (140)²μ = 0.00365 kg/m

Mass of cord = mass per unit length × length of cordm = μLm = 0.00365 kg/m × 5 mm = 0.01825 kg = 0.019 kg (rounded off to three significant figures)

Therefore, the mass of the cord is 0.019 kg.

To know more about  mass visit:

https://brainly.com/question/11954533

#SPJ11

An 80g sphere of metal is heated to 300.0°C and then dropped into
a beaker containing 600g of water initially at 15.0°C. If the final equilibrium
temperature of the mixed system is 17.2°C, find the specific heat of the metal.
Suppose that, the specific heat of water is 4186 J/Kg. °C.

Answers

Given:

Mass of metal sphere (m1) = 80 g

Temperature of metal sphere before heating (T1) = 0 °C

Temperature of metal sphere after heating (T2) = 300.0 ° C

Mass of water (m2) = 600 g

Temperature of water before heating (T3) = 15.0 °C

Temperature of water after mixing (T4) = 17.2 °CSp.

heat of water (c2) = 4186 J/kg°CSp.

To find:Sp. heat of metal (c1)We can use the principle of heat lost and gain.Heat lost by the hot metal sphere = Heat gained by cold water

Q1 = m1c1(T2 - T1) ...........(1)

Q2 = m2c2(T4 - T3) ...........(2)

As heat is conserved

Q1 = Q2

m1c1(T2 - T1) = m2c2(T4 - T3)

Rearranging the above equation we get,c1 = m2c2(T4 - T3) / m1(T2 - T1)

Now substituting the given values,

m1 = 80 g

T1 = 0 °C

T2 = 300.0 °C

m2 = 600 g

T3 = 15.0 °C

T4 = 17.2 °C

c2 = 4186 J/kg°C

So,

c1 = (600 × 4186 × (17.2 - 15.0)) / (80 × (300.0 - 0))

c1 = 350 J/kg°C

Hence, the specific heat of the metal is 350 J/kg°C.

To know more about Temperature visit:

https://brainly.com/question/7510619

#SPJ11

how can a huge ship have an enormous momentum when it moves relatively slowly?

Answers

A huge ship can have an enormous momentum when it moves relatively slowly because momentum is a product of the mass and velocity of an object.

The mass of a ship is incredibly large, and even though it may move at a relatively slow speed, the product of its mass and velocity still results in a significant momentum.

Momentum is a measure of how difficult it is to stop a moving object.

An object with a large momentum is difficult to stop, while an object with a small momentum is easy to stop.

For example, if a small car traveling at high speed collides with a large truck that is barely moving, the car will experience a greater force than the truck because it has a greater momentum.

the momentum of a huge ship can be enormous even if it moves relatively slowly because its mass is so large.

It would require a significant force to stop the ship, even if it is moving slowly.

This is why it is essential to have a good understanding of momentum when designing and operating large vessels like ships.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Determine the specified property at the indicated state for H2O. Locate each state on a sketch of the T-v diagram.

(i) p= 300 kPa, v = 0.5 m3 kg-1. Find T' in °C.
(ii) p = 30 MPa, T = 200°C. Find v in m3 kg-1.
(iii) p= 1 MPa, T = 420°C. Find u in kJ kg-1
(iv) T=100°C, x = 0.6. Find v in m3 kg-1

Note: the critical pressure and critical temperature of H2O are equal to 22.09MPa and 374.14 respectively

Answers

Thermodynamics is a branch of physics that deals with the relationship between heat, work, and energy. It is applicable to a wide range of scientific disciplines, such as chemistry, mechanical engineering, and chemical engineering.

Using the steam tables we can find the value of T'. Therefore,T' = 115.63°C.

(ii) Given, p = 30 MPa, T = 200°C.

We need to find v in m3 kg-1.

For this problem, the given p and T are inside the "Superheated Vapor" phase region.

We can use the superheated steam tables to find the value of v.

Therefore,v = 0.1248 m3 kg-1

(iii) Here, p= 1 MPa, T = 420°C. We need to find u in kJ kg-1.

Using the steam tables, we can find the value of u.

Therefore,u = 3375 kJ kg-1.

(iv) We need to find v in m3 kg-1 when T=100°C, x = 0.6.

By using the steam tables, we can find the values of specific volume, specific internal energy, specific enthalpy, and specific entropy of the saturated liquid and vapor at the given temperature.

Then we can use the quality equation to find v.Therefore,v = 0.001028 m3 kg-1.

Learn more about Thermodynamics here ;

https://brainly.com/question/1368306

#SPJ11

Problem 1 (30 points) Consider two objects of masses m₁= 9.636 kg and m₂ = 3.459 kg. The first mass (m₂) is traveling along the negative y-axis at 54.35 km/hr and strikes the second stationary mass m₂, locking the two masses together. a) (5 Points) What is the velocity of the first mass before the collision? m1 m/s b) (3 Points) What is the velocity of the second mass before the collision? Vm2=< m/s c) (1 Point) The final velocity of the two masses can be calculated using the formula number: (Note: use the formula-sheet given in the introduction section) d) (5 Points) What is the final velocity of the two masses? m/s e) (4 Points) Choose the correct answer: f) (4 Points) What is the total initial kinetic energy of the two masses? Ki= J g) (5 Points) What is the total final kinetic energy of the two masses? Kf= h) (3 Points) How much of the mechanical energy is lost due to this collision? AEint

Answers

Consider two objects of masses m₁= 9.636 kg and m₂ = 3.459 kg. The first mass (m₂) is traveling along the negative y-axis at 54.35 km/hr and strikes the second stationary mass m₂, locking the two masses together.

(A) What is the velocity of the first mass before the collision?Initial velocity of the first mass, m₁ = 54.35 km/hr = (54.35 x 1000)/(60 x 60) m/s = 15.096 m/s.

(B) What is the velocity of the second mass before the collision?As the second mass, m₂ is stationary, its initial velocity is 0 m/s.

(C) The final velocity of the two masses can be calculated using the formula number:

The formula for inelastic collision ism₁u₁ + m₂u₂ = (m₁ + m₂)v, where, u₁ = initial velocity of the first object, u₂ = initial velocity of the second object, v = final velocity of both the objects.Initial velocity of the first object, u₁ = 15.096 m/sInitial velocity of the second object, u₂ = 0 m/sMass of the first object, m₁ = 9.636 kgMass of the second object, m₂ = 3.459 kgFinal velocity of both the objects, v = ?m₁u₁ + m₂u₂ = (m₁ + m₂)v9.636(15.096) + 3.459(0) = (9.636 + 3.459)v145.066256 = 13.095vv = 11.08 m/s

(D) What is the final velocity of the two masses?Final velocity of the two masses, v = 11.08 m/s.

(E) Choose the correct answer:

Total momentum before the collision = m₁u₁ + m₂u₂Total momentum after the collision = (m₁ + m₂)vTherefore, total momentum before the collision = total momentum after the collision= m₁u₁ + m₂u₂ = (m₁ + m₂)

(F) The total initial kinetic energy of the two masses, Ki = 0.5m₁u₁² + 0.5m₂u₂²Ki = 0.5(9.636)(15.096)² + 0.5(3.459)(0)²Ki = 1092.92 J

(G) The total final kinetic energy of the two masses, Kf = 0.5(m₁ + m₂)v²Kf = 0.5(9.636 + 3.459)(11.08)²Kf = 737.33 J

(H) How much of the mechanical energy is lost due to this collision?The mechanical energy lost due to the collision is given byAEint = Ki - KfAEint = 1092.92 - 737.33 = 355.59 JHence, the mechanical energy lost due to this collision is 355.59 J.

About Velocity

Velocity is a foreign term that means speed. Speed ​​is the displacement of an object per unit time. This speed has units, namely m/s or m.s^-1 (^ is the power symbol). What is the difference between speed and velocity? Velocity or speed, the quotient between the distance traveled and the time interval. Velocity or speed is a scalar quantity. Speed ​​or velocity is the quotient of the displacement with the time interval. Speed ​​or velocity is a vector quantity.

Learn More About Velocity at https://brainly.com/question/80295

#SPJ11

10. Consider a simple circuit consisting of a resistor and an ideal battery in series. If the resistance of the resistor increases, how does the power dissipated by the resistor change?

Answers

The resistance of the resistor increases, the power dissipated by the resistor decreases.

If the resistance of the resistor in a simple circuit increases, the power dissipated by the resistor will decrease.

The power dissipated by a resistor can be calculated using the formula:

P = (I^2) * R

Where P is the power, I is the current flowing through the resistor, and R is the resistance.

When the resistance increases, and assuming the battery voltage remains constant, Ohm's Law tells us that the current flowing through the circuit decreases.

As a result, the square of the current (I^2) decreases.

Since power is directly proportional to the square of the current and the resistance, when the resistance increases and the current decreases, the power dissipated by the resistor decreases.

This is because less current is flowing through the resistor, resulting in less energy being converted into heat.

Therefore, as the resistance of the resistor increases, the power dissipated by the resistor decreases.

Learn more about power from the given link

https://brainly.com/question/24858512

#SPJ11

If you are driving 30.6 m/s along a straight road and you look to the side for 2 seconds, how far have you traveled during this inattentive period? A. A light plane must reach a speed of 33 m/s for take-off. How long of a run-way is needed if the plane has a constant acceleration of 3.0 m/s
2
? B. If the acceleration due to gravity is 9.8 m/s
2
estimate (a) how long it would take King Kong to fall straight down from the top of the Empire State building (380 m) high, and (b) his velocity just before landing? C. A world class sprinter can run to top speed (of approximately 11.5 m/s ) in the first 15.0 meters of the race. (a) What is the average acceleration of this sprinter and (b) how long does it take her to reach a speed of 11.5 m/s ? D. A motorcycle is moving at 30.0 m/s when the rider applies the brakes, giving the motorcycle a constant deceleration. During the first 3.00 s the brakes are applied, the motorcycle slows to 15.0 m/s. What distance does the motorcycle travel from the instant braking begins until it comes to a complete rest?

Answers

Distance covered during inattentive period = 61.2 meters. The length of the runway needed for take-off = 544.5 m. King Kong's time before landing = 8.81 s. King Kong's velocity before landing = 86.14 m/s. Average acceleration of the sprinter = 9.8 m/s². Time taken for the sprinter to reach a speed of 11.5 m/s = 1.17 s. Distance covered by the motorcycle before coming to rest = 22.5 meters.

v=30.6 m/s,

t=2 sec,

a=0 (the car is not accelerating)

We know that,

Distance covered = v×t

= 30.6 × 2

= 61.2 meters

Therefore, the car travels 61.2 meters during this inattentive period.

Part A:

u = 0, v=33 m/s, a=3 m/s²

To find: Distance covered

We know that,v² = u² + 2as

⇒ s = (v² - u²) / 2a

⇒ s = (33² - 0) / 2 × 3

⇒ s = 544.5 m

Therefore, a 544.5 m long runway is needed for take-off.

Part B:

u=0, g= 9.8 m/s², h= 380 m

To find: (a) time taken, (b) velocity before landing

(a) Using the formula, s = ut + 1/2 at²

⇒ h = 0 + 1/2 × 9.8 × t²

⇒ t² = h / 4.9

= 380 / 4.9

= 77.55

⇒ t = 8.81 s

Therefore, it takes about 8.81 seconds for King Kong to fall straight down from the top of the Empire State building.

(b) Using the formula, v = u + at

⇒ v = 0 + 9.8 × 8.81

⇒ v = 86.14 m/s

Therefore, King Kong's velocity just before landing is 86.14 m/s.

Part C:

u = 0, v=11.5 m/s, s=15 m

To find: (a) average acceleration, (b) time taken

(a)Using the formula, v² = u² + 2as

⇒ a = (v² - u²) / 2s

⇒ a = (11.5² - 0) / 2 × 15

⇒ a = 9.8 m/s²

Therefore, the average acceleration of the sprinter is 9.8 m/s².

(b)Using the formula, v = u + at

⇒ t = (v - u) / a

⇒ t = (11.5 - 0) / 9.8

⇒ t = 1.17 s

Therefore, it takes 1.17 seconds for the sprinter to reach a speed of 11.5 m/s.

Part D:

u = 30.0 m/s, v=15.0 m/s, t= 3.00 s

To find: Distance covered

Using the formula, v = u + at

⇒ a = (v - u) / t

⇒ a = (15 - 30) / 3

⇒ a = -5 m/s²

The negative sign indicates deceleration.

Using the formula, s = ut + 1/2 at²

⇒ s = 30 × 3 + 1/2 × (-5) × (3)²

⇒ s = 45 - 22.5

⇒ s = 22.5 m

Therefore, the motorcycle covers a distance of 22.5 meters from the instant braking begins until it comes to a complete rest.

Learn more about the acceleration from the given link-

https://brainly.com/question/25876659

#SPJ11

a) (7 marks) On a warm day, 0.5 kg of water is put into a freezer to make ice. How much heat is removed from the water if the initial temperature of water is 27°C and the final temperature of the ice is -18°C? The specific heat of water is 4.2 kJ kg 'K- and the latent heat of fusion of water is 333 kJ kg. The specific heat of ice is 2.2 kJ kg 'K-!. b) (5 marks) The freezer used to cool the water in part a) has a coefficient of performance (COP) of 1.25 and uses an input power of 300 W. 1) (2 marks) How much heat is extracted from the inside of the freezer every second? ii) (3 marks) Calculate the time it takes to make the ice as described in part a). How much heat is transferred to the environment during this process? c) (3 marks) Assume that the freezer operates in a closed kitchen of volume 24 m that has a fixed amount of air in it. The air is initially at a temperature of 27 °C and pressure of 1.0 x 10 Pa. Calculate how much heat needs to be added to the air inside the kitchen to increase its temperature by 3 °C. Assume that air behaves as an ideal gas and there are no heat losses to the environment.

Answers

a) The heat removed from the water during the freezing process is 438 kJ.

To calculate the heat removed from the water during the freezing process, we need to consider two stages: the cooling of water from 27°C to 0°C and the phase change from 0°C water to -18°C ice.

Step 1: Cooling of water from 27°C to 0°C

The heat removed in this stage can be calculated using the specific heat formula: Q = m * c * ΔT, where Q is the heat, m is the mass, c is the specific heat, and ΔT is the change in temperature.

Q1 = 0.5 kg * 4.2 kJ/kg'K * (0°C - 27°C)

  = 0.5 kg * 4.2 kJ/kg'K * (-27°C)

  = -56.7 kJ

Step 2: Phase change from 0°C water to -18°C ice

During the phase change, the heat removed is given by: Q2 = m * L, where L is the latent heat of fusion.

Q2 = 0.5 kg * 333 kJ/kg

  = 166.5 kJ

Total heat removed: Q = Q1 + Q2

                 Q = -56.7 kJ + 166.5 kJ

                 Q = 109.8 kJ

Therefore, the heat removed from the water during the freezing process is 109.8 kJ.

Learn more about Freezing process

brainly.com/question/30654413

#SPJ11

Copper has 8.50 10 free electrons per cubic meter. A copper wire of length 71.0 cm is 2.05 mm in diameter and carries a current of 4.85 A. How much time does it take an electron to travel the length of the wire?

Answers

Given the number of free electrons per cubic meter in copper (8.50 x 10^28 electrons/m³), a copper wire with length 71.0 cm and diameter 2.05 mm carrying a current of 4.85 A, we can calculate the time it takes for an electron to travel the length of the wire.

By determining the cross-sectional area of the wire, we can calculate the drift velocity of the electrons and then use it to find the time of travel.

The cross-sectional area of the wire can be calculated using the formula for the area of a circle: A = πr², where r is the radius of the wire. Given that the diameter of the wire is 2.05 mm, we can convert it to meters (2.05 mm = 0.00205 m) and divide it by 2 to obtain the radius (r = 0.001025 m). Substituting this value into the area formula gives us the cross-sectional area of the wire.

Next, we can calculate the volume of the wire by multiplying the cross-sectional area by its length (V = A × L). Given that the length of the wire is 71.0 cm (or 0.71 m), we can substitute the values and find the volume.

Using the number of free electrons per cubic meter, we can determine the total number of free electrons in the wire by multiplying the volume of the wire by the number of free electrons per cubic meter.

To find the drift velocity of the electrons, we can use the formula I = nAvq, where I is the current, n is the number of free electrons per unit volume, A is the cross-sectional area, v is the drift velocity, and q is the charge of an electron. Rearranging the formula gives us the drift velocity (v = I / (nAq)).

Finally, we can calculate the time it takes for an electron to travel the length of the wire by dividing the length of the wire by the drift velocity (t = L / v).

By substituting the given values and performing the calculations, we can determine the time it takes for an electron to travel the length of the wire.

Learn more about electrons per cubic meter here:

https://brainly.com/question/29657452

#SPJ11

Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object. (a) How far away (in m) is the planet Venus if the echo time is 1300 s ? m (b) What is the echo time (in μs ) for a car 79.0 m from a Highway Patrol radar unit? μs (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 10.5 m? ns

Answers

The distance to the planet Venus is approximately 2.48 × 10^10 m. The echo time for a car 79.0 m from a Highway Patrol radar unit is approximately 526 ns. The accuracy needed to measure the echo time for an airplane 12.0 km away is approximately 35 ns.

a. The distance can be calculated using the formula:

Distance = (Speed of Light × Echo Time) / 2.

Given the echo time of 1300 s and the speed of light of approximately 3 × 10^8 m/s, we can plug these values into the formula to find:

Distance = (3 × 10^8 m/s × 1300 s) / 2 ≈ 2.48 × 10^10 m.

b. The echo time for a car 79.0 m from a Highway Patrol radar unit is approximately 526 ns.

The echo time can be calculated using the formula:

Echo Time = (2 × Distance) / Speed of Light.

Given the distance of 79.0 m and the speed of light of approximately 3 × 10^8 m/s, we can plug these values into the formula to find:

Echo Time = (2 × 79.0 m) / (3 × 10^8 m/s) ≈ 526 ns.

c. The accuracy needed to measure the echo time for an airplane 12.0 km away is approximately 35 ns.

To determine the required accuracy, we need to consider the desired distance accuracy and the speed of light. The distance accuracy of 10.5 m can be converted to time accuracy using the formula:

Time Accuracy = Distance Accuracy / Speed of Light.

Given the distance accuracy of 10.5 m and the speed of light of approximately 3 × 10^8 m/s, we can plug these values into the formula to find:

Time Accuracy = 10.5 m / (3 × 10^8 m/s) ≈ 35 ns.

To know more about echo time, refer here:

https://brainly.com/question/30956943#

#SPJ11

part 1 of 2 1. 6.40037 A 26 kg block slides down a frictionless slope which is at angle θ=28

. Starting from 2. 3.95101 rest, the time to slide down is t=1.94 s. The acceleration of gravity is 9.8 m/s
2
. 3. 9.6721 4. 7.09055 5. 8.65783 6. 5.9233 7. 4.76882 What total distance s did the block slide? Answer in units of m. 8. 7.58912 Answer in units of m 9. 4.29407 10. 6.97977 1. 1.43092 part 2 of 2 What is the total vertical height through which the block descended? 2. 2.77438 Answer in units of m. 3. 4.06461 Answer in units of m 4. 2.65795 5. 3.26974 6. 2.97225 7. 2.02589 8. 4.23801 9. 2.09051 10. 3.0195

Answers

Given: A 26 kg block slides down a frictionless slope which is at angle θ=28 ∘ . Starting from rest, the time to slide down is t=1.94 s. The acceleration of gravity is 9.8 m/s2.The block slides down with uniform acceleration.

We need to calculate the total distance s did the block slide and the total vertical height through which the block descended using the given values.

1. Calculation of the distance s the block slide:

Let's use the third equation of motion,i.e. s = ut + 1/2 at²Where,u = initial velocity = 0a = acceleration = gs = ?t = 1.94 s

Putting the given values, we have:s = 0 × 1.94 + 1/2 × 9.8 × (1.94)²= 18.7717 m

Thus, the total distance s the block slide is 18.7717 m.

2. Calculation of the total vertical height:

Let's consider the right-angled triangle below: [tex]\frac{block}{height}[/tex]Thus, tan θ = opposite side / adjacent side

Hence, opposite side = adjacent side × tan θ= s × tan θ= 18.7717 × tan 28°= 10.1497 m

Thus, the total vertical height through which the block descended is 10.1497 m.

Hence, the options that answer the above two questions are:

Total distance s did the block slide = 18.7717 m.

Total vertical height through which the block descended = 10.1497 m.

To know more about acceleration visit :

https://brainly.com/question/12550364

#SPJ11

The second ball just misses the balcony on the way donn. (a) What is the difference in the two bail's time in the air? (b) What is the veiocity of esch bail as it strikes the ground? bali 1 magnitude \begin{tabular}{c|l} balirection & m/s. \\ ball 2 magnitude & m/s \\ direction & \end{tabular} (c) Haw far apart are the baits 0.7005 atter they are thrown?

Answers

The difference in the two ball's time in the air can be calculated as follows:If the first ball spends time t1 in the air and the second ball spends time t2 in the air, then the difference in the two ball's time in the air is given by:t2 - t1 = 2.2 - 1.5 = 0.7 seconds.

b. To find the velocity of each ball as it strikes the ground, we first need to find the vertical component of the velocity of each ball as it leaves the balcony. This can be done using the formula:v = u + atwhere v is the final velocity, u is the initial velocity, a is the acceleration due to gravity (9.8 m/s2), and t is the time in the air.From the diagram, we can see that the vertical component of the initial velocity of each ball is given by:u = 6.5 sin(53°) = 5.27 m/sUsing this value of u and the time in the air for each ball, we can find the velocity of each ball as it strikes the ground.

To know more about difference visit:

https://brainly.com/question/31227020

#SPJ11

A 6.0-kg block is moving with a speed of 7.0 m/s. It collides with a second 4.0−kg block that was initially moving at 3.0 m/s. Both blocks stay together moving with the same final speed. Determine the final speed.

Answers

Let us apply the conservation of momentum and energy principle to find the final speed of the block.

Conservation of momentum principle

The total momentum of the system before the collision is equal to the total momentum after the collision since no external forces act on the system during the collision,

it means the momentum is conserved.

Let's apply the principle of conservation of momentum to find the final velocity of the system before and after the collision.

[tex]$$m_1v_{1i}+m_2v_{2i}=(m_1+m_2)v_f$$ $$6kg *7 m/s+4kg*3 m/s =10kg*v_f$$ $$42kg m/s+12kg m/s=10kg*v_f$$  $$54kg m/s=10kg*v_f$$ $$v_f =5.4 m/s$$[/tex]

Conservation of energy principle

The total energy of the system before the collision is equal to the total energy after the collision since no external forces act on the system during the collision,

it means the energy is conserved.

Let's apply the principle of conservation of energy to check whether it holds in this situation.

Total Kinetic Energy before the collision

[tex]$$K_i= \frac{1}{2} m_1v_{1i}^2+\frac{1}{2} m_2v_{2i}^2$$ $$K_i= \frac{1}{2}6kg*(7m/s)^2+\frac{1}{2}4kg*(3m/s)^2=153 J$$[/tex]

Total Kinetic Energy after the collision

[tex]$$K_f= \frac{1}{2} (m_1+m_2) v_f^2$$ $$K_f= \frac{1}{2} 10kg *(5.4m/s)^2=145.8 J$$ $$K_f=K_i$$[/tex]

Both the conservation of momentum and energy principle are satisfied which validates the solution.

Thus, the final speed is 5.4 m/s.

To know more about conservation visit:

https://brainly.com/question/9530080

#SPJ11

A cube has sides of length L=0.300 m. It is placed with Part A one corner at the origin as shown in electric field is not uniform but is given by E =(−4.76 N/(C⋅m))xi^+(2.99 N/(C⋅m))zk^. Find the electric flux through each of the six cube faces S1 ,S 2 ,S 3 ,S 4 ,S 5 , and S6
. Enter your answers in newtons per coulomb times meter squared separated by commas. Figure 1 of 1 \& Incorrect; Try Again; 4 attempts remaining Part B Find the total electric charge inside the cube. Express your answer in coulombs. Find the total electric charge inside the cube. Express your answer in coulombs.

Answers

A} The electric flux through each of the six cube faces is:

Φ1 = Φ2 = Φ3 = Φ4 = -0.4284 N·m²/C

Φ5 = Φ6 = 0 N·m²/C

B} The total electric charge inside the cube will be:

Q = ∫∫∫ ρ dV

where Q is the total charge, ρ is the charge density, and dV is the volume element.

To find the electric flux through each of the six cube faces, we can use the formula:

Φ = ∫∫ E · dA

where Φ is the electric flux and dA is the vector area element of each face.

For each face, we can calculate the electric flux by taking the dot product of the electric field E and the area vector A.

Given:

E = (-4.76 N/(C·m))xi + (2.99 N/(C·m))zk

L = 0.300 m

The area of each face is L².

Let's calculate the electric flux through each face:

S1 (Top face):

Φ1 = E · A1 = (-4.76 N/(C·m)) * (0.300 m * 0.300 m) '

                 = -0.4284 N·m²/C

S2 (Bottom face):

Φ2 = E · A2 = (-4.76 N/(C·m)) * (0.300 m * 0.300 m)

      = -0.4284 N·m²/C

S3 (Front face):

Φ3 = E · A3 = (-4.76 N/(C·m)) * (0.300 m * 0.300 m)

     = -0.4284 N·m²/C

S4 (Back face):

Φ4 = E · A4 = (-4.76 N/(C·m)) * (0.300 m * 0.300 m)

     = -0.4284 N·m²/C

S5 (Left face):

Φ5 = E · A5 = 0 (The electric field is perpendicular to this face, so there is no flux through it)

S6 (Right face):

Φ6 = E · A6 = 0 (The electric field is perpendicular to this face, so there is no flux through it)

Therefore, the electric flux through each of the six cube faces is:

Φ1 = Φ2 = Φ3 = Φ4 = -0.4284 N·m²/C

Φ5 = Φ6 = 0 N·m²/C

Now let's move on to Part B.

To find the total electric charge inside the cube, we can use Gauss's Law, which states that the electric flux through a closed surface is equal to the total charge enclosed divided by the electric constant (ε₀).

Given that the electric field is not uniform, we cannot directly use Gauss's Law for a simple cube.

Instead, we need to calculate the charge enclosed by integrating the electric field over the volume of the cube.

The total electric charge inside the cube will be:

Q = ∫∫∫ ρ dV

where Q is the total charge, ρ is the charge density, and dV is the volume element.

Learn more about Total Electric Charge at

brainly.com/question/30906088

#SPJ4

Question 5.1 Calculate the pump blade fault frequency Question 5.2. Calculate the V-Belt fault frequency The following motor pump arrangement has the following: Motor 80 rotor bars, Motor speed 2000rpm, Pump has 10 blades, Drive pulley 300mm, Driven pulley 500 mm

Answers

The pump blade fault frequency is 400 Hz, and the V-Belt fault frequency is 200 Hz.

The pump blade fault frequency can be calculated using the formula:

Fault Frequency = Number of Blades × Motor Speed ÷ 60

Given that the pump has 10 blades and the motor speed is 2000 rpm, we can substitute these values into the formula:

Fault Frequency = 10 × 2000 ÷ 60 = 333.33 Hz

Since the fault frequency is typically rounded to the nearest 50 Hz, the pump blade fault frequency is approximately 400 Hz.

The V-Belt fault frequency can be calculated using the formula:

Fault Frequency = Motor Speed × (Driven Pulley Diameter ÷ Drive Pulley Diameter) × 2

Given that the motor speed is 2000 rpm, the driven pulley diameter is 500 mm, and the drive pulley diameter is 300 mm, we can substitute these values into the formula:

Fault Frequency = 2000 × (500 ÷ 300) × 2 = 6666.67 Hz

Again, rounding the fault frequency to the nearest 50 Hz, the V-Belt fault frequency is approximately 200 Hz.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

The energy that comes from the Sun depends on the mass of the Sun that is being used up
a. Depends on the season
b. False
c. True
d. Depends on if it is night or day

Answers

The statement "The energy that comes from the Sun depends on the mass of the Sun that is being used up" can be described as false.

The energy emitted by the Sun is primarily a result of nuclear fusion reactions occurring within its core, specifically the fusion of hydrogen nuclei to form helium. This process releases a tremendous amount of energy in the form of light and heat.

The energy output of the Sun is primarily determined by its size and composition, rather than the mass that is being "used up" or consumed. The Sun's mass remains relatively constant over time due to a balance between the inward gravitational force and the outward pressure from nuclear fusion. While the Sun undergoes fusion and loses mass during this process, the energy output is not directly dependent on the amount of mass being consumed.

Factors such as solar activity, which can affect the Sun's energy output, are not related to the Sun's mass. Solar activity, including phenomena like sunspots and solar flares, is driven by complex magnetic processes within the Sun's atmosphere.

Therefore, the energy that comes from the Sun does not depend on the mass of the Sun that is being used up.

To know more about the Sun click this link-

https://brainly.com/question/31998244

#SPJ11

Saturn’s largest moon, Titan, has an atmosphere composed of what elements and what did scientist Carl Sagan predict about Titan?

Answers

Titan's atmosphere is primarily composed of nitrogen (about 98.4%) with a significant amount of methane (about 1.6%). It also contains small amounts of other hydrocarbons like ethane, propane, and acetylene.

Scientist Carl Sagan made several predictions about Titan based on his research and knowledge. One of his notable predictions was that Titan might have liquid hydrocarbon lakes or seas on its surface. This hypothesis was based on the observations of Titan's dense atmosphere and the presence of methane in its atmosphere. Sagan suggested that the surface temperature and pressure conditions on Titan could allow for the existence of liquid hydrocarbons, similar to how water exists in liquid form on Earth.

These predictions were later confirmed by the Cassini-Huygens mission, which arrived at Saturn in 2004. The Huygens probe, part of the mission, successfully landed on Titan's surface in 2005 and provided valuable data confirming the presence of liquid hydrocarbon lakes and seas. This discovery added to our understanding of Titan as a dynamic world with a unique environment in our solar system.

To learn more about Titan's atmosphere follow:

https://brainly.com/question/31420937

#SPJ11

10. A wheel starts from rest and has an angular acceleration that is given by α(t)=(6.0 rad/s^4)t^2. The time it takes to make 10 rev is: A) 2.8 s B) 3.3 s C) 4.0 s D) 4.7 s E) 5.3 s

Answers

A wheel starts from rest and has an angular acceleration that is given by α(t)=(6.0 rad/s^4)t^2. The time it takes to make 10 rev is B) 3.3 s.

The angular acceleration of a wheel starting from rest is given as α(t)=(6.0 rad/s^4)t^2. Let us consider the time taken to complete ten revolutions of the wheel. Therefore, we need to calculate the time required to complete one revolution of the wheel.

Taking the angular acceleration equation and integrating it twice, we can get the angular position of the wheel as θ(t)=1/3(2 rad/s^4)t^3.

Let us denote the time taken to complete one revolution as t_rev.

Substituting the values into the above equation, we get 2π=1/3(2 rad/s^4)t_rev^3.

So, the value of t_rev is calculated as t_rev = 3.3 seconds.

Therefore, the time taken to make ten revolutions of the wheel is 10*t_rev=33 seconds, the correct answer: B) 3.3 s.

Learn more about iangular acceleration at:

https://brainly.com/question/30237820

#SPJ11

A child runs towards some ice at 4 m/s. She slides across the ice, coming to a stop at 8 m. What is her acceleration rate?

Then, how fast would you have to be going initially to slide on the same ice for 15s?

Answers

The given variables in the problem are as follows:

Initial velocity = 4 m/s

Displacement = 8 m

Time taken = Unknown

Acceleration = Unknown

We can calculate the acceleration using the formula:

distance = (initial velocity * time) + (1/2) * acceleration * [tex]time^2[/tex]

Substitute the given values in the above equation.

8 = (4 * t) + (1/2) * a * [tex]t^2[/tex]

Now, it is required to determine the acceleration rate.

Thus, we can use the following formula to find the

acceleration rate: (1/2) * a = (d - v*t) / [tex]t^2[/tex](1/2) * a = (8 - 4*t) / [tex]t^2a[/tex] = 2*(8 - 4*t) / [tex]t^2a[/tex] = 16/[tex]t^2[/tex]

Similarly,

to find the initial velocity,

we can use the formula:

distance = (initial velocity * time) + (1/2) * acceleration * [tex]time^2[/tex]

Substituting the given values in the above equation, we get:

15 = (u * t) + (1/2) * a * [tex]t^2[/tex]

Now,

since there are two unknowns in the above equation (initial velocity and acceleration), we can use the first equation that we obtained to substitute the value of acceleration in terms of time, and substitute that in the second equation.

This gives:

15 = u*t + 8 - 2t/ t

15 = u + 8/t - 2u

15t = u(t+4)u = 15t/(t+4)]

Thus, the initial velocity needed to slide on the same ice for 15s would be 15t/(t+4).

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Standing 42.7 m away from a rock wall, you yell. How much time in seconds will it take you to hear your echo to two significant digits? Make sure to account for the travel from you to the wall and from the wall back to you.

Answers

we get:t = 2 × 42.7/343 = 0.265s.Rounding off to two significant digits, the time taken for the echo to reach you is 0.27 seconds.

Given, Distance between the rock wall and you, d = 42.7 mVelocity of sound in air, v

= 343 m/sThe time taken to hear an echo is given by:

t = 2d/v [Since the sound has to travel twice the distance between the wall and the person]Substituting the given values, we get,t = 2 × 42.7/343 = 0.265s

Therefore, the time taken for you to hear your echo is 0.27 seconds (rounded to two significant digits).Explanation:Let us understand the given problem. You are standing at a distance of 42.7 m from a rock wall and you yell. The time required to hear your echo has to be calculated.

The speed of sound in air is 343 m/s.The sound has to travel twice the distance between the rock wall and you. Hence, the total distance travelled by the sound = 2d = 2 × 42.7 m. The velocity of sound in air

= 343 m/s. Using the formula, t

= d/v, we get the time taken for the sound to travel the distance, d. But here, the sound travels twice the distance. Therefore, we need to modify the formula as follows:

t = 2d/v.The above formula gives the time taken for the sound to travel from you to the rock wall and back to you. Substituting the given values in the formula,

To know more about digits visit:
https://brainly.com/question/30142622

#SPJ11

Other Questions
the fetus is highly susceptible to serious structural damage from exposure to many teratogens throughout pregnancy. Which of the following statements is false? Internal audit consulting enriches value adding internalautiting: Many audit services will have both an assurance and conssilizative role. In at least 300 words, critically review the following reference:Davidson, K., & Prkachin, K. (1997). Optimism and unrealistic optimism have an interacting impact on health-promoting behavior and knowledge changes. Personality and Social Psychology Bulletin, 23(6), 617-625. In forming a valid contract, it is important that the person who enters into the contract must have full capacity in terms of age and mind. This means the person, who has not reached the age of majority or is of unsound mind, cannot make a valid contract. Discuss the above statement by referring to relevant cases and provisions of the relevant Act. Do you agree with the principle discussed? (20m) In the 1980s, Iraq fought a long and deadly war with. Iraq's invasion of neighboring Kuwait. What event triggered the 1991 Gulf War? I diversification provides a benefit to inventors when the investora) selects two or more securities whose returns are better than the average market returnb)selects two or more securities whose returns are not highly correlated with each otherc) finds the security with the optimal expected rate of returnd) buys only risk-free treasury securities Suppose a company has proposed a new 4-year project. The project has an initial outlay of $30,000 and has expected cash flows of $6,000 in year 1 . $9,000 in year 2,511,000 in year 3 , and $13,000 in year 4 . The required rate of return is 16% for projects at this company. What is the profitability index for this project? (Answer to the nearest hundredth. e.g. 1.23) Assume that a project earns $11mln starting in the next year. These cash flows are expected to decrease with -5% per year in the following years. The project has a lifetime of 20 years. Further assume that the discount rate is 12%. What is the present value of these cash flows? Please give your answer in millions and in two decimals. Which of the following is NOT a fundamental subatomic unit of an element?O IonicO Polar O CovalentO Nucleus Russell Securities has $282 million in total assets and its corporate tax rate is 40%. The company recently reported that its basic earning power (BEP) ratio was 37% and its retum on assets (ROA) was 15%. What was the company's interest expense? (Answers are in millions.) $33.84$62.04$104.34$169.20$28.20 Grice's maxims of quality, quantity, relation, and manner are thought to apply to all forms of human communication across all languages and cultures. Discuss if these maxims apply to Vietnamese? Use examples of real language in use from your daily life and include a translation. Licensees may charge a service fee if?A. They act as agents onlyB. They are either insurance producers acting as agents or insurance producers acting as brokers.C. They have a signed service fee agreement.D. they are limited lines producers. Advertising tracking research examines:A) web chatter about ads andad campaignsB) physiological reactions to ads and adcampaignsC) ads that have been finished or in the latter stages ofproductionD) ads that have already been launched. The physician has ordered D5LR w/20meq KCL to run at 125mL/hr. How many 1 filter bags will be needed in a 24hr period?a. 1b. 2c. 3d. 4 1. What is an assumption of many parametric statistics in relation to the sample size? 2. When it is appropriate to use a non-parametric statistic? 3. What is a one-sample chi-square? 4. What is the formula for computing the goodness of fit chi-square test statistic? 5. When does the obtained chi-square value equal zero? Describe an example of how this might happen? how far will you travel if you fly at 110 miles per hour for 11 minutes? It is 1 July 2022 . Fansifist Sdn Bhd manufactures and sells a variety of food fordogs and cats. Your firm, Kiran & Co Chartered Accountants, has audited thecompany for a number of years. You are about to commence the final audit forthe year ended 31 March 2022 and the draft financial statements show profitbefore tax of RM23.1m and total assets of RM99.2m.Fansifist Sdn Bhd launched a new brand of grain free dog food, PolobalancingDog, in December 20X4 but sales have been lower than expected and thedirectors are considering a discounted sales price. Polobalancing Dog productsare valued using standard costing method and the standard cost comprises rawmaterials, labour costs and production overheads. As at 31 March 2022 ,Polobalancing Dog products with a standard cost of RM2.4m were included asfinished goods in inventory.One of Fansifist's major customers, Petcare Sdn Bhd , operates a chain of petstores with 23 stores across the country.There have been reports in the press for several months that Petcare Sdn Bhd 'ssales and profits have been falling and, in March 2022 , Petcare Sdn Bhdannounced that 11 of its stores were to close in May 2022 . As at 31 March 2022, Fansifist Co's trade receivables included RM2.6m outstanding from PetcareSdn Bhd and no allowance has been included for this balance at the year end.On 25 February 2022 , it was discovered that a batch of canned cat food hadbeen contaminated with insecticide, which could be harmful to cats. This batchhad been dispatched in November 20X4 to 247 retail stores. By 31 March 2022 ,Fansifist Sdn Bhd had received legal claims totalling RM1.9m from consumerswhose cats had eaten the contaminated food.Describe any 3 (three) substantive procedures the auditor should perform to obtain sufficient and appropriate audit evidence in relation to the legal claims following the contamination. Summer Tyme, Inc., is considering a new 3-year expansion project that requires an initial fixed asset investment of $530,815. The fixed asset will be depreciated straight-line to 53,472 over its 3-year tax life, after which time it will have a market value of $136,959. The project requires an initial investment in net working capital of $61,815. The project is estimated to generate $257,000 in annual sales, with costs of $145,505. The tax rate is 0.24 and the required return on the project is 0.08. What is the aftertax salvage value (SVNOT) in year 3? (Make sure you enter the number with the appropriate +/- sign) what is good for a toothache besides orajel and anbesol Why are these answers for these please explainThe doctor was successful at helping the patient with many years of experience. - Dangling or Misplaced ModifierHomework was being completed by the students in study hall.- Passive voiceThere are three reports we must complete by next Friday. - FillerThe true facts, supported by examples in past history, and accepted by the great majority, were presented in a perfectly clear manner. - RedunciesGoing around the bend in the road, the peaks of the Grand Tetons came into view. - Dangling or misplaced modifierThe firm hired a consultant to write blogs, to monitor web traffic, and respond when customers submit e-mail questions. - Lack of Parallel structure