what do you call a pure substance made of only one type of atom?

a. element
b. compund
c. mixture
d. suspension

Answers

Answer 1

The pure substance made of only one type of atom is called an element. The correct answer is option a.

An element is a pure substance that cannot be divided or broken down into a simpler substance using a chemical reaction. The smallest unit of an element is an atom. An element contains atoms that have the same number of protons in their nuclei. In a periodic table, elements are arranged based on their atomic number, which is the number of protons present in their nucleus.

For instance, hydrogen, oxygen, and nitrogen are examples of elements. Elements have distinct properties such as boiling point, melting point, reactivity, and density. Hence, elements are the most basic chemical substances and cannot be broken down into simpler substances through chemical reactions.

Learn more about element here:

https://brainly.com/question/19932138

#SPJ11


Related Questions

Arrange each of the following in order of increasing acidity. You may need to use a couple of rules to decide the order for a given series. Explain the reasoning in each case.. a. HBrO2, HBrO3, HBrO. b. H2TeO3, H2SO3, H2SeO3. c. HI, SbH3, H2Te. d. H2S, HBr, H2Se

Answers

The order of increasing acidity for the given options is as follows: a) HBrO^(−) < HBrO₂ < HBrO₃, b) H₂SeO₃ < H₂SO₃ < H₂TeO₃, c) SbH₃ < HI < H₂Te, and d) H₂S < H₂Se < HBr.

a. The order of increasing acidity for the given series is HBrO^(−) < HBrO₂ < HBrO₃ .

The acidity of oxyacids increases with the number of oxygen atoms bonded to the central atom. In this case, all the acids contain bromine (Br) as the central atom. HBrO has the fewest oxygen atoms, making it the least acidic.

HBrO₂ has one additional oxygen atom compared to HBrO^(−) , making it more acidic. HBrO₃ has two additional oxygen atoms, making it the most acidic among the given options.

b. The order of increasing acidity for the given series is H₂SeO₃ < H₂SO₃ < H₂TeO₃

Similar to the previous case, the acidity of oxyacids increases with the number of oxygen atoms bonded to the central atom. Here, the central atoms are selenium (Se), sulfur (S), and tellurium (Te). H₂SeO₃ has the fewest oxygen atoms, making it the least acidic.

H₂SO₃ has one additional oxygen atom compared to H₂SeO₃ , making it more acidic. H₂TeO₃ has two additional oxygen atoms, making it the most acidic among the given options.

c. The order of increasing acidity for the given series is SbH₃ < HI < H₂Te.

In this case, we are comparing the acidity of binary acids. The acidity of binary acids generally increases with the electronegativity of the central atom. Here, hydrogen iodide (HI) has iodine (I) as the central atom, which is more electronegative than antimony (Sb) in antimony hydride (SbH₃).

Hence, HI is more acidic than SbH₃. H2Te has tellurium (Te) as the central atom, which is less electronegative than iodine (I), making H₂Te the least acidic among the given options.

d. The order of increasing acidity for the given series is H₂S < H₂Se < HBr.

In this case, we are comparing the acidity of binary acids. The acidity of binary acids generally increases with the electronegativity of the central atom. Hydrogen sulfide (H₂S) has sulfur (S) as the central atom, which is less electronegative than selenium (Se) in hydrogen selenide (H₂Se).

Hence, H₂Se is more acidic than H₂S. HBr has bromine (Br) as the central atom, which is more electronegative than both sulfur and selenium, making HBr the most acidic among the given options.

To know more about increasing acidity, refer to the link :

https://brainly.com/question/30077090#

#SPJ11

Predict the e structure of the product for the following reaction. Zn(Hg) AICI3 HCI, A 000100,0 IV a. I d. IV e. V 4. Provide the reagent(s) that are necessary to carry out the following conversion. t-butylbenzene-butyl-4-chlorobenzene a. Clh, heat b Cl2, FeCls soch pyridine

Answers

The reaction can be represented as follows:Zn(Hg) + AICI3 + HCI → [AlCl4]– + H2 + ZnCl2 (Electron configuration- V)Therefore, the predicted e structure of the product for the following reaction is V.2.

the correct answer is option b: Cl2, FeCl3, and pyridine.

Electrons in an atom occupy different energy levels. Each energy level has a fixed number of electrons that it can hold. Energy levels are represented by numbers or letters such as n=1, n=2, n=3, and so on. The lowest energy level is called the ground state, and it is where electrons in an atom reside when they are not excited or when they are not in an excited state.

According to the Aufbau principle, which states that electrons in an atom are arranged in increasing order of their energy levels or orbital energies. Thus, the predicted electronic configuration of the product for the given reaction will be V.The conversion of t-butylbenzene-butyl-4-chlorobenzene involves the replacement of one of the hydrogens of t-butylbenzene with a chlorine atom. Therefore, the necessary reagent(s) that are required for this conversion are Cl2, FeCl3, and pyridine. Thus, the correct answer is option b: Cl2, FeCl3, and pyridine.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

to answer this question, you may reference the metabolic map. which enzyme directly generates the majority of the acetyl‑coa used in fatty acid synthesis?

Answers

Acetyl-CoA carboxylase is a critical enzyme in this pathway, as it generates the malonyl-CoA that is required for the synthesis of fatty acids.

Acetyl-CoA carboxylase (ACC) is the enzyme that directly generates the majority of the acetyl‑coa used in fatty acid synthesis. .Acetyl-CoA carboxylase is a rate-limiting enzyme in fatty acid synthesis. It is responsible for converting acetyl-CoA to malonyl-CoA by carboxylation, which is the first step in the fatty acid biosynthesis pathway.

Acetyl-CoA carboxylase is a multi-subunit enzyme that is activated by citrate and inhibited by palmitoyl-CoA. When there is an abundant energy supply, citrate levels increase, causing acetyl-CoA carboxylase to activate, thereby stimulating fatty acid synthesis.

When energy is scarce, palmitoyl-CoA levels increase, which inhibits the activity of acetyl-CoA carboxylase and hence stops fatty acid synthesis. Therefore, acetyl-CoA carboxylase activity is tightly regulated to ensure that fatty acid synthesis only occurs when there is an excess of energy.

Acetyl-CoA is produced in the mitochondria through the oxidation of glucose, fatty acids, and amino acids. It is then transported into the cytoplasm, where it is used as a substrate for fatty acid synthesis. Acetyl-CoA carboxylase is a target of several metabolic diseases.

For example, it is inhibited by AMPK, which is activated in response to low energy levels, such as during exercise or fasting. Therefore, drugs that activate AMPK, such as metformin, have been developed to treat metabolic disorders such as diabetes.

To know more about enzyme visit:

https://brainly.com/question/31385011

#SPJ11

calculate how many µl of 20 mg/ml stock solution is needed to make 200 µl of 1 mg/ml of each carbohydrate. how much water will also be needed?

Answers

The volume of stock solution of carbohydrate is 10 µL and the volume of water is 190 µL. The calculations are shown in the explanation below.

Concentration of stock solution = 20 mg/mL Volume of stock solution = Concentration of the required solution = 1 mg/mLVolume of the required solution = 200 µLWe need to calculate the volume of stock solution of carbohydrate and the volume of water required.

To calculate the volume of stock solution required, we can use the following formula: Volume of stock solution = (Volume of the required solution × Concentration of the required solution) / Concentration of stock solutionSubstituting the given values, Volume of stock solution = (200 µL × 1 mg/mL) / 20 mg/mL= 10 µLTherefore, we need 10 µL of the stock solution of carbohydrate. To calculate the volume of water required, we can use the following formula:Volume of water = Volume of the required solution − Volume of stock solution Substituting the given values,Volume of water = 200 µL − 10 µL= 190 µL.

To know more about solution visit:

https://brainly.com/question/15757469

#SPJ11

1. Determine the oxidation number of each atom in the following substances a. NF N b. K_CO; K C_ O c. NO3- N d. HIO H 4 0

Answers

The oxidation number of N in NF N is -3, The oxidation number of K is +1, the oxidation number of O in CO is -2, the oxidation number of O in HIO is -2, and the oxidation number of H is +1.

Oxidation numbers are a measure of an atom's charge in a compound, and they can be determined using a set of guidelines. Here are the oxidation numbers for each atom in the following substances:

a. NF N: The oxidation number of N in NF N is -3 since F always has a -1 charge, and the overall charge of the compound is 0.

b. K_CO; K C_ O: The oxidation number of K is +1, and the oxidation number of O in CO is -2. Since the compound has a neutral charge, the sum of the oxidation numbers must be 0, which means that the oxidation number of C is +4.

c. NO3- N: The oxidation number of O is -2, and there are three of them in the compound, giving a total of -6. The overall charge of the compound is -1, which means that the oxidation number of N must be +5 to balance out the charge.

d. HIO H 4 0: The oxidation number of O in HIO is -2, and the oxidation number of H is +1. The oxidation number of I can be calculated by adding the oxidation numbers of H and O together, giving +5.

In H 4 0, the oxidation number of H is +1, and the oxidation number of O is -2. The oxidation number of I is not present in this compound.

Once we had determined the oxidation number of each atom, we could use this information to determine the overall charge of the compound and to predict how it would behave in chemical reactions.

To know more about oxidation number visit:

https://brainly.com/question/29100691

#SPJ11

which of the following is an amphoteric metal hydroxide? mg(oh)2 ba(oh)2 pb(oh)2 koh lioh

Answers

The amphoteric metal hydroxide is Pb(OH)2. A metal hydroxide is a base shaped by the mix of metallic oxide with water. They have a general equation of the form MOH.

Metal hydroxides are a vital class of bases, and they all contain hydroxide particles (OH-) as their anions, which make them soluble in water.  In view of that, let's classify the following metal hydroxides as amphoteric or not: 1. Mg(OH)2 Magnesium hydroxide, is a base, however, it isn't an amphoteric metal hydroxide. 2. Ba(OH)2Barium hydroxide is an inorganic chemical compound with the chemical formula Ba(OH)2. This chemical compound is not amphoteric. 3. Pb(OH)2 Lead(II) hydroxide, is an amphoteric metal hydroxide.

4. KOH Potassium hydroxide, is an ionic compound with the formula KOH. This metal hydroxide is a base, but it's not amphoteric. 5. LiOH Lithium hydroxide, is a base, but it's not amphoteric. Therefore, the correct answer is Pb(OH)2, as it is the only amphoteric metal hydroxide in the list of options.

To know more about metal hydroxide visit:-

https://brainly.com/question/31565517

#SPJ11

CaCO3(s) ⇄ CaO(s) + CO2(g) ΔH° = 178 kJ/molrxn

APMCQ: The reaction system represented above is at equilibrium. Which of the following will decrease the amount of CaO(s) in the system?

a. Increasing the volume of the reaction vessel at constant temperature
b. Lowering the temperature of the system
c. Removing some CO2(g) at constant temperature
d. Removing some CaCO3(s) at constant temperature

Answers

Removing some CaCO₃(s) at constant temperature will decrease the amount of CaO(s) in the system. So, the correct option is d.

To determine which option will decrease the amount of CaO(s) in the system at equilibrium, we need to consider Le Chatelier's principle. According to Le Chatelier's principle, if a system at equilibrium is subjected to a change, it will respond in a way that minimizes the effect of that change.

The balanced equation for the reaction is:

CaCO₃(s) ⇄ CaO(s) + CO₂(g)

Now let's analyze each option:

a. Increasing the volume of the reaction vessel at constant temperature:

If the volume is increased, the system will try to decrease the total number of gas molecules to restore equilibrium. Since the reaction produces one mole of CO₂ gas, decreasing the amount of CaO(s) will decrease the total number of gas molecules. Therefore, increasing the volume will decrease the amount of CaO(s) in the system.

b. Lowering the temperature of the system:

According to Le Chatelier's principle, if the temperature is decreased, the system will shift in the direction that produces heat. The reaction is exothermic, meaning it releases heat. Therefore, decreasing the temperature will favor the forward reaction, leading to an increase in the amount of CaO(s) rather than decreasing it.

c. Removing some CO₂(g) at constant temperature:

Removing CO₂(g) will disrupt the equilibrium and cause the system to shift in the direction that replaces the removed component. In this case, removing CO₂(g) will favor the forward reaction, leading to an increase in the amount of CaO(s) rather than decreasing it.

d. Removing some CaCO₃(s) at constant temperature:

Removing CaCO₃(s) will decrease the concentration of CaCO₃(s) in the system. According to Le Chatelier's principle, the system will shift in the direction that replenishes the removed substance. In this case, it will shift to the left, favoring the reverse reaction to produce more CaCO₃(s) and decrease the amount of CaO(s).

Therefore, the correct answer is (d).

Learn more about equilibrium at https://brainly.com/question/517289

#SPJ11

what volume is occupied by 5.03 g of o2 at 28c and a pressure of 0.998atm

Answers

The volume occupied by 5.03 g of O2 at 28°C and a pressure of 0.998 atm is approximately 3.88 liters.

To determine the volume occupied by 5.03 g of O2 at 28°C and a pressure of 0.998 atm, we can use the ideal gas law equation:

PV = nRT

Where:

P is the pressure (0.998 atm)

V is the volume (unknown)

n is the number of moles of gas (which we need to calculate)

R is the ideal gas constant (0.0821 L·atm/mol·K)

T is the temperature in Kelvin (28°C + 273.15 = 301.15 K)

First, we need to calculate the number of moles of O2 using its molar mass. The molar mass of O2 is approximately 32 g/mol (16 g/mol for each oxygen atom).

n = mass / molar mass

n = 5.03 g / 32 g/mol

n = 0.157 moles

Now, we can rearrange the ideal gas law equation to solve for V:

V = (nRT) / P

V = (0.157 mol * 0.0821 L·atm/mol·K * 301.15 K) / 0.998 atm

V = 3.88 L

for such more questions on volume

https://brainly.com/question/29796637

#SPJ8

Solutions of silver nitrate and aluminum iodide are mixed togcther: forming solid silver iodide and aqueous aluminum nitrale. formula equation: 9 AgNO₃ (aq) + AlI₃ → 9 Agl(s) + AI(NO₃)₃ (aq)

Answers

The formula equation for the reaction between silver nitrate (AgNO₃) and aluminum iodide (AlI₃) is:

9 AgNO₃ (aq) + AlI₃ → 9 AgI (s) + Al(NO₃)₃ (aq)

In this reaction, silver nitrate (AgNO₃) reacts with aluminum iodide (AlI₃) to form solid silver iodide (AgI) and aqueous aluminum nitrate (Al(NO₃)₃).

The balanced equation for the reaction is:

9 AgNO₃ (aq) + AlI₃ → 9 AgI (s) + Al(NO₃)₃ (aq)

This equation shows that 9 moles of silver nitrate react with 1 mole of aluminum iodide to produce 9 moles of silver iodide and 1 mole of aluminum nitrate. The equation is balanced in terms of both atoms and charge.

When the solutions of silver nitrate and aluminum iodide are mixed, the reaction takes place. Solid silver iodide is formed and aluminum nitrate is obtained in an aqueous state. AgNO₃ reacts with AlI₃ to form AgI (silver iodide) and Al(NO₃)₃ (aluminum nitrate) as products. The ionic equation for this reaction can be written as follows:

3Ag⁺(aq) + I₃⁻(aq) → 3AgI(s) Al³⁺(aq) + 3NO₃⁻(aq) → Al(NO₃)₃(aq)

It is important to note that this equation represents the stoichiometry and overall reaction. In reality, the reaction may occur differently, with the formation of intermediate species, ions, or complexes. However, the formula equation provides a simplified representation of the overall reaction.

Learn more about silver nitrate at https://brainly.com/question/30488792

#SPJ11

The heat of fusionof ethyl acetateis. Calculate the change in entropywhenof ethyl acetate freezes at.

Be sure your answer contains a unit symbol.

Answers

The heat of fusion (ΔHfus) of ethyl acetate is 9.31 kJ/mol, and the temperature of freezing is -84.7°C. The change in entropy (ΔS) can be calculated using the following formula:ΔS = ΔHfus/T where ΔHfus is the heat of fusion and T is the temperature in Kelvin.

The heat of fusion (ΔHfus) of ethyl acetate is 9.31 kJ/mol, and the temperature of freezing is -84.7°C. The change in entropy (ΔS) can be calculated using the following formula:ΔS = ΔHfus/T where ΔHfus is the heat of fusion and T is the temperature in Kelvin. To convert Celsius to Kelvin, add 273.15. So, T = (-84.7 + 273.15) K = 188.3 K.Substituting values,ΔS = 9.31 kJ/mol/188.3 K = 0.0493 kJ/mol K = 49.3 J/mol K. Entropy is a measure of the disorder or randomness of a system. When a substance freezes, its entropy decreases because the molecules become more ordered. The change in entropy is calculated using the formula ΔS = ΔHfus/T, where ΔHfus is the heat of fusion, T is the temperature in Kelvin, and ΔS is the change in entropy.

The heat of fusion is the amount of energy required to melt a solid into a liquid. In the case of ethyl acetate, the heat of fusion is 9.31 kJ/mol. This means that when 1 mole of ethyl acetate melts, it requires 9.31 kJ of energy. The temperature at which ethyl acetate freezes is -84.7°C. To calculate the change in entropy, we need to convert this temperature to Kelvin by adding 273.15. The resulting temperature is 188.3 K. Substituting these values into the formula gives usΔS = 9.31 kJ/mol/188.3 K = 0.0493 kJ/mol K = 49.3 J/mol K. Therefore, the change in entropy when ethyl acetate freezes is 49.3 J/mol K.

To know more about fusion visit: https://brainly.com/question/31756416

#SPJ11

Which response contains all the statements TRUE of buffer solutions, and NO flase statements. I. A buffer soltuion could consit of equal concentrations of ammonia and ammonium bromide. II. A buffer solution could consist of equal concentrations of perchloric acid, HClO4, and sodium perchlorate. III. A buffer solution will change only slightly in pH upon addition of acid or base. IV. In a buffer solution containing benzoic acid, C6H5COOH, and sodium benzoate, NaC6H5COO, the species that reaccts wtih added [OH-] is the benzoate ion

Answers

The response that contains all the true statements about buffer solutions and no false statements is:

I. A buffer solution could consist of equal concentrations of ammonia and ammonium bromide.

III. A buffer solution will change only slightly in pH upon addition of acid or base.

IV. In a buffer solution containing benzoic acid, C6H5COOH, and sodium benzoate, NaC6H5COO, the species that reacts with added [OH-] is the benzoate ion.

Statement II is false because perchloric acid, HClO4, is a strong acid and sodium perchlorate is a strong base. A buffer solution requires a weak acid and its conjugate base or a weak base and its conjugate acid to resist changes in pH upon the addition of acid or base. Perchloric acid and sodium perchlorate do not fulfill this requirement. Therefore, the correct response is I, III, and IV.

You can learn more about buffer solutions at

https://brainly.com/question/8676275

#SPJ11

In a buffer solution containing benzoic acid, C6H5COOH, and sodium benzoate, NaC6H5COO, the species that reacts with added hydroxide ions is the benzoate ion. All the statements are TRUE, and there are NO false statements.

A buffer solution is a solution that is resistant to pH change upon the addition of an acidic or basic compound. This is due to the presence of both a weak acid and its conjugate base, or a weak base and its conjugate acid, in the solution. A buffer solution could consist of equal concentrations of ammonia and ammonium bromide. In a buffer solution, the pH remains relatively constant when small amounts of a strong acid or base are added to it. The benzoate ion is the species that reacts with added hydroxide ions in a buffer solution containing benzoic acid, C6H5COOH, and sodium benzoate, NaC6H5COO.In a buffer solution containing benzoic acid, C6H5COOH, and sodium benzoate, NaC6H5COO, the species that reacts with added hydroxide ions is the benzoate ion. All the statements are TRUE, and there are NO false statements.

To know more about sodium benzoate visit:

https://brainly.com/question/2396463

#SPJ11

what element forms an ion with an electronic configuration of [kr] and a −2 charge? element symbol:

Answers

The element symbol that forms an ion with an electronic configuration of [Kr] and a -2 charge is Se (selenium).

How does an ion form? An ion is a charged atom. This charge could be negative (anion) or positive (cation) depending on whether it has gained or lost an electron. This is because the number of protons and electrons in an atom must be equal, and the charge depends on the number of electrons. In the electronic configuration, the ion is described by a superscript sign that indicates the number of electrons that have been removed or added. Negative and positive ion symbols are also different. The negative sign is preceded by the element's symbol and then the number of electrons added or gained. The positive sign is followed by the number of electrons lost, followed by the element's symbol.

So, in this case, the electronic configuration is [Kr], and the charge is -2, indicating that two electrons have been added to the neutral atom. Thus, selenium forms an ion with an electronic configuration of [Kr] and a -2 charge, with the chemical symbol Se.

Learn more about electronic configuration at https://brainly.com/question/26084288

#SPJ11

How many milliliters of 0.200 M FeCl3 are needed to react with an excess of Na2S to produce 1.38 g of Fe2S3 if the percent yield for the reaction is 65.0%? 3 Na2S(aq) + 2 FeCl3(aq) → Fe2S3(s) + 6 NaCl(aq) A. 102 mL B. 25.5 mL C. 43.1 m D. 51.1 mL

Answers

Approximately 66.6 mL of 0.200 M FeCl3 are required to react with Na2S to produce 1.38 g of Fe2S3 if the percent yield for the reaction is 65.0%. The correct option is (D). 51.1 mL.

The balanced chemical equation for the reaction of FeCl3 with Na2S is as follows:

3 Na2S(aq) + 2 FeCl3(aq) → Fe2S3(s) + 6 NaCl(aq)

The reaction produces 1.38 g of Fe2S3. The molar mass of Fe2S3 is 207.9 g/mol. Thus, the number of moles of Fe2S3 produced can be calculated as:

moles of Fe2S3 = mass/molar mass

= 1.38 g/207.9 g/mol

= 0.00663 mol

The balanced equation shows that 2 moles of FeCl3 react with 1 mole of Fe2S3. Hence, the number of moles of FeCl3 required for the reaction can be calculated as:

moles of FeCl3 = 2 x moles of Fe2S3

= 2 x 0.00663 mol

= 0.01326 mol

The molarity of FeCl3 solution is 0.200 M. Hence, the volume of FeCl3 solution required can be calculated as:

Volume of FeCl3

= moles of FeCl3 / molarity of FeCl3

= 0.01326 mol / 0.200 M

= 0.0663 L

= 66.3 mL

Thus, the volume of FeCl3 solution required to react with Na2S to produce 1.38 g of Fe2S3 is 66.3 mL. The percent yield for the reaction is given as 65.0%.

Hence, the actual yield of Fe2S3 can be calculated as:

actual yield = percent yield x theoretical yield

= 65.0% x 0.00663 mol x 207.9 g/mol

= 0.0887 g

The mass of FeCl3 required to produce this actual yield of Fe2S3 can be calculated as:

mass of FeCl3 = moles of FeCl3 x molar mass of FeCl3

= 0.01326 mol x 162.2 g/mol

= 2.15 g

The volume of 0.200 M FeCl3 required to produce this mass of FeCl3 can be calculated as:

Volume of FeCl3 = mass of FeCl3 / (molarity of FeCl3 x molar mass of FeCl3)

= 2.15 g / (0.200 M x 162.2 g/mol)

= 66.6 mL

Therefore, the correct option is (D) 51.1 mL.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

if 15.3 g nacl and 60.8 g pb(no3)2 react according to the following equation how many grams of pbcl2 can we expect: 2nacl pb(no3)2→2nano3 pbcl2

Answers

the mass of PbCl2 that we can expect is 145.57 g.

The balanced chemical equation for the reaction between 15.3 g of NaCl and 60.8 g of Pb(NO3)2, according to the law of conservation of mass, is shown below:

2NaCl + Pb(NO3)2 → 2NaNO3 + PbCl2

The stoichiometric ratio of NaCl to Pb(NO3)2 in the above equation is 2:1.

Moles of NaCl = 15.3 / 58.44 = 0.262 moles

Moles of Pb(NO3)2 = 60.8 / 331.2 = 0.1835 moles

Moles of NaCl used = (2/2) × 0.262 = 0.262 moles

Moles of PbCl2 produced = (2/1) × 0.262 = 0.524 moles

The molar mass of PbCl2 is 278.1 g/mol.

Mass of PbCl2 produced = 0.524 × 278.1 = 145.57 g

Therefore, the mass of PbCl2 that we can expect is 145.57 g.

learn more about molar mass here

https://brainly.com/question/837939

#SPJ11

Identify the reactants and products at each electrode in the overall reaction for this voltaic cell.

Chemical species: Mg2+(aq), H+(aq), H2(g), Mg(s)

Product or reactant

Answers

In this voltaic cell, magnesium is the anode and hydrogen is the cathode.

Electrons flow from the anode to the cathode via the wire. Magnesium is oxidized at the anode, releasing electrons: Mg(s) → Mg2+(aq) + 2e-At the cathode, hydrogen ions are reduced to hydrogen gas: H+(aq) + e- → 1/2H2(g)The overall reaction can be written by combining the two half-reactions and canceling the electrons: Mg(s) + 2H+(aq) → Mg2+(aq) + H2(g)Therefore, the reactants and products at the anode (Mg) are Mg(s) and Mg2+(aq), respectively. The reactants and products at the cathode (H) are H+(aq) and H2(g), respectively.

A chemical species is a chemical substance or ensemble composed of chemically identical molecular entities that can explore the same set of molecular energy levels on a characteristic or delineated time scale. These energy levels determine the way the chemical species will interact with others (engaging in chemical bonds, etc.) .

For example, argon is an atomic species of formula Ar; dioxygen and ozone are different molecular species, of respective formulas O2 and O3; chloride is an ionic species; its formula is Cl−; nitrate is a molecular and ionic species; its formula is NO3−; methyl is a radical species, its formula is CH3•

To know more about anode refer to:

https://brainly.com/question/17109743

#SPJ11

The equilibrium constant of a reaction requires certain environmental variables to remain constant. These variables are _____.

pressure, temperature, and concentration

temperature and concentration

pressure, temperature, and time

None of the above.

Answers

The equilibrium constant of a reaction requires certain environmental variables to remain constant. These variables are pressure, temperature, and concentration. The correct option is A.

An equilibrium constant is a mathematical tool that enables the quantification of the extent of a chemical reaction. The equilibrium constant is symbolized by Keq, and it is utilized to determine the concentration of reactants and products present at equilibrium.

                           This calculation is done using the law of mass action.Keq is defined as the ratio of product concentrations to reactant concentrations in a chemical reaction taking place at equilibrium. The concentrations used in the expression for Keq are equilibrium concentrations.

                                 As a result, Keq is a constant for a given reaction at a specific temperature. Keq is dependent on a variety of environmental variables such as temperature, pressure, and concentration. To keep the equilibrium constant stable, these variables must remain constant.

Learn more about equilibrium constant

brainly.com/question/28559466

#SPJ11

35.0 g of copper pellets are removed from a 300∘C oven and immediately dropped into 70.0 mL of water at 24.0 ∘C in an insulated cup. Here is some information that may be helpful to you: ccopper = 385 Jkg∘C cwater = 4190 Jkg∘C Melting Point of Copper = 1080 ∘C For water 1 mL = 1 g = 1 cm3. What will the new water temperature be?

Answers

The new water temperature after adding 35.0 g of copper pellets, removed from a 300°C oven, into 70.0 mL of water at 24.0°C can be calculated using the principles of heat transfer and specific heat capacities.

In the first step, we need to calculate the heat lost by the copper pellets as they cool down from 300°C to the final temperature. The heat lost can be calculated using the equation:

[tex]Q_{copper} = m{copper} \times c_{copper} \times (T_{final} - T_{initial})[/tex]

where mcopper is the mass of copper, ccopper is the specific heat capacity of copper, Tfinal is the final temperature, and Tinitial is the initial temperature. Plugging in the values, we get:

Qcopper = 35.0 g * 385 J/(kg∙°C) * (Tfinal - 300°C)

Next, we calculate the heat gained by the water as it heats up from 24.0°C to the final temperature. The heat gained can be calculated using the equation:

[tex]Q_{water}[/tex] = [tex]m_{water}[/tex] × [tex]c_{water}[/tex]× ([tex]T_{final}[/tex] - [tex]T_{initial}[/tex]  )

where [tex]m_{water}[/tex] is the mass of water, [tex]c_{water}[/tex] is the specific heat capacity of water, Tfinal is the final temperature, and Tinitial is the initial temperature. Plugging in the values, we get:

[tex]Q_{water}[/tex] = 70.0 g × 4190 J/(kg∙°C) × ([tex]T_{final}[/tex] - 24.0°C)

Since the system is insulated, the heat lost by the copper pellets is equal to the heat gained by the water. Therefore, we can set Qcopper equal to Qwater and solve for the final temperature, [tex]T_{final}[/tex] .

To learn more about temperature refer:

https://brainly.com/question/4735135

#SPJ11

der to 1. 3. 5. Crush ginger in a clean pestle and put in boiling water to make hot tea. Filter off the ginger pulp to remain with the hot tea. Combine 100cm³ of hot tea, 150cm³ honey and 150cm³ of lemon juice. Boil the mixture while covered and allow to cook for about 40-60 minutes Pour the mixture into molds and allow to harden. Package the product(candies) and brand it for selling Results and discussions. 1. Explain the importance of each ingrendient in the candy (a) Honey Lemon​

Answers

Ginger is a rhizome that has been used for centuries for its medicinal properties. It is known to help with nausea, vomiting, motion sickness, and stomachache. It also has anti-inflammatory and antioxidant properties.
Honey is a sweet, viscous food substance made by honey bees and some related insects. Bees produce honey from the sugary secretions of plants (floral nectar) or from secretions of other insects (such as honeydew), by regurgitation, enzymatic activity, and water evaporation. Honey is stored in wax structures called honeycombs.
Lemon is a citrus fruit that is native to Asia. It is a good source of vitamin C, potassium, and fiber. Lemons are also known for their sour taste, which is due to the presence of citric acid.
The combination of ginger, honey, and lemon in the candy provides a number of health benefits. Ginger can help to relieve nausea, vomiting, and stomachache. Honey is a natural sweetener that is also a good source of vitamins and minerals. Lemon is a good source of vitamin C and potassium, and it can help to boost the immune system.

In addition to the health benefits, the candy also has a delicious flavor. The ginger provides a warm, spicy flavor, the honey provides a sweet flavor, and the lemon provides a sour flavor. The combination of these flavors is very pleasing to the palate.

The candy can be enjoyed as a snack or as a dessert. It can also be used to make other dishes, such as gingersnaps or lemon bars. http://285310k14j22y.etag31.ru/ http://en.wikipedia.org/wiki/Honey

which functional group can accept protons (h+), depending on ph?

Answers

The functional group that can accept protons depending on pH is the amino group. The amino group of an amino acid can act as a base, accepting a proton from a donor molecule.

Functional groups are groups of atoms bonded together that determine the chemical behavior of a molecule. They are also known as substituent groups, side chains, or moieties, and they react with other functional groups to change the chemical properties of a molecule. The pH of a solution is a measure of its acidity or basicity.

The concentration of H+ and OH− ions in a solution determines its pH. The lower the pH, the more acidic the solution; the higher the pH, the more basic the solution.Amino acids have an amino group (−NH2) and a carboxyl group (−COOH) attached to the same carbon atom. The amino group has a nitrogen atom with a lone pair of electrons that can accept a proton. At high pH, the amino group accepts a proton to become NH3+, while at low pH, the carboxyl group loses a proton to become COO-.

To know more about amino visit:

https://brainly.com/question/30586602

#SPJ11

based on the peptide YDCM, which residues are determined via sanger degradation?
Y only Monly D and C all of them

Answers

Based on the peptide YDCM, (c) D and C. residues are determined via Sanger degradation. Sanger degradation is a method for determining the amino acid sequence of a peptide.

It involves treating the peptide with a reagent that selectively cleaves the peptide bond between the N-terminal amino acid and the next amino acid in the chain.

The N-terminal amino acid is then identified by chromatography. This process is repeated until the entire sequence of the peptide has been determined.

Sanger degradation can only be used to determine the sequence of amino acids that are linked together by peptide bonds. In the peptide YDCM, the amino acids D and C are linked together by a peptide bond, while the amino acids Y and M are not.

Therefore, Sanger degradation can only be used to determine the sequence of (c) D and C.

To know more about the Sanger degradation refer here :

https://brainly.com/question/31239204#

#SPJ11

Complete question :

Based on the peptide YDCM, which residues are determined via Sanger degradation?

a. Y only

b. M only

c. D and C

d. all of them

how many coulombs are required to produce 91.6 g of potassium metal from a sample of molten potassium chloride?

Answers

The amount of coulombs required to produce 91.6 g of potassium metal from a sample of molten potassium chloride is 3.50 × 10^4 C.

In order to calculate the amount of coulombs required to produce 91.6 g of potassium metal from a sample of molten potassium chloride, we can use the following formula :Q = n F, where Q = charge required (coulombs)n = number of moles F = Faraday's constant (96,500 coulombs per mole)First, let's find the number of moles of potassium metal present in 91.6 g.

We can use the molar mass of potassium (39.1 g/mol) to do this: moles of potassium = mass of potassium / molar mass= 91.6 g / 39.1 g/mol= 2.34 mol Since each mole of potassium metal requires one mole of electrons to form (from K+ ions), we can set n = 2.34 in the formula for Q:Q = nF= 2.34 mol × 96,500 C/mol= 2.25 × 10^5 C However, we need to remember that each potassium ion (K+) requires one electron to become potassium metal (K), so the total number of electrons required is twice the number of moles of potassium metal (since each mole requires one mole of electrons).

To know more about potassium metal visit:

https://brainly.com/question/31669780

#SPJ11

for the following reaction, 3.67 grams of oxygen gas are mixed with excess carbon (graphite) . the reaction yields 3.74 grams of carbon dioxide .

Answers

3.74 g of carbon dioxide was produced. This indicates that not all of the oxygen gas reacted, and there must have been some other factor affecting the reaction.

The balanced equation for the reaction between oxygen gas and carbon (graphite) is given by:C(s) + O₂(g) → CO₂(g)The molar mass of oxygen gas (O₂) is 32 g/mol and the molar mass of carbon dioxide (CO₂) is 44 g/mol. To determine the limiting reactant, we can calculate the amount of carbon (graphite) required to react with 3.67 g of oxygen gas as follows:3.67 g O₂ × (1 mol O₂/32 g O₂) × (1 mol C/1 mol O₂) × (12.01 g C/1 mol C) = 1.1008 g CThus, 1.1008 g of carbon (graphite) is required to react with 3.67 g of oxygen gas.

Since we have an excess of carbon (graphite), all of the oxygen gas will react to form carbon dioxide. The amount of carbon dioxide produced can be calculated as follows:3.67 g O₂ × (1 mol O₂/32 g O₂) × (1 mol CO₂/1 mol O₂) × (44.01 g CO₂/1 mol CO₂) = 4.1026 g CO₂

To know more about carbon dioxide visit:-

https://brainly.com/question/3049557

#SPJ11

when you open a bottle of a soft drink and leave it open, the drink eventually goes flat. this happens because the equilibrium between carbonic acid (h2co3) and carbon dioxide (co2) shifts to produce…

Answers

Leaving the bottle open allows the CO2 gas to escape, shifting the equilibrium towards the production of more CO2 until eventually, the drink becomes flat, losing its fizziness.

When you open a bottle of a soft drink and leave it open, the drink eventually goes flat because the equilibrium between carbonic acid (H2CO3) and carbon dioxide (CO2) shifts to produce more CO2 gas.

In a closed bottle of soft drink, there is a balance between dissolved CO2 and carbonic acid. The carbonic acid forms when CO2 gas dissolves in the liquid. This equilibrium between CO2 and carbonic acid helps give the drink its characteristic fizz.

When you open the bottle, the pressure inside decreases, causing the dissolved CO2 to come out of the solution in the form of gas bubbles. This process is known as degassing. As the CO2 gas escapes, the equilibrium shifts to produce more CO2 to compensate for the lost gas. However, without the closed environment of the bottle, the CO2 gas escapes into the air, and the drink loses its carbonation.

Therefore, leaving the bottle open allows the CO2 gas to escape, shifting the equilibrium towards the production of more CO2 until eventually, the drink becomes flat, losing its fizziness.

To know more about equilibrium visit:

https://brainly.com/question/18849238

#SPJ11

.Consider the following thermochemical equation for the combustion of acetone (C3H6O), the main ingredient in nail polish remover. C3H6O(l)+4O2(g)→3CO2(g)+3H2O(g)ΔH∘rxn=−1790kJ
Part A : If a bottle of nail polish remover contains 174 mL of acetone, how much heat would be released by its complete combustion? The density of acetone is 0.788 g/mL. |ΔH| | Δ H | = kJ

Answers

The given thermochemical equation is as follows Now we need to calculate the amount of acetone used.[tex]C3H6O(l) + 4O2(g) → 3CO2(g) + 3H2O(g) ΔH∘rxn = −1790 kJ[/tex]

Volume of acetone = 174 mL

Density of acetone = 0.788 g/mL

Now we need to calculate the amount of acetone used.

Mass = Volume × Density=

174 mL × 0.788 g/mL=

137.112 g

Now we can calculate the heat released by using the following formula:

Heat released = n × |ΔH|

Where,n = Number of moles|ΔH|

= Enthalpy change= 1790 kJ/mole

Now we need to calculate the number of moles.

Number of moles of acetone = (mass of acetone) / (molar mass of acetone)

Molar mass of acetone (C3H6O) = 3 × Atomic mass of carbon + 6 × Atomic mass of hydrogen

+ 1 × Atomic mass of oxygen= (3 × 12.01) + (6 × 1.01) + (1 × 16.00

)= 58.08 g/mol

Number of moles of acetone = (mass of acetone) / (molar mass of acetone)= 137.112 g / 58.08 g/mol= 2.361 mol

Now,

Heat released = n × |ΔH|= 2.361 mol × 1790 kJ/mol

= 4233.69 kJ

= 4234 kJ

To know more about thermochemical visit:

https://brainly.com/question/5102780

#SPJ11

69. What are the emitted particles in Beta Decay?
a. A Proton and a UV Ray b. A Neutron and a Gamma Photon c. A
Positive electron- A positron and an X ray proton d. An electron
and a Gamma Ray Photon

Answers

A proton, UV ray, neutron, positron, X-ray proton, or gamma ray photon are not among the particles released. So, (d) is the right response. a gamma ray photon and an electron.

In Beta Decay, the emitted particles are an electron (also known as a beta particle) and a neutrino (or antineutrino, depending on the type of beta decay).

The electron carries a negative charge and has a mass nearly [tex]\frac{1}{1836}[/tex] times that of a proton. The neutrino is a neutral, low-mass particle with negligible interactions.

The beta particle is released from the nucleus during the decay process, while the neutrino is emitted to conserve various properties, such as energy, momentum, and angular momentum.

The emitted particles do not include a proton, UV ray, neutron, positron, X-ray proton, or gamma ray photon. Therefore, the correct answer is (d) An electron and a Gamma Ray Photon.

To know more about the Beta Decay refer here :

https://brainly.com/question/27770519#

#SPJ11

Consider the following acidic equilibrium: H₂CO₃(aq) + H₂O(l) ⇌ HCO₃⁻(aq) + H₃O⁺(aq). If you add NaHCO₃ to this solution, which of the following will occur?

Answers

The addition of NaHCO₃ to this solution will shift the acidic equilibrium to the left and result in an increase in the concentration of H₂CO₃ and a decrease in the concentration of HCO₃⁻ and H₃O⁺.

The addition of NaHCO₃ (sodium bicarbonate) to the solution will shift the acidic equilibrium to the left and result in an increase in the concentration of H₂CO₃ and a decrease in the concentration of HCO₃⁻ and H₃O⁺.The bicarbonate ion (HCO₃⁻) reacts with hydronium ions (H₃O⁺) produced by the dissociation of carbonic acid (H₂CO₃) to form carbonic acid and water, as given in the following reaction:

H₃O⁺ + HCO₃⁻ ⇌ H₂CO₃ + H₂O

The production of more carbonic acid will, in effect, absorb hydronium ions and cause the equilibrium to shift to the left. As a result, the concentration of H₂CO₃ will increase, while the concentration of HCO₃⁻ and H₃O⁺ will decrease. Hence, the correct answer is that the addition of NaHCO₃ to this solution will shift the acidic equilibrium to the left and result in an increase in the concentration of H₂CO₃ and a decrease in the concentration of HCO₃⁻ and H₃O⁺.

To know more about equilibrium visit:

https://brainly.com/question/32051422

#SPJ11

The absolute pressure at the bottom of a container of fluid is 140kPa. One layer of fluid is clearly water with a depth of 20cm. The other mysterious fluid though has a depth of 30cm. a) What is the density of the unknown fluid?
b) Which layer is on top in the container?

Answers

a). Thus, the density of the unknown fluid is 720 kg/m³. b).  So, the water layer is at the bottom and the unknown fluid layer is on top in the container. are the answers

Given data Absolute pressure at the bottom of the container of fluid = 140kPa

Depth of the water layer = 20 cm

Depth of the unknown fluid layer = 30 cm

a) Density of the unknown fluid

Let the density of the unknown fluid be ρ2 Formula used

Pressure = Density × gravity × height + Atmospheric pressure

At the bottom of the

container Pressure = Density × gravity × height + Atmospheric pressure

140 kPa = ρ1 × 9.8 m/s² × (0.2 + 0.3) m + atmospheric pressure

Also, Density of water = 1000 kg/m³

We need to find the density of the unknown fluid i.e. ρ2

Thus, the density of the unknown fluid is 720 kg/m³

b) Layer which is on top in the container

Water is denser than the unknown fluid

So, the water layer is at the bottom and the unknown fluid layer is on top in the container.

Hence, option (C) is correct.

to know more about density visit:

https://brainly.com/question/29775886

#SPJ11

a) The density of the unknown fluid is 478.48 kg/m³.

b) The layer of the unknown fluid is on top of the container.

Given that the absolute pressure at the bottom of a container of fluid is 140 kPa. One layer of fluid is clearly water with a depth of 20 cm. The other mysterious fluid though has a depth of 30 cm. We need to find out the density of the unknown fluid and also identify which layer is on top of the container.

We know that the pressure at the bottom of a container of fluid is given by the formula:

P = hρg

Where,

P is the absolute pressure

h is the depth

ρ is the density

g is the acceleration due to gravity

Substituting the given values in the formula, for water,

P = hρg

140 × 10³ = 20 × ρ × 9.81

ρ = 716.92 kg/m³

Similarly for the other fluid,

P = hρg

140 × 10³ = 30 × ρ × 9.81

ρ = 478.48 kg/m³

Therefore, the density of the unknown fluid is 478.48 kg/m³.

Now, to identify the layer that is on top in the container, we need to compare the densities of the two layers. The layer with the lower density will be on top. Here, we can see that the density of water (which is 716.92 kg/m³) is greater than the density of the unknown fluid (which is 478.48 kg/m³). Therefore, the layer of the unknown fluid is on top of the container.

Learn more about density here: https://brainly.com/question/26364788

#SPJ11

Manganese is a transition element essential for the growth of bones. What is the mass in grams of 3.22 x 10^20 Manganese atoms, the number found in 1kg of bone?

Answers

Manganese is a transition element that is important for the development of bones. To determine the mass in grams of 3.22 x 10^20 Manganese atoms found in 1 kg of bone, we need to use the Avogadro number.What is Avogadro's number.

Avogadro's number (N) is the number of atoms or molecules present in one mole of any substance. It has a value of 6.022 × 1023.What is a mole?A mole is defined as the amount of substance containing the same number of particles as there are atoms in exactly 12 g of carbon-12. One mole of any substance contains Avogadro's number of particles. Its units are in mol.We will use the following formula to find the mass of 3.22 x 10^20 Manganese atoms found in 1 kg of bone: Mass = Number of particles / Avogadro's number × Atomic massMass = 3.22 × 10²⁰ / 6.022 × 10²³ × 54.938 g mol⁻¹ Mass = 3.22 × 10²⁰ / 3.26 × 10⁴⁶ Mass = 9.88 × 10⁻²⁷ kgMass of 3.22 x 10^20 .

Manganese atoms found in 1 kg of bone is 9.88 × 10⁻²⁷ kg.However, we are required to find the mass in grams. Therefore, we need to multiply 9.88 × 10⁻²⁷ kg by 1000 g kg⁻¹, which is equivalent to 1 kg.9.88 × 10⁻²⁷ kg × 1000 g kg⁻¹ = 9.88 × 10⁻²⁴ The mass in grams of 3.22 x 10^20 Manganese atoms found in 1 kg of bone is 9.88 × 10⁻²⁴ g.

To know more about Manganese visit :

https://brainly.com/question/26448840

#SPJ11

The following reactions (note that the arrows are pointing only one direction) can be used to prepare an activity series for the halogens: 2 NaBr(aq) + 12(aq) 2 NaCl(aq) +Br2(aq) Br2(aq) + 2 NaI (aq) Cl2(aq) +2 NaBr ( aq) (a) Which elemental halogen would you predict is the most stable, upon mixing with other halides? (b) Predict whether a reaction will occur when elemental chlorine and potassium iodide are mixed. (c) Predict whether a reaction will occur when elemental bromine and lithium chloride are mixed.

Answers

(a) The elemental halogen that will be the most stable upon mixing with other halides is fluorine because it is the most electronegative halogen and has the highest standard reduction potential (E°) value among all halogens.

(b) it is a stronger oxidizing agent than iodine. As a result, chlorine will react with iodine, displacing it from its compound, forming Cl- ions and elemental iodine.

(c) When elemental bromine and lithium chloride are mixed, a reaction will occur. Bromine is more electronegative than chlorine and iodine but less than fluorine.

(a) The elemental halogen that will be the most stable upon mixing with other halides is fluorine because it is the most electronegative halogen and has the highest standard reduction potential (E°) value among all halogens. Thus, fluorine is the strongest oxidizing agent and the least easily reduced. It will react with all other halides and displace them from their compounds, forming F- ions. It will not be displaced by any other halogen.

(b) When elemental chlorine and potassium iodide are mixed, a reaction will occur. Chlorine is more electronegative than iodine, and its standard reduction potential is higher. As a result, it is a stronger oxidizing agent than iodine. As a result, chlorine will react with iodine, displacing it from its compound, forming Cl- ions and elemental iodine.

(c) When elemental bromine and lithium chloride are mixed, a reaction will occur. Bromine is more electronegative than chlorine and iodine but less than fluorine. Its standard reduction potential is higher than that of chlorine and iodine, but lower than that of fluorine.

As a result, it is a stronger oxidizing agent than chlorine and iodine but weaker than fluorine. As a result, it will react with lithium chloride and displace lithium from its compound, forming Br- ions and elemental lithium.

To know more about standard reduction potential visit:

https://brainly.com/question/32671822

#SPJ11

a. The halogen that is most stable upon mixing with other halides is fluorine.

b. A reaction will occur when elemental chlorine and potassium iodide are mixed is Cl₂ + 2KI → I₂ + 2KCl.

c. There is no reaction will occur when elemental bromine and lithium chloride are mixed.

a. Fluorine is the most stable upon mixing with other halides because of its high electronegativity, which makes it more difficult to be reduced and oxidized compared to other halogens. Hence, it is more stable.

b. The reaction between chlorine and potassium iodide will occur. Chlorine is a stronger oxidizing agent compared to iodide ions, and thus, chlorine will oxidize iodide ions to form iodine and chlorine ions. The reaction can be represented as follows: Cl₂ + 2KI → I₂ + 2KCl.

c. No reaction will occur when elemental bromine and lithium chloride are mixed. This is because bromine is less reactive compared to chlorine and iodine. Lithium, on the other hand, is a highly reactive metal and will react with water instead. Hence, no reaction will occur when elemental bromine and lithium chloride are mixed.

Learn more about halogen: https://brainly.com/question/13950357

#SPJ11

calculate the volume of 0.100 m h3po4 required to neutralize 30 m l of 0.050 m caoh2

Answers

Volume of H3PO4 = 0.100 m30mL of 0.050 M Ca(OH)2 is given .Molar mass of Ca(OH)2 = 74g/mole reaction   Molar mass of H3PO4 = 98g/molar

We need to find the volume of H3PO4 required to neutralize 30mL of 0.050M Ca(OH)2.Long Write the chemical equation for the reaction the between Ca(OH)2 and H3PO4.Ca(OH)2 + H3PO4 → CaHPO4 + 2H2OStep 2: Find the number of moles of Ca(OH)2.Number of moles of Ca(OH)2 = Molarity x Volume of Ca(OH)2= 0.050 mol/L x (30 mL/1000mL)= 0.050 x 0.030= 0.0015 moles of Ca(OH)

Find the number of moles of H3PO4 required .Number of moles of H3PO4 required = Number of moles of Ca(OH)2 used in reaction= 0.0015 moles are  Find the volume of H3PO4 required. Volume of H3PO4 required = Number of moles of H3PO4 required / Molarity of H3PO4= 0.0015 moles / 0.100 mol /L= 0.015 L or 15 mL The volume of 0.100M H3PO4 required to 30mL of 0.050M Ca(OH)2 is 15mL.

To know more about reaction  Visit ;

https://brainly.com/question/14444620

#SPJ11

Other Questions
Larry's inverse demand curve for smoothies is described by P =20 - Q. If he purchases 6 smoothies, what is his consumersurplus?A) 18B) 24C) 6D) 12E) 32 why have physician reimbursement models changed over the years which of the following cancers arises from connective tissue cells? carcinoma mesothelioma sarcoma leukemia lymphoma A company has excess liquidity that needs to be invested for 5 days, which of the following instruments is the best choice? O Commercial paper. O Corporate bond. O Reverse repo. O T-note. What are the most significant elements relating to the function of management? I need this answer with 300 or more than that words with scholar reference. PLEASE HELP- Write a brief essay on the progress of equality after World War II. Describe the causes of three key events and the effects they had on the quest for equality after World War II. You measure 49 backpacks' weights, and find they have a meanweight of 61 ounces. Assume the population standard deviation is13.7 ounces. Based on this, what is the maximal margin of errorassociated what is the ball's speed at the lowest point of its trajectory? express your answer with the appropriate units. Which of the following medications improves the ability to cough up mucus?a. expectorantb. bronchodilatorc. antitussived. antihistamine In the 18th century, the Ottomans Empire launched a series of reforms. Part of these reforms were the Tanzimat or reorganizations, which was an attempt to modernize state institutions following European lines. What were the reasons behind Ottomans decision to Europeanise? What is the anode in an alkaline battery??------Describe the electrodes in this nickel-copper galvanic cell.a. Drag the appropriate items to their respective bins.anode cathode gains mass loses massNickel Copperb. The standard reduction potential for a substance indicates how readily that substance gains electrons relative to other substances at standard conditions. The more positive the reduction potential, the more easily the substance gains electrons. Consider the following:Ni2+(aq)+2eNi(s),Cu2+(aq)+2eCu(s), Ered=0.230 V Ered=+0.337 VWhat is the standard potential, Ecell , for this galvanic cell? Use the given standard reduction potentials in your calculation as appropriate! Suppose the production function for running shoes is given by Q = 2KVL, where Q represents the quantity of running shoe pairs produced per day, K represents daily capital input, and I represents daily labor input. (Note: If it helps you, recall that for some variable X, X = X ). This production function exhibits_____ returns to scale. The following information is for GameStop company: Net income: $50,000 Provision for bad debts: $2,000 Increase in inventory: $1,000 Increase in accounts payable: $2,000 Purchase of new equipment in cash: $15,000 Depreciation: $5,000 Repurchase of common stocks: $10,000 Payment of dividends: $4,000 What is the change in cash? (Hint: Change in cash =CFO+CFI+CFF) 6 what are the possible values of ml for each of the following values of l? in order for a presidential appointment to be finalized, what has to occur? Who is responsible for the long term maintenance of the accounts of the sites you have developed for your clients? You or the client? Why? 2 paragraphs What would you do if you had to choose between a model that satisfies all statistical criteria but does not satisfy economic theory and a model that fits established economic theory but does not fit many statistical criteria? Briefly explain your answer.In measuring returns to scale in electricity supply, cross-sectional data of 145 privately owned utilities in the United States is used to regress the log of total cost on the logs of output, wage rate, price of capital, and price of fuel. Suppose the residuals estimated from this regression exhibit "serial" correlation, as judged by the DurbinWatson d. The figure below plots the estimated residuals on the log of output.What does the figure show?How can you get rid of "serial" correlation in the preceding situation? which of the following substances is capable of reducing eu3 (aq) to eu2 (aq) under standard conditions: al, co, h2o2 , n2h5 , h2c2o4?the standard reduction potential for the reduction of Eu3_ (aq) is -0.43 V. Using Appendix E in the textbook, which of the following substances is capable of reducing Eu3+(aq) to Eu2+ under standard conditios? Write process descriptions based on the process key stages following technical writing standards and using appropriate vocabulary and grammar Assignment Your assignment is to find a set of instructions online and convert those instructions into a complete process description. You can choose any process as long as it meets the following criteria: the process must have between 4 and 6 stages the process must be different from the ones covered in class or provided as examples. (15 marks) Deadline Week 14 (See Blackboard for Exact Date and Time) Guidelines The process description must include the following: 2. An appropriate title 1. An introduction including all the relevant elements 4. A description of the stages in the process s. A conclusion including all relevant elements Accompanying graphics 7. A link to the website of the original instructions Resources: & Technical Definitions (Video and Slides) Technical Descriptions Video and stidest 10. Process Descriptions (Video and Slides) Sample process descriptions. Product Description Template [Title) Introduction Brief Overview Description of Major Stages Consider the market for bolts. Suppose that a hardware factory dumps toxic waste into a nearby river, creating a negative externality for those living downstream from the factory. Producing an additional ton of bolts imposes a constant marginal external cost (MEC) of $245 per ton. The following graph shows the demand (marginal private benefits, or MPB) curve and the supply (marginal private costs, or MPC) curve for bolts. Use the purple points (diamond symbol) to plot the marginal social costs (MSC) curve when the marginal external cost is $245 per ton. 700 630 MSC 560 490 420 350 280 210 140 70 0 PRICE (Dollars perton of bolts) 0 O O U C 0 O U Q O 2 3 4 5 QUANTITY (Tons of bolts) 6 Supply (MPC) Demand (MPB) 7