What are all values of x for which the graph of y= 6x^2 + x/2 + 3 + 6/x is concave downward?

Answers

Answer 1

The values of x for which the graph of y = 6x² + x/2 + 3 + 6/x is concave downward are all negative values of x.

We are given that y = 6x² + x/2 + 3 + 6/x

This function can be written in the following form:

y = 6x² + 3 + (x/2) + (6/x)

Now, we will calculate the second derivative of y.

The first derivative of y is given as follows:

y' = 12x + 1/2 - 6/x²

Differentiating the first derivative of y, we obtain the second derivative of y:

y'' = 12 + 12/x³

Let's analyze the sign of y'' to find out the nature of the graph. We have two cases:

1. When x < 0In this case, x³ is negative and hence, 12/x³ is negative.

Therefore, y'' is negative for x < 0.2. When x > 0

In this case, x³ is positive and hence, 12/x³ is positive.

Therefore, y'' is positive for x > 0..

Using the second derivative test, we can conclude that the graph is concave downwards in the interval (-∞, 0). Therefore, the values of x for which the graph of y = 6x² + x/2 + 3 + 6/x is concave downward are all negative values of x.

To know more about concave downward visit:

https://brainly.com/question/30098951

#SPJ11


Related Questions

Find the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) C a a = 4 b = 8 C = d = 0 = 30�

Answers

The missing values by solving the parallelogram are: a) 34.10; b) θ = 96.42° c)  φ = 83.18°

What is a parallelogram?

You should understand that a parallelogram is a flat shape with opposite sides parallel and equal in length.023 It is a quadrilateral with two pairs of parallel sides.

The missing side and angles of the parallelogram are given by:

a² = (c² + d²)/2 - b² = (42² + 38²)/2 - b² = 1163;

a = √1163 = 34.10;

b) By cosine law  42² = 21² + 34.10² - 2·21·34.10cosθ;

cosθ = (21² + 34.10² - 42²)/(2·21·34.10) = - 0.11185;

c) θ = 96.42°; φ = 180° - 96.42°

= 83.18°

Learn more about a parallelogram on https://brainly.com/question/28854514

#SPJ4

Assuming that we are drawing five cards from a standard 52-card deck,how many ways can we obtain a straight fush slarting with a two 2,3, 4,5,and 6,ll of the same suit There areways to obtain a straight flush starting with a two.

Answers

To obtain a straight flush starting with a two, we need to select five consecutive cards of the same suit. Since we are starting with a two, we have limited options for the other four cards.

In a standard 52-card deck, there are four suits (clubs, diamonds, hearts, and spades), and each suit has 13 cards (Ace through King). Since we are looking for a straight flush, we need all five cards to be of the same suit.

Starting with a two, we can choose any of the four suits. Once we have chosen a suit, there is only one card of each rank that will form a straight flush. So, for each suit, there is only one way to obtain a straight flush starting with a two.

Therefore, the total number of ways to obtain a straight flush starting with a two is 4 (one for each suit).

To know more about Probability click here: brainly.com/question/32117953

#SPJ11

How many axial points should be added to a central composite
design?

Answers

The number of axial points to be added to a central composite design depends on the number of factors being studied and the desired level of precision. The formula [tex]2^{(k-1)[/tex] is commonly used, where 'k' represents the number of factors.

A central composite design (CCD) is a commonly used experimental design in which the factors of interest are studied at multiple levels, including extreme and central levels. Axial points are additional design points that are added to a CCD to estimate the curvature of the response surface. The number of axial points to be added depends on the number of factors being studied and the desired level of precision.

In general, the number of axial points in a CCD is determined by the formula [tex]2^{(k-1)[/tex], where 'k' represents the number of factors. This formula ensures that the design is rotatable, meaning that the design can be rotated and replicated to estimate the pure quadratic terms. However, the addition of axial points also increases the total number of experimental runs, which may require more resources and time.

The choice of the number of axial points should consider the trade-off between precision and resource constraints. Adding more axial points allows for a more accurate estimation of the curvature, but it also increases the complexity and cost of the experiment. Researchers should carefully evaluate the experimental goals, available resources, and desired level of precision to determine the appropriate number of axial points to be added to a central composite design.

Learn more about curvature here: https://brainly.com/question/12982907

#SPJ11

1. List and describe at least three characteristics of the normal distribution. (You can include images here, if you would like.) 2. Find an example of something that you would expect to be normally d

Answers

Characteristics of normal distributions are symmetry, Bell shaped, Standardized properties. Example of something expected to be normally distributed is the heights of adult males in a population.

1.

Characteristics of the normal distribution:

a) Symmetry:

The normal distribution is symmetric around its mean, with the left and right tails being mirror images of each other. This means that the mean, median, and mode of a normal distribution are all equal.

b) Bell-shaped curve:

The graph of a normal distribution forms a bell-shaped curve. It is characterized by a smooth, continuous, and unimodal shape. The highest point of the curve corresponds to the mean, and the curve gradually tapers off on both sides.

c) Standardized properties:

The normal distribution has several standardized properties. It is fully characterized and defined by its mean (μ) and standard deviation (σ). Around 68% of the data falls within one standard deviation of the mean, approximately 95% falls within two standard deviations, and about 99.7% falls within three standard deviations.

2.

Example of something expected to be normally distributed:

The heights of adult males in a population can be expected to follow a normal distribution. This is because height is influenced by multiple genetic and environmental factors, and their combined effects often result in a bell-shaped distribution.

Several reasons support the expectation of a normal distribution for adult male heights:

Many physical traits, including height, tend to be influenced by multiple genes and follow a polygenic inheritance pattern. When multiple genes contribute to a trait, the combined effect tends to result in a normal distribution.Environmental factors, such as nutrition and overall health, also play a role in determining adult height. These factors are often normally distributed in the population, and their influence on height further contributes to the normal distribution pattern.Height measurements are typically influenced by measurement error, which can introduce random variability. The Central Limit Theorem states that the distribution of sample means, or in this case, sample heights, tends to be approximately normal, even if the underlying population distribution is not precisely normal.

Due to these reasons, we expect adult male heights to exhibit a normal distribution in most populations.

The question should be:

1. List and describe at least three characteristics of the normal distribution. 2. Find an example of something that you would expect to be normally distributed and share it. Explain why you think it is normally distributed.

To learn more about normal distribution: https://brainly.com/question/4079902

#SPJ11

(1) Show all the steps of your solution and simplify your answer as much as possible. (2) The answer must be clear, intelligible, and you must show your work. Provide explanation for all your steps. Your grade will be determined by adherence to these criteria. Which of the sequences (an) converge, and which diverge? Find the limit of each convergent sequence. In (n+1) an =

Answers

Let's work on the problem together:Given that the sequence is

[tex](n + 1) an = $$\frac{1}{n^2}$$[/tex]

Let's multiply both sides by (n + 1) to get rid of the fraction.

[tex](n + 1) an = $$\frac{1}{n^2}$$* (n + 1)(n + 1) an = $$\frac{1}{n^2}$$* (n + 1)* (n + 1)an = $$\frac{(n + 1)}{n^2(n + 1)}$$an = $$\frac{1}{n^2}$$[/tex]

From here, we can see that the sequence is

[tex]an = $$\frac{1}{n^2}$$[/tex]

This is a p-series with p = 2 and a = 1. Since p > 1, the series converges. Now let's find the limit:limn → ∞ an = limn → ∞

[tex]$$\frac{1}{n^2}$$= 0[/tex]

Therefore, the sequence converges to 0.

A 160 degree angle is measured in arc minutes, often known as arcmin, arcmin, arcmin, or arc minutes (represented by the sign '). One minute is equal to 121600 revolutions, or one degree, hence one degree equals 1360 revolutions (or one complete revolution). A degree, also known as a complete angle of arc, angle of arc, or angle of arc, is a unit of measurement for plane angles in which a full rotation equals 360 degrees. A degree is sometimes referred to as an arc degree if it has an arc of 60 minutes. Since there are 360 degrees in a circle, an arc's angles make up 1/360 of its circumference.

To know more about degree visit:

https://brainly.com/question/364572

#SPJ11

Determine if there exists a number A such that the limit
lim x -> -2 3x² + Ax + A +3 /x² + x - 2 exists. If so, find the value of A and the value of the limit.

Answers

A = 15 into the function, we get: lim x → -2 (3x² + 15x + 18) / (x² + x - 2)

To determine if there exists a number A such that the limit of the function f(x) = (3x² + Ax + A + 3) / (x² + x - 2) exists as x approaches -2, we need to investigate the behavior of the function as x approaches -2 from both sides.

Let's first examine the behavior of the function as x approaches -2 from the left side, denoted as x → -2⁻:

lim x → -2⁻ (3x² + Ax + A + 3) / (x² + x - 2)

Substituting -2 into the function, we get:

lim x → -2⁻ (3(-2)² + A(-2) + A + 3) / ((-2)² + (-2) - 2)

= lim x → -2⁻ (12 + (-2A) + A + 3) / (4 - 2 - 2)

= lim x → -2⁻ (15 - A) / 0

Since the denominator approaches 0, we need to investigate further.

Now, let's examine the behavior of the function as x approaches -2 from the right side, denoted as x → -2⁺:

lim x → -2⁺ (3x² + Ax + A + 3) / (x² + x - 2)

Substituting -2 into the function, we get:

lim x → -2⁺ (3(-2)² + A(-2) + A + 3) / ((-2)² + (-2) - 2)

= lim x → -2⁺ (12 + (-2A) + A + 3) / (4 - 2 - 2)

= lim x → -2⁺ (15 - A) / 0

Again, we have a denominator approaching 0, so we need to investigate further.

Now, considering both sides, we have:

lim x → -2 (3x² + Ax + A + 3) / (x² + x - 2) = lim x → -2⁻ (15 - A) / 0 = lim x → -2⁺ (15 - A) / 0

For the limit to exist, the two-sided limits must be equal. Therefore, we require:

lim x → -2⁻ (15 - A) / 0 = lim x → -2⁺ (15 - A) / 0

This implies that the numerator, 15 - A, must be zero for the limit to exist. Therefore:

15 - A = 0

A = 15

Now that we have found the value of A, we can determine the value of the limit:

lim x → -2 (3x² + Ax + A + 3) / (x² + x - 2) = lim x → -2 (3x² + 15x + 15 + 3) / (x² + x - 2)

At this point, we can simplify the expression or further analyze its behavior, depending on the specific requirements or desired form of the answer.

Learn more about limit at: brainly.com/question/12211820

#SPJ11

Multiply: (-11) (0) (-5)(2)​

Answers

Answer:

5 x 2 = 10

Step-by-step explanation:

Firstly you need to add 5 for 2 times.

Then, the answer you would get is approximately

10.

⭕⭕⭕⭕⭕ x ⭕⭕ =

⭕⭕⭕⭕⭕ + ⭕⭕⭕⭕⭕ =

Homework: Homework 4 Question 32, 6.2.5 45.45%, 20 of 44 points O Points: 0 of 1 Find the area of the shaded region. The graph to the right depicts IQ scores of adults, and those scores are normally d

Answers

The area of the shaded region is 0.47.

In the given diagram, IQ scores of adults are represented in a normal distribution curve.

To find the area of the shaded region, we can use standard normal table or calculator.

The formula for finding standard deviation is:Z = (X - μ) / σ

Where, Z is the number of standard deviations from the mean X is the raw score μ is the mean σ is the standard deviation

First, we need to find the standard deviation,

σ.Z = (X - μ) / σ-1.65 = (90 - μ) / σ

Let's assume that the mean IQ score is

100.-1.65 = (90 - 100) / σσ = 6.06

Now, we have standard deviation, we can find the area of the shaded region by using the

Z-score.Z = (X - μ) / σ = (80 - 100) / 6.06 = -3.30

We need to find the area to the left of -3.30 from the Z table.

The area to the left of -3.30 is 0.0005.So, the area of the shaded region is 0.47.

Summary:We can find the area of the shaded region in the given diagram by finding the standard deviation and using Z-score. The area of the shaded region is 0.47.

learn more about standard deviation click here:

https://brainly.com/question/475676

#SPJ11

You work for a nuclear research laboratory that is contemplating leasing a diagnostic scanner (leasing is a very common practice with expensive, high-tech equipment). The scanner costs $4,900,000, and it would be depreciated straight-line to zero over four years. Because of radiation contamination, it actually will be completely valueless in four years. The tax rate is 24 percent and you can borrow at 6 percent before taxes. What would the lease payment have to be for both lessor and lessee to be indifferent about the lease? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Break-even lease payment

Answers

The break-even lease payment would be $223,944 per year for both the lessor and the lessee to be indifferent about the lease.

To calculate the break-even lease payment, we need to consider the present value of the cash flows for both the lessor (provider of the scanner) and the lessee (research laboratory).

Given information:

Scanner cost: $4,900,000

Depreciation period: 4 years

Tax rate: 24%

Borrowing rate: 6%

First, let's calculate the depreciation expense per year:

Depreciation expense = Scanner cost / Depreciation period

Depreciation expense = $4,900,000 / 4

Depreciation expense = $1,225,000 per year

Next, we calculate the tax savings from depreciation for the lessor:

Tax savings = Depreciation expense * Tax rate

Tax savings = $1,225,000 * 24% = $294,000 per year

Now, let's calculate the after-tax cost of borrowing for the lessor:

After-tax borrowing rate = Borrowing rate * (1 - Tax rate)

After-tax borrowing rate = 6% * (1 - 24%) = 4.56%

Using the present value formula, we can determine the present value of the after-tax cash flows for both parties. Since the scanner will be valueless in four years, the cash flows include the depreciation expense and the after-tax cost of borrowing.

For the lessor:

Present value of cash flows = (After-tax borrowing rate * Scanner cost) - Tax savings

Present value of cash flows = (4.56% * $4,900,000) - $294,000

Present value of cash flows = $223,944

For the lessee, the present value of cash flows is equal to the lease payment.

Therefore, the break-even lease payment would be $223,944 per year for both the lessor and the lessee to be indifferent about the lease.

Learn more about lease payment  here:-

https://brainly.com/question/29696588

#SPJ11

According to Hamilton (1990), certain computer games are thought to improve spatial skills. A
mental rotations test, measuring spatial skills, was administered to a sample of school children after they had
played one of two types of computer game.
a. Construct 95% confidence intervals based on the following mean scores, assuming that the children were
selected randomly and that the mental rotations test scores had a normal distribution in the population.
Group 1 ("Factory" computer game): X1 = 22.47, s1 = 9.44, n1 = 19.
Group 2 ("Stellar" computer game): X 2 = 22.68, s2 = 8.37, n2 = 19.
Control (no computer game): X 3 = 18.63, s3 = 11.13, n3 = 19.
b. Assuming a normal distribution of scores in the population and equal population variances, construct
ANOVA table, with standard columns SS, df, MS, F, and p-value, using treatment means and standard

c. State H0 and H1 in (b) and test the hypothesis at a 5% significance level

Answers

a. To construct 95% confidence intervals for the mean scores of the three groups, we can use the formula for confidence intervals for independent samples with known standard deviations:

CI = X ± Z * (σ / √n)

where:

- CI is the confidence interval

- X is the sample mean

- Z is the critical value for the desired confidence level

- σ is the population standard deviation

- n is the sample size

For Group 1 ("Factory" computer game):

X1 = 22.47, s1 = 9.44, n1 = 19

Using a Z-value for a 95% confidence level (two-tailed test), which is approximately 1.96:

CI1 = 22.47 ± 1.96 * (9.44 / √19)

For Group 2 ("Stellar" computer game):

X2 = 22.68, s2 = 8.37, n2 = 19, CI2 = 22.68 ± 1.96 * (8.37 / √19)

For Control (no computer game):

X3 = 18.63, s3 = 11.13, n3 = 19

CI3 = 18.63 ± 1.96 * (11.13 / √19)

b. Assuming a normal distribution of scores in the population and equal population variances, we can construct an ANOVA table using the treatment means and standard deviations.

The ANOVA table includes the following columns: SS (sum of squares), df (degrees of freedom), MS (mean square), F (F-statistic), and p-value.

The hypotheses for ANOVA are as follows:

H0: All population means are equal (μ1 = μ2 = μ3)

H1: At least one population mean is different

To calculate the values in the ANOVA table, we need the sum of squares (SS) for each group, the degrees of freedom (df), and the mean squares (MS). These values are then used to calculate the F-statistic and its corresponding p-value.

c. Since part (c) asks to state the null hypothesis (H0) and alternative hypothesis (H1) and test the hypothesis at a 5% significance level, we can use the same hypotheses as in part (b):

H0: All population means are equal (μ1 = μ2 = μ3)

H1: At least one population mean is different

To test the hypothesis, we can use the F-statistic obtained from the ANOVA table and compare it to the critical value from the F-distribution for a given significance level (in this case, 5%). If the F-statistic is greater than the critical value, we reject the null hypothesis; otherwise, we fail to reject the null hypothesis.

Learn more about standard deviations here:

https://brainly.com/question/29808998

#SPJ11

a 73 kgkg bike racer climbs a 1100-mm-long section of road that has a slope of 4.3 ∘∘ .

Answers

The gravitational potential energy change during the climb is approximately 4974.6 Joules.

The gravitational potential energy change can be calculated using the formula:

ΔPE = mgh

Where ΔPE is the change in gravitational potential energy, m is the mass of the object, g is the acceleration due to gravity, and h is the change in height.

First, we need to calculate the change in height. Since the road has a slope of 4.3 degrees, we can use trigonometry to find the vertical component of the climb:

h = l * sin(θ)

Where l is the length of the road and θ is the slope angle in radians. Converting 4.3 degrees to radians, we have:

θ = 4.3 * (π/180) ≈ 0.0749 radians

Substituting the values, we get:

h = 1200 * sin(0.0749) ≈ 91.32 meters

Next, we can calculate the gravitational potential energy change:

ΔPE = (72 kg) * (9.8 m/s²) * (91.32 m) ≈ 4974.6 Joules

Therefore, the gravitational potential energy change during the climb is approximately 4974.6 Joules.

Learn more about angle here:

https://brainly.com/question/30147425

#SPJ11

Find the general solution and exact equations for the following differential equations :
1. y⁽⁷⁾ + 18y⁽⁵⁾ + 81yᵐ = 0,
2. y" - 4y' + 4y = e²ᵗ + t²e³ᵗ - sin(2πt)

Answers

In the given problem, we are asked to find the general solution and exact equations for two differential equations. The first equation is a seventh-order linear homogeneous differential equation, while the second equation is a second-order linear nonhomogeneous differential equation.

y⁽⁷⁾ + 18y⁽⁵⁾ + 81yᵐ = 0:

This is a seventh-order linear homogeneous differential equation. To find the general solution, we assume the solution is of the form y = e^(rt), where r is a constant. Substituting this into the differential equation, we get the characteristic equation:

r⁷ + 18r⁵ + 81 = 0

By solving this equation, we can find the roots r₁, r₂, ..., r₇. The general solution can be written as:

y = C₁e^(r₁t) + C₂e^(r₂t) + ... + C₇e^(r₇t),

where C₁, C₂, ..., C₇ are arbitrary constants.

y" - 4y' + 4y = e²ᵗ + t²e³ᵗ - sin(2πt):

This is a second-order linear nonhomogeneous differential equation. To find the general solution, we first find the complementary solution by solving the associated homogeneous equation: y" - 4y' + 4y = 0. The characteristic equation is r² - 4r + 4 = 0, which has a repeated root r = 2.

The complementary solution is given by y_c = (C₁ + C₂t)e^(2t), where C₁ and C₂ are arbitrary constants.Next, we find a particular solution for the nonhomogeneous equation using the method of undetermined coefficients. We assume the particular solution has the form y_p = Ae²ᵗ + Bt²e³ᵗ + Csin(2πt) + Dcos(2πt). By substituting this into the equation and equating coefficients, we can find the values of A, B, C, and D. The general solution is the sum of the complementary and particular solutions: y = y_c + y_p.In summary, the first differential equation has a general solution in terms of exponential functions, and the second differential equation has a general solution consisting of exponential and trigonometric functions.

Learn more about trigonometric functions here:- brainly.com/question/25618616

#SPJ11

explain how to convert a number of days to a fractional part of a year. using the ordinary method, divide the number of days by

Answers

Converting number of days to a fractional part of a year involves division. It is done by dividing the number of days by the total number of days in a year.

A year contains 365 days, but there are leap years that have an extra day, which makes it 366 days.

Here is an explanation on how to convert a number of days to a fractional part of a year using the ordinary method:

To convert number of days to a fractional part of a year, divide the number of days by the total number of days in a year.

As stated earlier, a year can have either 365 or 366 days.

Therefore:

Case 1: If it is a normal year (365 days) Fraction of the year = number of days ÷ 365

Example: If we want to convert 100 days to fraction of a year, we do;

Fraction of the year = 100 ÷ 365 ≈ 0.27 (rounded to two decimal places)

So, 100 days is about 0.27 fraction of a year.

Case 2: If it is a leap year (366 days)

Fraction of the year = number of days ÷ 366

Example: If we want to convert 200 days to fraction of a year, we do;

Fraction of the year = 200 ÷ 366 ≈ 0.55 (rounded to two decimal places)So, 200 days is about 0.55 fraction of a year.

To know more about fractional part visit:

https://brainly.com/question/1330447

#SPJ11

Let u = log5 (x) and v= log5 (y), where x, y > 0. Write the following expression in terms of u and v. log5 (Vx^2. 5Vy)

Answers

The expression log5(Vx^2.5Vy) can be written in terms of u and v as 2v + 2u + log5(y) + 1.

To write the expression log5(Vx^2.5Vy) in terms of u and v, we need to express the given expression using the definitions of u and v.

Given:

u = log5(x)

v = log5(y)

Let's simplify the given expression step by step:

log5(Vx^2.5Vy)

Using the properties of logarithms, we can split the expression into separate logarithms:

= log5(V) + log5(x^2) + log5(5) + log5(Vy)

Now, let's simplify each term using the properties of logarithms and the definitions of u and v:

= log5(V) + 2log5(x) + log5(5) + log5(V) + log5(y)

Using the properties of logarithms, we can simplify further:

= log5(V) + log5(V) + 2u + 1 + log5(y)

Combining like terms:

= 2log5(V) + 2u + log5(y) + 1

Now, let's replace log5(V) with v using the given definition:

= 2v + 2u + log5(y) + 1

Finally, we can rewrite the expression using the variables u and v:

= 2v + 2u + log5(y) + 1

It's important to note that in this process, we utilized the properties of logarithms such as the product rule, power rule, and the definition of logarithms in base 5. By substituting the given expressions for u and v, we were able to express the given expression in terms of u and v.

Learn more logarithms at: brainly.com/question/30226560

#SPJ11

Let [a, b] and [c, d] be intervals satisfying [c, d] C [a, b]. Show that if ƒ € R over [a, b] then feR over [c, d].

Answers

If [c, d] is a subset of [a, b], then any function ƒ defined over [a, b] is also defined over [c, d].

Given that [c, d] is a subset of [a, b], it means that any value within the interval [c, d] is also contained within the interval [a, b]. In other words, [c, d] is a smaller interval within the larger interval [a, b].

If a function ƒ is defined and belongs to the set of real numbers over [a, b], it means that the function is defined and has a value for every point within the interval [a, b]. Since [c, d] is a subset of [a, b], it follows that every point within [c, d] is also within [a, b]. Therefore, the function ƒ is still defined and has a value for every point within the interval [c, d]. This implies that ƒ belongs to the set of real numbers over [c, d].

In conclusion, if a function ƒ is defined over the interval [a, b], it will also be defined over any subset [c, d] that is contained within [a, b].

Learn more about intervals here:

https://brainly.com/question/11051767

#SPJ11

Find and graph the inverse of the function f(x) = (x - 3)² for x ≥ 3. f−¹(a)=

Answers

To find the inverse of the function f(x) = (x - 3)² for x ≥ 3, we can follow the steps below:

Replace f(x) with y: y = (x - 3)².

Swap x and y: x = (y - 3)².

Solve for y: Take the square root of both sides, considering the positive square root because x ≥ 3.

√x = y - 3.

Add 3 to both sides to isolate y:

y = √x + 3.

Therefore, the inverse of the function f(x) = (x - 3)² for x ≥ 3 is f^(-1)(x) = √x + 3.

To graph the inverse function, we can plot the points of the original function f(x) = (x - 3)² and reflect them across the line y = x. This reflection will give us the graph of the inverse function f^(-1)(x). The graph will start at (3, 0) and move upwards as x increases. The points (4, 1), (5, 4), (6, 9), and so on, will reflect (1, 4), (4, 5), (9, 6), and so on, in the inverse graph. Similarly, any point (x, y) on the original graph will be reflected to (y, x) on the inverse graph.

It's important to note that the domain of the inverse function is x ≥ 0, as the square root is only defined for non-negative values. Below is a rough sketch of the graph, representing the inverse of the function f(x) = (x - 3)²:

y

^

|      /

|     /

|    /  

|   /    

|  /    

| /    

|/__________________> x

Please note that the graph is not drawn to scale and is only intended to provide a visual representation of the inverse function.

Learn more about square root here:- brainly.com/question/29286039

#SPJ11

Score on last try: 4 of 5 pts. See Details for more. > Next question Get a similar question You can retry this question below In 2013, the Pew Research Foundation reported that 45% of U.S. adults report that they live with one or more chronic conditions". However, this value was based on a sample, so it may not be a perfect estimate for the population parameter of interest on its own. The study reported a standard deviation of about 1.2%, and a normal model may reasonably be used in this setting. Create a 95% confidence interval for the proportion of U.S. adults who live with one or more chronic conditions. (a) What is the measured value (as a percent, not a decimal) that will be the center of our confidence interval? p=45 O (b) To get a 95% confidence interval, we want to exclude 5% of the area total, so we want to exclude how much of the left tail (as a decimal this time)? area p-value = 0.025 (c) Using the z-score table, for what value of z (to the nearest 2 decimal places) is P(Z < 2) equal to your answer to part (b)? 21.96 X Hint: Recall we want the left side of the curve, so z should be negative. (d) The formula for the endpoints of a confidence interval of proportions is pz. SE. Using this formula, what are the endpoints (to the nearest 1 decimal as a percent) for this 95% confidence interval?

Answers

Given that in 2013, the Pew Research Foundation reported that 45% of U.S. adults report that they live with one or more chronic conditions.

The study reported a standard deviation of about 1.2%.A 95% confidence interval for the proportion of U.S. adults who live with one or more chronic conditions is to be created. The measured value (as a percent, not a decimal) that will be the center of the confidence interval is 45. This is denoted as p.

The area p-value to be excluded from the left tail to get a 95% confidence interval is 0.025.

To find the value of z (to the nearest 2 decimal places) using the z-score table, P(Z < 2) is equal to the answer of part (b). As P(Z < 2) = 0.9772, we have to look for the z-score associated with this probability.

This value is 1.96, which is the required value of z (to the nearest 2 decimal places).

Formula for the endpoints of a confidence interval of proportions is:pz ± SE where z = 1.96, p = 0.45, and SE = $\frac{1.2\%}{\sqrt{n}}$ .Substitute the given values in the above formula we get;Lower endpoint = 0.45 - 0.019 = 0.43

Upper endpoint = 0.45 + 0.019 = 0.47

So, the endpoints (to the nearest 1 decimal as a percent) for this 95% confidence interval is (43%, 47%).Thus, the correct answer is option (d).

To know more about standard deviation visit :-

https://brainly.com/question/475676

#SPJ11

Let the function f be defined by:
f(x)={ x+6 6
. if x<1
if x>1

Sketch the graph of this function and find the following limits, if they exist. (Use "DNE" for "Does not exist".)
1. lim
x→1
− f(x)=

2. lim
x→1
+ f(x)=

3. lim
x→1
f(x)=

Answers

To sketch the graph of the function f(x) and find the limits as x approaches 1, we can analyze the function for x values less than 1 and x values greater than 1.

For x < 1, the function f(x) is defined as x + 6. This means that the graph of f(x) is a line with a slope of 1 and a y-intercept of 6.

For x > 1, the function f(x) is defined as 6. This means that the graph of f(x) is a horizontal line at y = 6.

To find the limits as x approaches 1, we need to evaluate the function from both sides of 1.

lim(x→1-) f(x):

As x approaches 1 from the left side (x < 1), f(x) approaches the value of x + 6. Therefore, the limit as x approaches 1 from the left side is:

lim(x→1-) f(x) = lim(x→1-) (x + 6) = 1 + 6 = 7

lim(x→1+) f(x):

As x approaches 1 from the right side (x > 1), f(x) approaches the value of 6. Therefore, the limit as x approaches 1 from the right side is:

lim(x→1+) f(x) = lim(x→1+) 6 = 6

lim(x→1) f(x):

To find the overall limit as x approaches 1, we need to compare the left and right limits. Since the left limit (lim(x→1-) f(x)) is equal to 7 and the right limit (lim(x→1+) f(x)) is equal to 6, the overall limit as x approaches 1 does not exist (DNE).

Therefore, the answers to the provided limits are:

lim(x→1-) f(x) = 7

lim(x→1+) f(x) = 6

lim(x→1) f(x) = DNE (Does not exist)

To know more about limits visit-

brainly.com/question/28354499

#SPJ11

Which of the following statements is a proposition? a) Bring me that book. b) x+y=8 c) Is it cold? d) 12 > 15 e) Have a nice weekend.

Answers

The proposition among the given statements is (d) "12 > 15."

A proposition is a statement that can be evaluated as either true or false. In this case, the statement "12 > 15" expresses a mathematical comparison where 12 is being compared to 15 using the greater-than operator. It can be clearly determined that 12 is not greater than 15, making the proposition false. On the other hand, the remaining statements do not qualify as propositions. Statement (a) is an imperative sentence and not a statement that can be assigned a truth value. Statement (b) is an algebraic equation, (c) is an interrogative sentence, and (e) is an exclamation or well-wishing statement.

For more information on proposition visit: brainly.com/question/14746688

#SPJ11

The future value of $2000 after t years invested at 9% compounded continuously is f(t)= 2000e0.09 dollars.
(a) Write the rate-of-change function for the value of the investment. (Hint: Let be0.09 and use the rule for f(x) = ) = bx.) f"(t) = dollars per year x
(b) Calculate the rate of change of the value of the investment after 11 years. (Round your answer to three decimal places.) F'(11) = dollars per year Need Help? Read It Submit Answer

Answers

The rate-of-change function for the value of the investment is

f′(t) = 2000e0.09 × ln (1.09) dollars per year.

The rate of change of the value of the investment after 11 years is

F′(11) = 198.71 dollars per year.

a) The rate-of-change function for the value of the investment is given by f′(t) = f(t) ×ln (1+r).

Substitute r = 0.09 and f(t) = 2000e0.09 to get the rate-of-change function as shown below:

f′(t) = f(t) × ln (1 + r)

f′(t) = 2000e0.09 × ln (1 + 0.09)

f′(t) = 2000e0.09 × ln (1.09)

f′(t) = 2000 × 0.09935f′(t) = 198.71

Therefore, the rate-of-change function for the value of the investment is f′(t) = 198.71 dollars per year.

b) The rate of change of the value of the investment after 11 years can be found by substituting t = 11 into the rate-of-change function found in part (a).

f′(11) = 2000e0.09 × ln (1.09)

f′(11) = 2000 × 0.09935

f′(11) = 198.71

Therefore, the rate of change of the value of the investment after 11 years is

F′(11) = 198.71 dollars per year.

Answer: The rate-of-change function for the value of the investment is f′(t) = 2000e0.09 × ln (1.09) dollars per year.

The rate of change of the value of the investment after 11 years is F′(11) = 198.71 dollars per year.

To know more about investment visit:

https://brainly.com/question/15105766

#SPJ11

If $5,000.00 is invested at 19% annual simple interest, how long does it take to be worth $23,050.00.

Answers

To determine how long it takes for an investment to be worth a certain amount, we can use the formula for simple interest. By plugging in the given values and solving for time, we can find the answer.

Let's use the formula for simple interest:

I = P * r * t

Where:

I is the interest earned,

P is the principal amount (initial investment),

r is the interest rate,

and t is the time (in years).

We are given that $5,000.00 is invested at an annual interest rate of 19%, and we want to find the time it takes for the investment to be worth $23,050.00.

Substituting the values into the formula, we have:

$23,050.00 - $5,000.00 = $5,000.00 * 0.19 * t

Simplifying the equation, we get:

$18,050.00 = $950.00 * t

Dividing both sides by $950.00, we find:

t = 18,050.00 / 950.00

Calculating the result, we get:

t ≈ 19 years

Therefore, it will take approximately 19 years for the investment to be worth $23,050.00 at a 19% annual simple interest rate.

Learn more about simple interest here:

https://brainly.com/question/30964674

#SPJ11

Please Find the minimum or maximum y-value of the following quadratic equation, Thank you so much!!!

Answers

The minimum or maximum y value of the function is -1/3

Calculating the minimum or maximum value of the function?

From the question, we have the following parameters that can be used in our computation:

The function, y = 2/3x² + 5/4x - 1/3

This function is a quadratic function

In the above, we have

h = -b/2a

So, we have

h = -(5/4)/(2/3)

Evaluate

h = -15/8

Next, we have

Min or max = 2/3 * (-15/8)² + 5/4(-15/8) - 1/3

Evaluate

Min or max = -1/3

Hence, the minimum or maximum value of the function is -1/3

Read more about vertex at

brainly.com/question/28180581

#SPJ1

On 25 August 1990, Lulu bought an investment property for $81739. Two days later she also paid stamp duty of $30,000. She has no other records of her expenses in relation to the costs. Lulu sold the property in January 2020 for $500,000. Required: Calculate the INDEXED COST BASE of the property. Only enter numbers & round to the nearest dollar Answer:

Answers

The indexed cost base of the property is approximately $173,837, considering an assumed inflation rate of 3% per year for the period between August 1990 and January 2020.

To calculate the indexed cost base of the property, we need to adjust the original cost base for inflation using an appropriate index. However, since the specific index is not provided in the question, we will assume the use of a general inflation index.

To calculate the indexed cost base, we will consider the following steps:

1. Calculate the inflation rate for the period between August 1990 and January 2020. We can use historical inflation data or an average inflation rate over that period. Let's assume the inflation rate is 3% per year for simplicity.

2. Determine the number of years between August 1990 and January 2020. It is approximately 29 years.

3. Apply the inflation rate to the original cost base to calculate the indexed cost base. Start with the initial cost base and compound the increase using the inflation rate for each year.

Indexed Cost Base = Initial Cost Base * (1 + Inflation Rate)^Number of Years

Indexed Cost Base = $81,739 * (1 + 0.03)^29

Using a calculator, the approximate value of the indexed cost base is:

Indexed Cost Base ≈ $173,837.

Therefore, the indexed cost base of the property is approximately $173,837, considering an assumed inflation rate of 3% per year for the period between August 1990 and January 2020.

Learn more about  indexed cost  here:-

https://brainly.com/question/16924571

#SPJ11

question (10.00 point(s))
Integral 2xe-x² dx =
A. 2e
B. e
C. 0
D. 1
E. -1

Answers

Therefore, the correct option is C. 0. The value of the given integral is 0.

Explanation:
To solve the integral we will use the method of substitution
We will substitute u = x², then du = 2x dx ⇒ x dx = 1/2 du
Thus, Integral 2xe-x² dx
Can be written as ∫2x * e^(-x²) dx
Let u = x² and du = 2x dx. Then
Integral 2xe-x² dx = ∫2xe^(-x²) dx = ∫e^(-x²) d(x²) = (1/2) ∫e^(-u) du = -(1/2)e^(-u) + C = -(1/2)e^(-x²) + C

Therefore, the correct option is C. 0. The value of the given integral is 0.

To learn more about the integral visit:

brainly.com/question/30094386

#SPJ11

Match the area under the standard normal curve over the given intervals or the indicated probabilities.
Hint: Use calculator or z-score table
Area to the right of z= -1.43
Area over the interval: 0.5 P(z>2.2)

Answers

the probability that z is greater than 2.2 is approximately 0.0143.

Using a z-score table or a calculator, we can find the area under the standard normal curve for the given intervals or probabilities:

1. Area to the right of z = -1.43:

To find the area to the right of z = -1.43, we subtract the area to the left of -1.43 from 1.

Area to the right of z = -1.43 ≈ 1 - Area to the left of z = -1.43 ≈ 1 - 0.9236 ≈ 0.0764

Therefore, the area to the right of z = -1.43 is approximately 0.0764.

2. Area over the interval: 0.5:

To find the area over the interval of 0.5, we subtract the area to the left of -0.25 from the area to the left of 0.25.

Area over the interval of 0.5 ≈ Area to the left of 0.25 - Area to the left of -0.25 ≈ 0.5987 - 0.4013 ≈ 0.1974

Therefore, the area over the interval of 0.5 is approximately 0.1974.

3. P(z > 2.2):

To find the probability that z is greater than 2.2, we subtract the area to the left of 2.2 from 1.

P(z > 2.2) ≈ 1 - Area to the left of 2.2 ≈ 1 - 0.9857 ≈ 0.0143

Therefore, the probability that z is greater than 2.2 is approximately 0.0143.

To know more about Probability related question visit:

https://brainly.com/question/31828911

#SPJ11

Write the equation of the ellipse 36x² + 4y² + 216x − 16y + 196 = 0 in standard form.

Answers

The equation of the ellipse 36x² + 4y² + 216x - 16y + 196 = 0 can be written in standard form as ((x + 3)²)/16 + ((y - 1)²)/9 = 1.

To express the equation of the ellipse in standard form, we need to rewrite it in a specific format: ((x - h)²)/(a²) + ((y - k)²)/(b²) = 1, where (h, k) represents the center of the ellipse, and a and b represent the lengths of the semi-major and semi-minor axes, respectively.

To begin, we'll group the terms involving x and y, completing the squares to create perfect squares. Rearranging the terms, we have:

36x² + 4y² + 216x - 16y + 196 = 0

(36x² + 216x) + (4y² - 16y) + 196 = 0

36(x² + 6x) + 4(y² - 4y) + 196 = 0.

Next, we'll complete the squares within the parentheses:

36(x² + 6x + 9) + 4(y² - 4y + 4) + 196 = 36(9) + 4(4)

36(x + 3)² + 4(y - 2)² + 196 = 324 + 16

36(x + 3)² + 4(y - 2)² = 340

((x + 3)²)/16 + ((y - 2)²)/85 = 1.

The equation is now in standard form. The center of the ellipse is (-3, 2), the semi-major axis is 4, and the semi-minor axis is √85. Therefore, the equation of the ellipse in standard form is ((x + 3)²)/16 + ((y - 2)²)/85 = 1.

Learn more about standard form here:

https://brainly.com/question/17264364

#SPJ11

What is the probability that an arrival to an infinite capacity 4 server Poison queueing system with λ/μ = 3 and Po = 1/10 enters the service without waiting?

Answers

The probability that an arrival to an infinite capacity 4 server Poisson queueing system with λ/μ = 3 and Po = 1/10 enters the service without waiting is 4/7.

In a Poisson queueing system, arrivals follow a Poisson distribution with rate λ, and service times follow an exponential distribution with rate μ.

The ratio λ/μ represents the traffic intensity, and in this case, it is 3. The system has 4 servers, which means it can handle 4 arrivals simultaneously.

To determine the probability that an arrival enters the service without waiting, we need to consider the number of arrivals already present in the system.

If there are less than or equal to 4 arrivals in the system (including the one arriving), the new arrival can enter the service immediately without waiting.

The probability of having 0, 1, 2, 3, or 4 arrivals in the system can be calculated using the Poisson distribution formula.

Given that the arrival rate λ is 3, the probability of having exactly k arrivals in the system is P(k) = ([tex]e^{-\lambda}[/tex] ×[tex]\lambda^k[/tex]) / k!. For k = 0, 1, 2, 3, 4, we can calculate the respective probabilities.

P(0) = ([tex]e^{-3}[/tex] * [tex]3^0[/tex]) / 0! = [tex]e^{-3}[/tex] ≈ 0.0498

P(1) = ([tex]e^{-3}[/tex] * [tex]3^1[/tex]) / 1! = 3[tex]e^{-3}[/tex] ≈ 0.1495

P(2) = ([tex]e^{-3}[/tex] * [tex]3^2[/tex]) / 2! = 9[tex]e^{-3}[/tex] ≈ 0.2242

P(3) = ([tex]e^{-3}[/tex] * [tex]3^3[/tex]) / 3! = 27[tex]e^{-3}[/tex] ≈ 0.2242

P(4) = ([tex]e^{-3}[/tex] * [tex]3^4[/tex]) / 4! = 81[tex]e^{-3}[/tex] ≈ 0.1682

The probability of an arrival entering the service without waiting is the sum of the probabilities of having 0, 1, 2, 3, or 4 arrivals in the system:

P(0) + P(1) + P(2) + P(3) + P(4) ≈ 0.0498 + 0.1495 + 0.2242 + 0.2242 + 0.1682 = 0.8159.

Therefore, the probability that an arrival enters the service without waiting in this Poisson queueing system is approximately 4/7.

Learn more about probability here:

https://brainly.com/question/15052059

#SPJ11

The national average on the ACT is 20.9 with standard deviation of 5.2. John Deere is sponsoring a scholarship for Agriculture students that score in the top 20%. Assuming that the scores are normally distributed, what is the minimum ACT score needed to apply for this scholarship?

Answers

The minimum ACT score needed to apply for this scholarship is 27.1.

To find the minimum ACT score needed to apply for this scholarship, we need to use the z-score formula.

The z-score is the number of standard deviations that a value is above or below the mean in a normal distribution.

We can use it to find the minimum score needed to be in the top 20%.

The formula for z-score is:z = (x - μ) / σwhere:x is the ACT score

μ is the mean (given as 20.9)

σ is the standard deviation (given as 5.2)z is the z-score

For the top 20%, we need to find the z-score that corresponds to the 80th percentile, which is 1.28 (found using a standard normal distribution table or calculator).

Then, we can rearrange the formula to solve for x:x = zσ + μ

Substituting the given values, we get:x = 1.28(5.2) + 20.9x = 27.1

Therefore, the minimum ACT score needed to apply for this scholarship is 27.1.

Know more about ACT score here:

https://brainly.com/question/30260929

#SPJ11

Σ W. BL is conditionally convergent series for x-2, which of the statements below are true? is conditionally convergent is absolutely convergent (-3)^ Σ is divergent. 2" A) I and ill B) and I C only D I only E) Ill only Sonndows'u Etkinla MUACHIA

Answers

According to the given Statement we have only statement II is true. If the series is convergent, then multiplying each term by a fixed number does not change the convergence of the series.

Let’s first define conditionally convergent series, then we'll move on to solving the problem. Conditionally Convergent Series: A series that is convergent when absolute values of its terms are considered is called absolutely convergent. If the series is convergent but not absolutely convergent, it is conditionally convergent.1) I. is conditionally convergent is absolutely convergent .False. If the series is convergent but not absolutely convergent, it is conditionally convergent.2) II. (-3)^ Σ is divergent.  False. If the series is convergent, then multiplying each term by a fixed number does not change the convergence of the series.3) III. 2Σ W.BL is absolutely convergent. False. If the series is convergent, then multiplying each term by a fixed number does not change the convergence of the series. Therefore, only statement II is true.

To know more about Convergent visit :

https://brainly.com/question/29258536

#SPJ11

Differentiate The Following Function. Simplify Your Answer As Much As Possible. Show All Steps F(X)=√(3x²X³)5

Answers

Differentiating the given function using the chain rule

We get: [tex]df(x)/dx = 5x^{(6/2) (1 + 3x)} / 3x^{(5/2))[/tex]

[tex]df(x)/dx = 5x^3 (1 + 3x) / 3 \sqrt x^5)[/tex]

The chain rule is a fundamental concept in calculus that allows us to differentiate composite functions.

It provides a way to calculate the derivative of a function that is formed by the composition of two or more functions.

Therefore, the differentiation of the function F(x) = √(3x²x³)5 is equal to 5x³ (1 + 3x) / 3√(x⁵).

We need to differentiate the following function:

F(x) = √(3x²x³)5

Differentiating the above function using the chain rule

we get, df(x)/dx = 5/2 × (3x²x³)⁻¹/² × [2x³ + 3x²(2x)]

df(x)/dx = 5/2 × (3x⁵)⁻¹/² × [2x³ + 6x⁴]

df(x)/dx = 5/2 × (1/3x⁵/2) × 2x³ (1 + 3x)

df(x)/dx = 5x³(1 + 3x) / (3x⁵/2)

To know more about Chain Rule visit:

https://brainly.com/question/31585086

#SPJ11

Other Questions
Consider a two-firm model with a negative production externality. Let x denote firm i's output, with i 1,2. Suppose that two firms operate in two different competitive markets and each firm sells its product in its respective competitive market, at the prices p = 100 and p = 150, respectively, and that they face the same direct production cost ci(xi) = xi/2. Let e(x, x) = xx be the external cost on firm 2's activity generated by the production of firm 1.a. Find each firms best response function to the output set by the other firmand compute the Nash equilibrium assuming that firms choose their outputnon-cooperatively and independently. Illustrate the equilibrium in anappropriate graph.b. Calculate each firms equilibrium profits and the total external cost imposed on firm 2. Identify leadership skills Jehoichin has that led to his andBamboos success. Which skill is his strongest? to ""synthesize"" means to combine information to create new information. please select the best answer from the choices provided t f Selected accounts for Crane's Salon at December 31, 2021, are presented below. A. Crane, Capital 29,500 A. Crane, Drawings 3,300 Service Revenue Dr. Dr. Dr. Cr. Cr. Cr. 49,700Dr. Salaries Expense 19 If the long run macro aggregate supply curve is vertical at y-full employment, then in the long run, the effect of a change in the interest rate on aggregate output is infinitely large.a. Trueb. False A vegetarian diet has not been shown to lower the risk for:_________ Using utility, explain the following commonly made statements:a. I couldn't eat another bite.b. I'll never get tired of your cooking.c. The last drop tastes as good as the first.d. I wouldn't eat broccoli if you paid me.e. My kid would eat nothing but junk food if I allowed her.f. Any job worth doing is worth doing well.How would quests' behavior be likely to On your handwritten notes find, using differentiation from firstprinciples, the derivative of y=3x^2-5 Solve the equation for exact solutions in the interval [0 360) Use an algebraic method. (cot 0-1)2sin 0+1)=0 Select the correct choice below and, if necessary, fill in the answer box to complete y under which circumstances does the tax burden fall entirely on consumers? Which of the following factors contributes to grandparents caring for their grandchildren?a.deathb.divorcec.drugsd.all of the above which primary energy source is the most used in the world? Isthere anything wrong with that? A Moving to another question will save this response. Question 20 A written Lockout/Tagout Program must have (choose all apply) Requirements for verifying the effectiveness of the lockout/ tagout device by testing procedures for machinery and equipment. Specific procedures for the placement and removal of lockout/tagout devices as well as the method of identifying an individual's locks or tags. Specific steps for shutting down, isolating, and blocking machinery and equipment in order to control hazardous energy. Descriptions of company lockout/tagout policies regarding multiple lockout/tagouts, outside personnel, shift changes, and training of employees A detailed training program for employees who perform the service and maintenance and for employees who are indirectly affected by those operation Moving to another question will save this response. e N W X SAMSUNG Which of the following best summarizes "The Tell-Tale Heart"?Select the correct answer.The narrator is disturbed by the old man's eye and plans to end his life to not deal with the eye anymore. He stalks the old man every night eventually driving himself insane.The narrator no longer wants the old man as a roommate and so he kills him. The narrator hides the corpse under the floorboards in the old man's room. However, the narrator goes insane believing he still hears the old man's heat beating.The narrator, who refuses to acknowledge his insanity, kills his roommate because of his vulture eye. A neighbor calls the police to investigate a disturbance. The police and the narrator have a lengthy conversation that convinces the narrator he will get away with the crime.The narrator, convinced he is completely sane, kills the old man whom he shares a home with because he is bothered by the man's vulture eye. The police visits the home to question the narrator about a scream. The narrator believes he hears the old man's heart beating and shows the police where he hid the body. a virus has replicated itself throughout systems it has infected and is executing its payload. which of the following phases of the virus life cycle is this virus in? Case Study:Mr. Murad owned a valuable plot in Bahria Town, worth Rs. 5m. He was forced by some aggressivemen to sell this plot to Mr. Noman for Rs. 3.8m. They threatened him of destroying his car, if he wouldnot give consent to this contract.1. If Mr. Murad gives his consent accordingly, then explain the legal status of this contract, asper the viewpoint of various Muslim jurists on this issue.2. Describe the legal consequences of this contract, as well. HYDROLOGY:15. A rectangular channel 6 m wide has a depth of 1 m flowing with a mean velocity of 0.75 m/s. Determine the height of a rectangular suppressed weir that will increase the depth of water in the chann Information about the underlying asset: spot price 100, expected return 15%, volatility 20%. Information about the market: risk-free rate 5.00%.a)n Consider a Cox-Ross-Rubinstein (CRR) binomial tree, in which one time step is 4 months. Calculate the up-factor u, and down-factor d, and show how to get the probability (of price moving up) p?b)Consider an at-the-money American put option maturing in 1 year. Build a 3-step CRR binomial tree (i.e. show the price changes).c)Calculate the option price using the tree in question (b) and show the early exercise points if there is any. Describe in detail how International Stock Marketshelp Multinational Corporations (MNCs) to finance theirinternational business expansion activities? ( In an optimization problem, the positive difference between thetwo sides of a constraint is called:the surplus.the constraint gain.the deficit.the slack.