.What is the angular momentum about the axle of the 500g rotating bar in the figure?
B.)If the rod above is in a machine in which the rotating rod hits a spring with a spring constant 50 N/m, how much potential energy will the spring gain and by how much will the spring compress? (assume energy is conserved)

Answers

Answer 1

The potential energy gained by the spring is 0.25v₀² J and the spring is compressed by 5 cm. The potential energy gained by the spring is equal to the kinetic energy of the rod before collision.

Substituting the given values, m = 500 g = 0.5 kl = 30 cm = 0.3 m. So, the moment of inertia, I = 0.5 × 0.3²/12= 0.00375 kg m²Next, we need to find the angular velocity. Since the rod completes one full rotation in 0.4 s, the angular velocity, ω = 2π/T, where T is the time period. T = 0.4 s∴ ω = 2π/0.4= 15.7 rad/s. Now, we substitute the values of I and ω in the formula for angular momentum, L = IωL = 0.00375 × 15.7= 0.0589 kg m²/s. Therefore, the angular momentum of the rotating bar about the axle is 0.0589 kg m²/s.2.

Let the velocity of the rotating rod before collision be v₀ and the velocity of the rotating rod and spring after collision be v. The kinetic energy of the rotating rod before collision is given by,K.E. = 1/2 × m × v₀²where,m is the mass of the rotating rod. Since the mass of the rod is 0.5 kg, the kinetic energy before collision is,K.E. = 1/2 × 0.5 × v₀²= 0.25v₀² J. The potential energy gained by the spring is equal to the kinetic energy of the rod before collision. Hence, the potential energy gained by the spring is 0.25v₀² J.

This work is equal to the force exerted by the spring multiplied by the compression of the spring. Hence, we can use this to find the compression of the spring. Let x be the compression of the spring. Then, the force exerted by the spring is given by, F = kx where k is the spring constant. The spring constant is given to be 50 N/m.

Substituting the values in the formula for work done, W = Fx= kx²∴ 0.25v₀² = kx²∴ x² = 0.25v₀²/k∴ x = 0.5v₀/√k. Now, we substitute the value of k to find the compression of the spring. x = 0.5v₀/√50= 0.05v₀ m = 5 cm. Therefore, the potential energy gained by the spring is 0.25v₀² J and the spring is compressed by 5 cm.

To know more about potential energy, refer

https://brainly.com/question/21175118

#SPJ11


Related Questions

n
A spherical ball has a mass of 350 kg, and is measured to have a mass density of 16 kg/m³. What is the volume of the ball? Your Answer:

Answers

The volume of the ball is 21.875 cubic meters.

The mass density (ρ) is defined as the mass (m) divided by the volume (V):

ρ = m / V

We are given the mass of the ball (m) as 350 kg and the mass density (ρ) as 16 kg/m³. We can rearrange the equation to solve for the volume:

V = m / ρ

Substituting the given values:

V = 350 kg / 16 kg/m³

Calculating:

V = 21.875 m³

Therefore, the volume of the ball is 21.875 cubic meters.

The volume of the spherical ball is 21.875 cubic meters.

To know more about volume , visit:

https://brainly.com/question/14197390

#SPJ11

the block is subjected to a force v that produces a deflection of δ = 0.12 cm . what is the applied force?

Answers

Given that the block is subjected to a force v that produces a deflection of δ = 0.12 cm. We are to find the applied force.Let the force applied be F. Therefore, Hooke's law can be expressed as;F=kδ,where F is the force appliedk is the spring constantδ is the deflection.

The spring constant k, is the proportionality constant between the force applied and the elongation of the spring. Mathematically, we have;

k= F/δ

= (mg)/δ

Where m is the mass of the object, g is the acceleration due to gravity, and δ is the deflection.Substituting the value of k in the expression for Hooke's law, we have;

F=kδ

= ((mg)/δ) δ

= mgThus, the force applied is F = mg.However, the mass of the block is not given. Therefore, we cannot calculate the force applied, unless the mass is given.Basically, we have used Hooke's Law in solving the problem that was given. We found out that the force applied is F=mg where m is the mass of the object, g is the acceleration due to gravity. Also note that to find the force applied, we need to be given the value of mass.

For more information on Hooke's law visit:

brainly.com/question/30379950

#SPJ11

the energy used for metabolic processes reduces the efficiency of secondary productivity. TRUE OR FALSE?

Answers

The energy used for metabolic processes reduces the efficiency of secondary productivity, the given statement is true because secondary productivity represents the energy that is transferred between different trophic levels.

Trophic levels are hierarchical levels in an ecosystem, comprising of producers, herbivores, primary carnivores, and secondary carnivores. These levels are dependent on the energy flow that passes from one level to another. The primary productivity is the rate of formation of organic matter by the producers and their conversion into chemical energy. The secondary productivity is defined as the energy stored in the herbivores' biomass that feeds on the primary producers.

The energy available for the organisms at higher trophic levels decreases due to loss of energy at each trophic level. The loss of energy occurs due to the heat generated in metabolic processes, which is not utilized. Hence, the energy used for metabolic processes reduces the efficiency of secondary productivity. So therefore, the energy used for metabolic processes reduces the efficiency of secondary productivity, the statement is correct.

Learn more about metabolic processes at :

https://brainly.com/question/28549453

#SPJ11

The given statement "the energy used for metabolic processes reduces the efficiency of secondary productivity" is True.

Secondary productivity is the energy stored by heterotrophs in the ecosystem. Secondary productivity represents the efficiency with which heterotrophs convert the food that they consume into new biomass. It is calculated as the difference between the gross production of organic matter by photosynthesis or chemosynthesis and the energy used by the primary producers during cellular respiration.

Secondary productivity is expressed in terms of energy or biomass. In order to carry out metabolic processes, heterotrophs consume a portion of the energy that they obtain from their food. As a result, secondary productivity is reduced in comparison to primary productivity, since a portion of the energy obtained is lost during metabolic processes.

Thus, the statement "the energy used for metabolic processes reduces the efficiency of secondary productivity" is true.

To know more about secondary productivity, refer

https://brainly.com/question/28163538

#SPJ11

The electric field strength 5.0 cm from a very long charged wire is 1900N/C .


What is the electric field strength 10.0 cm from the wire?

Answers

The electric field strength at a distance of 10 cm from the long charged wire is 950 N/C.

We know that the electric field strength of a long, charged wire at a distance of 5 cm is 1900 N/C. To find the electric field strength at a distance of 10 cm, we can use the formula below;[tex]\text{Electric field strength} = \frac{2k\lambda}{r}[/tex]where;[tex]k[/tex] is Coulomb's constant,[tex]\lambda[/tex] is the charge density of the wire,[tex]r[/tex] is the distance from the wire

Now, let's find the electric field strength at a distance of 10 cm.Using the above formula, we can write;[tex]\text{Electric field strength at a distance of 5 cm } = \frac{2k\lambda}{0.05} = 1900 N/C[/tex]

Rearranging the equation above gives;[tex]k\lambda = \frac{1900\times0.05}{2} = 47.5 N/Cm[/tex]

Using the value of [tex]k\lambda[/tex] above, we can calculate the electric field strength at a distance of 10 cm as shown below;[tex]\text{Electric field strength at a distance of 10 cm} = \frac{2\times47.5}{0.1} = 950 N/C[/tex]

Therefore, the electric field strength at a distance of 10 cm from the long charged wire is 950 N/C.

To learn more about electric visit;

https://brainly.com/question/31173598

#SPJ11

1. What is the amount of steam needed at a temperature of (130°C) to raise the temperature of (200) g of water from (20°C) to (50) Cº inside insulating bowl?

Answers

Approximately 11.09 grams of steam (water vapor) would be needed at a temperature of 130°C to raise the

temperature

of 200 g of water from 20°C to 50°C inside the insulating bowl.

To calculate the amount of steam needed to raise the temperature of water, we can use the principle of heat transfer and the specific

heat

capacity of water. The formula for heat transfer is:

Q = m * c * ΔT

Where:

Q = heat transferred (in joules)

m = mass of the substance (in grams)

c = specific heat capacity of the substance (in joules per gram per degree Celsius)

ΔT = change in temperature (in degrees Celsius)

In this case, we want to find the amount of

steam (

water vapor) needed to raise the temperature of 200 g of water from 20°C to 50°C.

First, we need to calculate the heat transfer required:

Q = 200 g * c_ water * (50°C - 20°C)

The specific heat capacity of water is approximately 4.18 J/g °C.

Q = 200 g * 4.18 J/g °C. * 30°C

Q = 25080 J

Now, we need to consider the phase change of steam to water. When steam condenses, it releases a specific amount of heat known as the latent heat of

vaporization

. For water, the latent heat of vaporization is approximately 2260 J/g.

The amount of steam needed can be calculated using the formula:

Q = m_ steam * latent heat of vaporization

25080 J = m_ steam * 2260 J/g

Solving for m_ steam:

m _steam = 25080 J / 2260 J/g

m _steam ≈ 11.09 g

Therefore, approximately 11.09 grams of steam (water vapor) would be needed at a temperature of 130°C to raise the temperature of 200 g of water from 20°C to 50°C inside the

insulating

bowl.

To know more about

temperature

visit:

https://brainly.com/question/27944554

#SPJ11

what is the speed of a wave whose frequency and wavelength are 500.0 hz and 0.500 m, respectively?

Answers

The formula that relates the speed of a wave, frequency, and wavelength is v = fλ. Where: v is the speed of the wave in meters per second (m/s)f is the frequency of the wave in hertz (Hz) λ is the wavelength of the wave in meters (m)

Therefore, the speed of a wave whose frequency and wavelength are 500.0 Hz and 0.500 m, respectively is given by: v = fλ = 500.0 Hz × 0.500 m = 250 m/s

We know that the frequency of the wave is 500.0 Hz, and the wavelength of the wave is 0.500 m. The formula that relates the speed of a wave, frequency, and wavelength is:v = fλ

Therefore, the speed of the wave is given by: v = fλ = 500.0 Hz × 0.500 m = 250 m/s

Therefore, the speed of a wave whose frequency and wavelength are 500.0 Hz and 0.500 m, respectively is 250 m/s.

To know more about wavelength, visit:

https://brainly.com/question/31143857

#SPJ11

Monochromatic light with a wavelength of 177.5 nm, shines on a
metal plate and ejects electrons. The electrons are observed to
leave the metal with a kinetic energy of 3 eV.
(a) Calculate the energy o

Answers

When monochromatic light with a wavelength of 177.5 nm shines on a metal plate, electrons are ejected with a kinetic energy of 3 eV. The energy of each photon can be calculated as approximately -6.4 × 10^-19 J, indicating excess kinetic energy in the ejected electrons.

The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy, h is Planck's constant (6.626 × 10^-34 J∙s), c is the speed of light (3.0 × 10^8 m/s), and λ is the wavelength of the light.

Given that the wavelength of the monochromatic light is 177.5 nm (or 177.5 × 10^-9 m), we can plug these values into the equation:

E = (6.626 × 10^-34 J∙s × 3.0 × 10^8 m/s) / (177.5 × 10^-9 m)

E = 1.12 × 10^-18 J

The energy of one electron volt (eV) is equal to 1.6 × 10^-19 J. So, we can convert the kinetic energy of the electrons, which is 3 eV, into joules:

Kinetic energy in joules = 3 eV × (1.6 × 10^-19 J/eV)

Kinetic energy in joules = 4.8 × 10^-19 J

Now, we can determine the energy of each photon by comparing the energy of the ejected electrons to the energy of a single photon:

Energy of each photon = Kinetic energy of electrons - Energy required to eject electrons

Energy of each photon = 4.8 × 10^-19 J - 1.12 × 10^-18 J

Energy of each photon = -6.4 × 10^-19 J

The negative sign indicates that the electrons have excess kinetic energy beyond what is needed for ejection.

To know more about wavelength refer here:

https://brainly.com/question/31321361#

#SPJ11

what is the power of the eye when viewing an object 50.0 cm away if the lens to retina distance is 2.00 cm?

Answers

In this case, the object distance (u) is given as 50.0 cm and the lens to retina distance is given as 2.00 cm. We need to find the focal length (f) to calculate the power.

Since the eye is a complex optical system, we can consider it as a single thin lens. The lens to retina By substituting the calculated focal length (f) into the equation, we can determine the power of the eye when viewing an object 50.0 cm away.In this case, the lens to retina distance is given as 2.00 cm. Since the lens to retina distance represents the image distance (v), we need to find the object distance (u) to calculate the focal length (f).

To know more about focal visits :

https://brainly.com/question/2194024

#SPJ11

The 300−μF capacitor in the figure on the right is initially charged to 100 V, the 1200−μF capacitor is uncharged, and the switches are both open. a. What is the maximum voltage to which you can charge the 1200−μF capacitor by the proper closing and opening of the two switches? b. How would you do it? Describe the sequence in which you would close and open switches and the times at which J switch is closed at t=0.

Answers

The maximum voltage to which you can charge the 1200-μF capacitor by the proper closing and opening of the two switches is 100 V.

What is the maximum voltage that can be reached by manipulating the switches?

The maximum voltage that can be reached by manipulating the switches is 100 V. Initially, the 300-μF capacitor is charged to 100 V, while the 1200-μF capacitor is uncharged. To charge the 1200-μF capacitor to its maximum voltage, we need to transfer the charge from the 300-μF capacitor to the 1200-μF capacitor.

The sequence of closing and opening switches would be as follows:

Close Switch A: This connects the charged 300-μF capacitor to the uncharged 1200-μF capacitor. The charge starts flowing from the 300-μF capacitor to the 1200-μF capacitor, equalizing the voltages on both capacitors.

Open Switch A: This isolates the 300-μF capacitor from the circuit.

Close Switch B: This connects the 1200-μF capacitor to the voltage source, allowing it to charge further.

Open Switch B: This isolates the 1200-μF capacitor from the voltage source.

By following this sequence, the maximum voltage attained by the 1200-μF capacitor will be the same as the initial voltage of the 300-μF capacitor, which is 100 V.

Learn more about capacitor charging and discharging

brainly.com/question/4049784

#SPJ11

moving mirror m2 of a michelson interferometer a distance of 70 μm causes 550 bright-dark-bright fringe shifts.

Answers

The number of fringe shifts can be determined using the formula:N = δm/λwhere N is the number of fringe shifts, δm is the distance the mirror was moved, and λ is the wavelength of light.In this case, we can calculate the wavelength of light as follows:λ = δm/N = 70 × 10^-6 m / (550 / 2) = 0.0002545 Therefore, the wavelength of light is 0.0002545 m or 254.5 nm.

A Michelson interferometer is an optical instrument that is used to measure the wavelength of light, small displacements, and refractive index changes of a medium. It was first created by Albert Abraham Michelson in the year 1881. The apparatus comprises a beam splitter, two mirrors, and a detector. A laser beam is split into two by a beam splitter, and each beam is reflected back to the beam splitter by a mirror. At the beam splitter, the two beams are recombined to produce an interference pattern, which is then detected by the detector. A change in the path length of one of the beams changes the interference pattern. If the mirror M2 of a Michelson interferometer is moved by a distance of 70 µm, it will cause 550 bright-dark-bright fringe shifts.Each fringe corresponds to half a wavelength, and so if the mirror is moved by a distance of λ/2, it will result in a bright-dark fringe shift. The number of fringe shifts can be determined using the formula:N = δm/λwhere N is the number of fringe shifts, δm is the distance the mirror was moved, and λ is the wavelength of light.In this case, we can calculate the wavelength of light as follows:λ = δm/N = 70 × 10^-6 m / (550 / 2) = 0.0002545 Therefore, the wavelength of light is 0.0002545 m or 254.5 nm.

To know more about wavelength visit :

brainly.com/question/31143857

#SPJ11

If you filled an airtight balloon at the top of a mountain, would the balloon expand or contract as you descended the mountain? Explain.

Answers

If you filled an airtight balloon at the top of a mountain, the balloon would contract as you descended the mountain. This is due to the decrease in air pressure with increasing altitude.

Air pressure decreases with increasing altitude. The atmosphere is composed of different layers of gases that create atmospheric pressure. When the altitude changes, the pressure exerted by the gases also changes. The pressure decreases as the altitude increases.

This implies that there is less air pressure at the top of a mountain than at the bottom. When you fill an airtight balloon at the top of a mountain, it will be filled with air at a lower pressure. As you descend the mountain, the air pressure rises, and the balloon will attempt to maintain equilibrium with its surroundings.

As a result, the air inside the balloon will become more compressed, and the balloon will shrink in size. This is the main answer to your question. Therefore, the balloon will contract as you descend the mountain.

To sum up, as the altitude decreases, the air pressure rises, and the air inside the balloon will compress as it attempts to reach equilibrium with the surrounding air. As a result, the balloon will contract in size as you descend the mountain.

For more information on air pressure kindly visit to

https://brainly.com/question/31755937

#SPJ11

tortoise shells cats have variegated coats cause by x inactivation and are always what

Answers

Tortoise shell cats have variegated coats because of X inactivation and are always female.

Tortoiseshell cats are typically always female and have variegated coats that are the result of X-chromosome inactivation. The inactivation of one of the two X chromosomes in a female cat's cells is responsible for the mosaic coloring of its coat. Tortoiseshell cats' black and orange patches appear because of the coat's structure.

To put it another way, the genetic makeup of a tortoiseshell cat produces color differences in its coat. The cat's genes, which are inherited from its parents, determine the color and pattern of the cat's coat. Female cats have two X chromosomes, whereas male cats have one X and one Y chromosome. When a female cat is conceived, it inherits an X chromosome from each parent. When the cat's cells divide and reproduce, each cell randomly inactivates one of the X chromosomes. This inactivation of one of the chromosomes results in the expression of certain genes in certain cells. As a result, some cells produce orange fur, while others produce black fur. In tortoiseshell cats, this results in the characteristic variegated coat pattern.

To know more about Tortoise shell visit :-

https://brainly.com/question/14352999

#SPJ11

A 20 g ball of clay traveling east at 2.0 m/s collides with a 30 g ball of clay traveling 30° south of west at 1.0 m/s. What are the speed and direction of the resulting 50 g blob of clay?

Answers

The speed of the resulting 50 g blob of clay is 1.016 m/s, and its direction is eastward. The resulting 50 g blob of clay is traveling eastward at a speed of 1.016 m/s.

When solving a problem involving momentum, it is necessary to take into account both the magnitude and direction of the velocity of each object involved. Given the masses and velocities of each ball of clay, we can calculate their momenta and then use the principle of conservation of momentum to find the velocity of the resulting 50 g blob of clay. Here's how we can do it:

First, we calculate the momenta of each ball of clay using the formula p = mv, where p is the momentum, m is the mass, and v is the velocity:

Momentum of 20 g ball of clay = (0.020 kg)(2.0 m/s) = 0.040 kg m/s, eastward
Momentum of 30 g ball of clay = (0.030 kg)(1.0 m/s)(cos 30°, westward) + (0.030 kg)(1.0 m/s)(sin 30°, southward)
= 0.0260 kg m/s, westward + 0.0150 kg m/s, southward
= 0.0260 kg m/s westward - 0.0150 kg m/s northward (since southward is negative)

Note that we resolved the momentum of the 30 g ball of clay into its x- and y-components using trigonometry.

Next, we add the momenta of the two balls of clay to get the total momentum of the system:

Total momentum = 0.040 kg m/s eastward + 0.0260 kg m/s westward - 0.0150 kg m/s northward
= 0.040 kg m/s + 0.0117 kg m/s eastward

Note that we resolved the total momentum into its x- and y-components, and that the y-component is very small compared to the x-component, so we can ignore it.

Finally, we divide the total momentum by the total mass of the system (50 g = 0.050 kg) to get the velocity of the resulting 50 g blob of clay:

Velocity of 50 g blob of clay = (0.040 kg m/s + 0.0117 kg m/s)/0.050 kg
= 1.016 m/s, eastward

So the speed of the resulting 50 g blob of clay is 1.016 m/s, and its direction is eastward. Therefore, the resulting 50 g blob of clay is traveling eastward at a speed of 1.016 m/s.

Learn more about momentum here:

https://brainly.com/question/32097662

#SPJ11

You need to put a 50kg box in the back of a truck. (5points) Calculate how much force you have to do if you lift it up vertically (10 points) How much force do you have to do if you push it up a 25 degree ramp? You have to show your calculations to find the answers to receive credit.

Answers

The force required to lift the 50kg box vertically is approximately 490 Newtons. The force required to push the 50kg box up a 25-degree ramp is approximately 202 Newtons.

To calculate the force required to lift the 50kg box vertically, we can use the formula:

Force = mass * acceleration due to gravity

Where:

mass = 50kg

acceleration due to gravity ≈ 9.8 m/s²

Using the given values, we can calculate the force required to lift the box vertically:

Force = 50kg * 9.8 m/s²

Force ≈ 490 Newtons

To calculate the force required to push the 50kg box up a 25-degree ramp, we need to consider the force required to overcome the weight component along the ramp.

The weight component along the ramp can be calculated using the formula:

Weight component along the ramp = mass * acceleration due to gravity * sin(theta)

Where:

mass = 50kg

acceleration due to gravity ≈ 9.8 m/s²

theta = 25 degrees

Using the given values, we can calculate the weight component along the ramp:

Weight component along the ramp = 50kg * 9.8 m/s² * sin(25°)

Next, we need to calculate the force required to push the box up the ramp. This force can be calculated using the formula:

Force = Weight component along the ramp + force required to overcome friction (if any)

Assuming no friction, the force required to push the box up the ramp is equal to the weight component along the ramp:

Force = Weight component along the ramp

Substituting the calculated weight component along the ramp, we get:

Force ≈ 50kg * 9.8 m/s² * sin(25°)

Using a calculator, we can evaluate this expression:

Force ≈ 202 Newtons

To lift the 50kg box vertically, you would need to exert approximately 490 Newtons of force. If you push the box up a 25-degree ramp with no friction, you would need to exert approximately 202 Newtons of force.

To know more about force , visit:

https://brainly.com/question/12970081

#SPJ11

Problem 1 A certain neutron star has five times the mass of our Sun packed into a sphere about 13 km in radius. Part A Estimate the surface gravity on this monster. Express your answer to two signific

Answers

A certain neutron star has five times the mass of our Sun packed into a sphere about 13 km in radius. The surface gravity on this monster is: g = (5 × mass of the Sun × gravitational constant) / (13,000)^2.

To estimate the surface gravity of the neutron star, we can use the formula for gravitational acceleration:

g = (GM)/r^2

where:

g is the surface gravity,

G is the gravitational constant (approximately 6.674 × 10^-11 m^3 kg^-1 s^-2),

M is the mass of the neutron star,

r is the radius of the neutron star.

Given that the neutron star has five times the mass of our Sun, we can approximate its mass as M = 5 × (mass of the Sun).

The radius of the neutron star is given as 13 km, which we convert to meters by multiplying by 1000: r = 13 × 1000 = 13,000 meters.

Substituting these values into the formula, we get:

g = (5 × mass of the Sun × gravitational constant) / (13,000)^2

To know more about "Gravitational constant" refer here:

https://brainly.com/question/21445156#

#SPJ11

The answer should be 290 atm but I am not sure how to get to
that.
IS 45%? 35. (11) What is the approximate pressure inside a pressure cooker if the water is boiling at a of 130°C? Assume no air escaped during the heating process, which started at temperature 18°C.

Answers

The approximate pressure inside the pressure cooker when the water is boiling at 130°C is 1.385 atm.

To calculate the approximate pressure inside a pressure cooker when the water is boiling at a temperature of 130°C, we can use the ideal gas law. The ideal gas law states that the pressure (P) of a gas is directly proportional to its temperature (T) when the volume (V) and the number of moles (n) are constant. The equation for the ideal gas law is:

PV = nRT

Where:

P = Pressure

V = Volume

n = Number of moles

R = Ideal gas constant

T = Temperature

In this case, we assume that the volume and the number of moles are constant. The ideal gas constant, R, is a constant value. Therefore, we can rearrange the ideal gas law equation to solve for pressure:

P = (nRT) / V

Since the volume and the number of moles are constant, we can simplify the equation to:

P = kT

Where k is a constant.

To find the approximate pressure inside the pressure cooker, we need to convert the given temperatures to Kelvin. The temperature in Kelvin is equal to the Celsius temperature plus 273.15.

Initial temperature (T1) = 18°C + 273.15 = 291.15 K

Boiling temperature (T2) = 130°C + 273.15 = 403.15 K

Now we can calculate the ratio of the pressures:

P2 / P1 = T2 / T1

Substituting the values:

P2 / P1 = 403.15 K / 291.15 K

Simplifying:

P2 = P1 * (403.15 K / 291.15 K)

Since the question states that no air escaped during the heating process, we can assume that the initial pressure (P1) is atmospheric pressure, which is approximately 1 atm.

P2 = 1 atm * (403.15 K / 291.15 K)

P2 ≈ 1.385 atm

For more such information on: pressure

https://brainly.com/question/28012687

#SPJ8

Question 7 A short needle, length 5.5 cm, stands on its end on the axis of a spherical mirror. It is a distance 22 cm from the mirror. Part A What is the length of the image of the needle if the focal

Answers

When the focal length of the mirror is 10 cm, the length of the image of the 5.5 cm needle standing 22 cm away from the mirror is approximately 1.72 cm, and the image is inverted.

To determine the length of the image of the needle when the focal length of the mirror is 10 cm, we can apply the mirror formula and magnification formula.

The mirror formula is given by:

1/f = 1/v - 1/u

Where:

f = focal length of the mirror

v = image distance

u = object distance

In this case, the object distance (u) is 22 cm, and the focal length (f) is 10 cm.

Using the mirror formula, we can calculate the image distance (v):

1/10 = 1/v - 1/22

Simplifying the equation, we get:

1/v = 1/10 + 1/22

To find the value of v, we take the reciprocal of both sides:

v = 1 / (1/10 + 1/22)

v = 6.875 cm

Now, we can calculate the magnification (m) using the formula:

m = -v / u

Substituting the values, we get:

m = -(6.875 cm) / (22 cm)

m ≈ -0.3125

The negative sign indicates that the image is inverted.

Finally, to find the length of the image of the needle, we multiply the magnification by the length of the object:

Length of the image = |m| * Length of the object

Length of the image = 0.3125 * 5.5 cm

Length of the image ≈ 1.72 cm

Therefore, when the focal length of the mirror is 10 cm, the length of the image of the needle is approximately 1.72 cm.

To know more about mirror refer here:

https://brainly.com/question/9864798#

#SPJ11

Complete question:

A short needle, with a length of 5.5 cm, stands on its end on the axis of a spherical mirror. It is a distance of 22 cm from the mirror. Part A: What is the length of the image of the needle if the focal length of the mirror is 10 cm?

what is the net dc gain of a 4th-order butterworth non-unity-gain sallen-key filter? give your answer to 4 significant figures.

Answers

The net DC gain of a 4th-order Butterworth non-unity-gain Sallen-Key filter is 1.414.

The net DC gain of a 4th-order Butterworth non-unity-gain Sallen-Key filter is 1.414. Please note that the net DC gain of a Sallen-Key filter depends on the specific values of the resistors and capacitors used in the circuit design. The value of 1.414 represents the approximate gain of a Butterworth filter, which provides a flat response in the passband and a -3 dB cutoff frequency at the corner frequency. The net DC gain of a 4th-order Butterworth non-unity-gain Sallen-Key filter is 1.0000. Since it is a non-unity-gain filter, the net DC gain will be 1, meaning there is no amplification or attenuation of the input signal at DC (zero frequency).

To learn more about Sallen-Key, https://brainly.com/question/31984256

#SPJ11

Which of the following will result in work? The force of friction acts upon a softball as she makes a headfirst dive into the third base. Earth revolving around the Sun. O All will result is zero work. O A force acts on an object 90-degree to the direction of motion. An upward force is applied to a bucket as it moves 10 m across a yard.

Answers

Out of the given scenarios, the only one that results in work is when an upward force is applied to a bucket as it moves 10 m across a yard.

Work is defined as the product of force and displacement in the direction of the force. In this case, the force applied to the bucket is in the same direction as its displacement. Therefore, work is done.

In the case of the force of friction acting upon a softball as she makes a headfirst dive into the third base, no work is done. This is because the force of friction acts in the opposite direction to the motion of the softball. As a result, the displacement and force are in different directions, leading to zero work.

Similarly, Earth revolving around the Sun does not involve any work because the force of gravity acts perpendicular to the displacement of the Earth. The force and displacement are at right angles to each other, resulting in zero work.

Only an upward force applied to a bucket as it moves 10 m across a yard will result in work, as the force and displacement are in the same direction. In the other cases, the force and displacement are either in opposite directions or at right angles, resulting in zero work.

To know more about work, visit

https://brainly.com/question/25573309

#SPJ11

Evaluate the following: where a = 3.0 x 1012; O 90 O 100 O 60 O 200 O 140 (ac) z 6² c= 2.7 x 10-³; b = 30
Evaluate the following: where a = 3.0 x 1012; O 90 O 100 O 60 O 200 O 140 (ac) z 6² c= 2.7

Answers

Evaluating the expression with the given values, we find that the result is 60.

Let's evaluate the expression using the given values:

ac²z + bc = (3.0 × 10¹²)(2.7 × 10⁻³)²(6²) + (30)(6)

          = (3.0 × 10¹²)(7.29 × 10⁻⁶)(36) + (30*6)

          = 7.81 × 10⁵ + 180

          = 781,180

Therefore, the result of the expression is 781,180, which is equivalent to 60 when rounded to the nearest whole number.

In mathematics, an expression is a combination of symbols, variables, constants, and mathematical operations that represents a mathematical entity or relationship. It is a way to express a mathematical idea or computation using a concise and structured notation.

An expression can consist of the following components:

1. Variables: Symbols that represent unknown quantities or values that can vary. For example, in the expression "2x + 5," the variable "x" represents an unknown value.

2. Constants: Fixed numerical values that do not change. For example, in the expression "2x + 5," the constant "2" and "5" are fixed values.

To learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

what is the power of the eye when viewing an object 25.0 cm away? assume the lens-to-retina distance is 2.00 cm , and express the answer in diopters.

Answers

The power of the eye when viewing an object 25.0 cm away and the lens-to-retina distance is 2.00 cm is 50 diopters.

A diopter is a unit of measurement of the optical power of a lens or curved mirror. The reciprocal of the focal length in meters is equal to the power of the lens or mirror in diopters. Here's the calculation:

Power of the eye = 1/focal length of the eye

Since the lens-to-retina distance is 2.00 cm, the focal length of the eye is the distance at which the eye can focus on an object. Therefore: focal length of the eye = lens-to-retina distance = 2.00 cm

To find the power of the eye, we need to use the formula:

Power of the eye = 1/focal length of the eye

Substituting the values:

focal length of the eye = 2.00 cm

Power of the eye = 1/0.02 m = 50 D

Therefore, 50 diopters is the power of the eye when viewing an object 25.0 cm away and the lens-to-retina distance is 2.00 cm.

More on optical power: https://brainly.com/question/31316146

#SPJ11

A wheel rotates through an angle 250 rad in 4.50 s , at which
time its angular velocity reaches 115 rad/s.
a) Calculate the angular velocity at the start of this 250 rad
rotation assuming the angular

Answers

a) The angular velocity at the start of the 250 rad rotation, assuming constant angular acceleration, is approximately 11.11 rad/s.

b) The angular acceleration is approximately 25.56 rad/s².

a) To find the angular velocity at the start of the 250 rad rotation, assuming constant angular acceleration, we can use the equation:

ω² = ω₀² + 2αθ

where ω represents the final angular velocity, ω₀ represents the initial angular velocity, α represents the angular acceleration, and θ represents the angle of rotation.

Given that ω = 115 rad/s, θ = 250 rad, and ω₀ is the unknown, we can rearrange the equation to solve for ω₀:

ω₀² = ω² - 2αθ

Plugging in the values, we have:

ω₀² = (115)² - 2α(250)

Since the angular acceleration is constant, we can find it by dividing the change in angular velocity by the change in time:

α = (ω - ω₀) / t

Substituting this expression for α into the previous equation, we get:

ω₀² = (115)² - 2[(ω - ω₀) / t](250)

Simplifying the equation, we can solve for ω₀:

ω₀ = (115)² - 500ω / 4.5

Solving this equation numerically, we find ω₀ ≈ 11.11 rad/s.

b) To calculate the angular acceleration, we can use the equation:

α = (ω - ω₀) / t

Plugging in the known values, we have:

α = (115 - 11.11) / 4.5

Solving this equation numerically, we find α ≈ 25.56 rad/s².

Therefore, the angular velocity at the start of the 250 rad rotation, assuming constant angular acceleration, is approximately 11.11 rad/s, and the angular acceleration is approximately 25.56 rad/s².

To know more about angular velocity refer here:

https://brainly.com/question/30237820#

#SPJ11

Complete Question:

A wheel rotates through an angle 250 rad in 4.50 s , at which time its angular velocity reaches 115 rad/s.

a) Calculate the angular velocity at the start of this 250 rad rotation assuming the angular acceleration is constant.

b) Calculate the angular acceleration.

Martha is viewing a distant mountain with a telescope that has a 120-cm-focal-length objective lens and an eyepiece with a 2.0 cm focal length. She sees a bird that's 42 m distant and wants to observe it. To do so, she has to refocus the telescope.
Part A
By how far must she move the eyepiece in order to focus on the bird?

Answers

To determine how far Martha must move the eyepiece in order to focus on the bird, we can use the lens formula.

To focus on the bird, Martha needs to adjust the eyepiece by a distance that brings the final image distance (v) to 50 m. The exact calculation for the movement of the eyepiece will depend on the specific values of u and the corresponding value of v.To determine the distance by which Martha must move the eyepiece in order to focus on the bird, we need to calculate the change in the position of the eyepiece.The change in the position of the eyepiece can be found by subtracting the initial position of the eyepiece from the final position.

To know more about eyepiece visit :

https://brainly.com/question/24547418

#SPJ11

find the angular momentum and kinetic energy of an object rotating at 10.0 rad/s with a mass of 5.0 kg and a radius of 0.30 m given the following geometries:

Answers

the angular momentum and kinetic energy for an object rotating at 10.0 rad/s with a mass of 5.0 kg and a radius of 0.30 m are:

Thin hoop: L = 4.5 N⋅m⋅s, K = 22.5 JSolid disk: L = 2.25 N⋅m⋅s, K = 11.25 JSolid sphere: L = 5.4 N⋅m⋅s, K = 27.0 J.

The formulas for angular momentum and kinetic energy for a rotating object are:

L = IωK = 1/2 Iω²

where, L is angular momentum, I is moment of inertia, ω is angular velocity, and K is kinetic energy.Moment of inertia depends on the geometry of the object.

Given the geometries, we can calculate the moment of inertia and then use the formulas to find the angular momentum and kinetic energy.

1. Thin hoop (a ring with negligible thickness)Moment of inertia:

I = MR² = (5.0 kg)(0.30 m)² = 0.45 kg⋅m²

Angular momentum: L = Iω = (0.45 kg⋅m²)(10.0 rad/s) = 4.5 N⋅m⋅s

Kinetic energy: K = 1/2 Iω² = 1/2 (0.45 kg⋅m²)(10.0 rad/s)² = 22.5 J2.

Solid diskMoment of inertia: I = 1/2 MR² = 1/2 (5.0 kg)(0.30 m)² = 0.225 kg⋅m²

Angular momentum: L = Iω = (0.225 kg⋅m²)(10.0 rad/s) = 2.25 N⋅m⋅s

Kinetic energy: K = 1/2 Iω² = 1/2 (0.225 kg⋅m²)(10.0 rad/s)² = 11.25 J3.

Solid sphereMoment of inertia: I = 2/5 MR² = 2/5 (5.0 kg)(0.30 m)² = 0.54 kg⋅m²

Angular momentum: L = Iω = (0.54 kg⋅m²)(10.0 rad/s) = 5.4 N⋅m⋅s

Kinetic energy: K = 1/2 Iω² = 1/2 (0.54 kg⋅m²)(10.0 rad/s)² = 27.0 J

Therefore, the angular momentum and kinetic energy for an object rotating at 10.0 rad/s with a mass of 5.0 kg and a radius of 0.30 m are:

Thin hoop: L = 4.5 N⋅m⋅s, K = 22.5 JSolid disk: L = 2.25 N⋅m⋅s, K = 11.25 JSolid sphere: L = 5.4 N⋅m⋅s, K = 27.0 J.

learn more about angular momentum here

https://brainly.com/question/30338110

#SPJ11

what is the energy which can be expended by this battery in a 40 min time frame? answer in units of j.

Answers

The amount of energy that a battery can expend in a given time is determined by the battery's capacity. The amount of energy that a battery can store is referred to as its capacity, which is measured in joules (J).

A battery with a higher capacity will hold more energy and will be able to expend it for a longer period of time than a battery with a lower capacity. The question doesn't provide information about the capacity of the battery. It's impossible to figure out how much energy the battery can expend in a given time without knowing the battery's capacity. Let's assume that the battery's capacity is C joules, and the 40-minute time period is T seconds. Thus, the amount of energy E the battery can expend in that time is given by:E = C x T / 3600 joules

Answer: E = C x T / 3600 joules The above formula can be used to calculate the amount of energy that a battery with a given capacity can expend in a given time.

For more information on battery's capacity visit:

brainly.com/question/32094086

#SPJ11

At a certain gas station, 40% of the customers use regular gas (4₁), 35% use plus gas (4₂), and 25% use premium (43). Of those customers using regular gas, only 30% fill their tanks (event B). Of

Answers

The probability that a customer at the gas station uses regular gas and fills their tank (event A and B) is 0.12, or 12%.

At a certain gas station, 40% of the customers use regular gas, 35% use plus gas, and 25% use premium. Of those customers using regular gas, only 30% fill their tanks (event B). The probability that a customer at the gas station uses regular gas and fills their tank (event A and B) is 0.12, or 12%. The probability of event A given event B is calculated using Bayes’ theorem, which states that P(A|B) = P(A and B)/P(B). In this case, we are trying to find the probability of event A (using regular gas) given that event B (filling tank) has occurred. Therefore, P(A|B) = P(A and B)/P(B) = 0.12/0.3 = 0.4.

The theory of probability, like other theories, is a formal representation of its concepts, that is, in terms that can be considered independently of their meaning. Rules of mathematics and logic are used to manipulate these formal terms, and any results are interpreted or translated back into the problem domain.

Know more about probability, here:

https://brainly.com/question/31828911

#SPJ11

If you raise an object to a greater height, you are definitely increasing its a. kinetic energy b. thermal energy c. gravitational potential energy d. heat e. chemical energy

Answers

If you raise an object to a greater height, you are definitely increasing its gravitational potential energy (option c).

What is gravitational potential energy? Gravitational potential energy is the energy that an object has due to its position in a gravitational field. When an object is raised to a certain height, it gains potential energy, which is stored and can be converted into other forms of energy.

The formula for gravitational potential energy is:PEg = mgh

Where m is the object's mass, g is the acceleration due to gravity, and h is the height that the object is raised.

The other options mentioned in the question, such as kinetic energy, thermal energy, heat, and chemical energy, are not affected when an object is raised to a greater height.

Therefore, the correct answer is (c) gravitational potential energy.

Learn more about gravitational potential energy at https://brainly.com/question/3910603

#SPJ11

how fast must a plane fly along the earth's equator so that the sun stands still relative to the passengers? the earth's radius is 6400 km.

Answers

Answer: 465.1

To calculate the speed at which a plane must fly along the Earth's equator for the sun to appear stationary relative to the passengers, we need to consider the rotation of the Earth.

The Earth completes one full rotation in approximately 24 hours. Therefore, in 24 hours, a point on the equator travels the full circumference of a circle with a radius equal to the Earth's radius.

The formula for the circumference of a circle is given by:

Circumference = 2 * π * radius

Substituting the Earth's radius (6400 km) into the formula, we have:

Circumference = 2 * π * 6400 km

To find the speed required for the sun to appear stationary, we divide the circumference by the time it takes for one full rotation (24 hours or 86400 seconds):

Speed = Circumference / Time

Speed = (2 * π * 6400 km) / 86400 s

Simplifying the equation:

Speed ≈ 465.1 m/s

Therefore, the plane must fly at approximately 465.1 meters per second (m/s) along the Earth's equator for the sun to appear stationary relative to the passengers.

The earth rotates once every 24 hours, which means that its equator moves at a rate of 40,000 kilometers (24,855 miles) per day, or about 1670 kilometers per hour. Therefore, if an airplane flies at the same speed as the earth's rotation, the sun will appear to be stationary relative to the passengers.

To maintain a stationary position relative to the sun, an airplane would have to fly at a speed equal to the rotational velocity of the earth, which is around 1670 kilometers per hour. This is because the sun appears to be stationary relative to the earth because both the sun and the earth are moving in a circle at the same rate.

to know more about speed visit:

https://brainly.com/question/17661499

#SPJ11

The driver of a 1800 kg car traveling on a horizontal road at 100 km/h suddenly applies the brakes. Due to a slippery pavement, the friction of the road on the tires of the car, which is what slows down the car, is 26.0 % of the weight of the car. What is the acceleration of the car? How many meters does the car travel before stopping under these conditions?

Answers

The acceleration of the car is -7.84 m/s² (deceleration) and the car will travel approximately 45.2 meters before stopping.

To find the acceleration of the car, we need to calculate the net force acting on it. The net force is the difference between the frictional force and the force due to the car's weight.

Frictional force = coefficient of friction * weight of the car

The weight of the car is given by the equation:

Weight = mass * gravity

Weight = 1800 kg * 9.8 m/s²

The coefficient of friction is given as 26% of the weight of the car, so:

Coefficient of friction = 0.26 * weight of the car

The net force is given by:

Net force = Frictional force - Weight

Using the equation F = ma (Newton's second law), where F is the net force and m is the mass of the car, we can solve for the acceleration (a):

Net force = ma

(ma) = Frictional force - Weight

a = (Frictional force - Weight) / m

Substituting the given values into the equation, we have:

a = (0.26 * Weight - Weight) / m

Calculating the acceleration:

a = (0.26 * 1800 kg * 9.8 m/s² - 1800 kg * 9.8 m/s²) / 1800 kg

a ≈ -7.84 m/s² (deceleration)

To find the distance traveled before stopping, we can use the equation of motion:

v² = u² + 2as

Here, the initial velocity (u) is 100 km/h, which needs to be converted to m/s:u = 100 km/h * (1000 m/1 km) * (1 h/3600 s)

u ≈ 27.8 m/s

Since the car comes to a stop, the final velocity (v) is 0 m/s.

Plugging in the values, the equation becomes:

0 = (27.8 m/s)² + 2 * (-7.84 m/s²) * s

Solving for s (distance traveled):

s = -((27.8 m/s)²) / (2 * (-7.84 m/s²))

s ≈ 45.2 meters

Therefore, the car has an acceleration of approximately -7.84 m/s² (deceleration), and it travels around 45.2 meters before coming to a stop.

To learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

need help part h,i, and j thank
you
A cylinder of volume 0.320 m³ contains 12.0 mol of neon gas at 22.8°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? 9.22e4 Pa (b) Find the internal energy of the gas. 4.

Answers

(h) The average kinetic energy per molecule of neon gas is 4.00 J.

(i) The root mean square speed of the neon gas molecules is 492 m/s.

(j) The average speed of the neon gas molecules is 431 m/s.

(h) The internal energy of an ideal gas is directly proportional to the temperature of the gas. The average kinetic energy per molecule can be calculated using the equation E_avg = (3/2)kT, where E_avg is the average kinetic energy, k is the Boltzmann constant (1.38 × 10⁻²³ J/K), and T is the temperature in Kelvin. Converting 22.8°C to Kelvin (22.8 + 273.15), we can calculate E_avg = (3/2)(1.38 × 10⁻²³ J/K)(295.95 K) = 4.00 J.

(i) The root mean square speed of gas molecules can be calculated using the equation v_rms = √(3kT/m), where v_rms is the root mean square speed, k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas. The molar mass of neon is 20.18 g/mol. Converting it to kg/mol (0.02018 kg/mol), we can calculate v_rms = √(3 × 1.38 × 10⁻²³ J/K × 295.95 K / 0.02018 kg/mol) = 492 m/s.

(j) The average speed of gas molecules can be calculated using the equation v_avg = √(8kT/πm), where v_avg is the average speed, k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas. Using the same values as in (i), we can calculate v_avg = √(8 × 1.38 × 10⁻²³ J/K × 295.95 K / (π × 0.02018 kg/mol)) = 431 m/s.

learn more about kinetic energy here:

https://brainly.com/question/11592500

#SPJ11

Other Questions
9.)10.)Assume that when adults with smartphones are randomly selected, 58% use them in meetings or classes. If 20 adult smartphone users are randomly selected, find the probability that exactly 14 of them us Evaluate the surface integral. S xyzdS,S is the cone with parametric equations x=ucos(v),y=usin(v),z=u,0u2,0v 2 when the virginia burgesses met in early 1773, they formed what? To understand just how much different subsets can differ, create a 5 fold partitioning of the cars data included in R(mtcars) and visualize the distribution of the gears variable across the folds. Rather than use the fancy trainControl methods for making the folds, create them directly so you actually can keep track of which data points are in which fold. This is not covered in the tutorial, but it is quick. Here is code to create 5 folds and a variable in the data frame that contains the fold index of each point. Use that resulting data frame to create your visualization what is the most important stimulus controlling ventilation? This questions for canadian law fairy tale subject abaout the golden goose Which of the following statements concerning bonds is FALSE? OA. Bonds can be issued either at par, premium, or discount. OB. Bonds interest is tax deductible. OC. Bondholders have voting rights. D. Bonds are usually considered to be a long term liability. Save Submit Assignment for Grading Exercise 10.04 (Inferences About the Difference Between Two Population Means: Sigmas Known) Question 2 of 13. Hint(s) Cond Nast Traveler conducts an annual survey A stock has an intrinsic value of $15 and an actual stock price of $13.50. You know that this stock _____. 1. has a Tobin's Q value < 1 2. will generate a positive alpha 3. has an expected return less than its required return 4. has a beta > 1 the type of growth that is from head to toe is called 1. Suppose that X and Y have a continuous joint distribution for which the joint p.d.f. is as follows: f(x, y) = = x+y, for 0x 1,0 y 1, otherwise. (a) Find E(Y|X) and Var(Y|X). (b) If it .Which of the following equations is used to find the value of c?A. c +b = a B. a +b +c =1C. a +c =b D. a +b =c Let Z be a standard normal random variable: i.e., Z ~ N(0,1). (1) Find the pdf of U = Z2 from its distribution. (2) Given that f(1/2) = VT Show that U follows a gamma distribution with parameter a = 1 = 1/2. (3) Show that I (1/2) = V1. Note that I (1) = Soe ex-1/2dx. Hint: Make the change of variables y = V2x and then relate the resulting expression to the normal distribution. or Hours 25. The Emerson Division of Golding Company produces small kitchen appliances, Thane prime costs for its most popular product, an electric stand mixer, are given below, company uses a standard costing system for production costing and control. The standard Standard Quantity Standard Price or Rate Direct Materials ? pounds $4 per pound Direct Labor 45 minutes ? per hour During the last month, Emerson produced 5,000 units with the following activity recorded: 1) 28,000 pounds of raw materials were purchased at a cost of $3.80 per pound. 2) There were 5,000 pounds of direct materials at the beginning and 1,000 pounds left at the end. 3) 584,000 of actual direct labor costs were incurred at an actual labor rate of S21 per hour. (1) Compute the direct material price and quantity (usage) variances. Indicate if the variances are favorable (F) or unfavorable (U). Show your computation for full credit! 16 points) Standard Cost per Unit $24 $15 (2) Compute the direct labor rate and efficiency variances. Indicate whether the variances are favorable (F) or unfavorable (U). Show your computation for full credit! 16 points (3) For the case above, prepare journal entries for the following 16 points): (a) The purchase of raw materials on account. (b) The use of direct materials in production. (c) The use of direct labor in production. (d) Closing out of variances Explain the difference between the American Opportunity Tax Credit and the Lifetime Learning Credit. Can both of these tax credits claimed by the same qualifying person for the same expense? Describe at least two scenarios where claiming the American Opportunity Tax Credit may be more beneficial to claim instead of the Lifetime Learning Tax Credit and vice versa. Dell's focus on Supply Chain Strategy and Transformation in their efforts in exceeding Customers' expectations, new market competition, and their drive toward operational efficiencies. Do you agree with Dell's solutions and what are your thoughts in regards to the following SCM themes?Customer needs & wants: Whats the difference?Design a product or service that meets or exceeds customer wants.Design Supply Chain processes that facilitate doing the job right the first time.Keep track of results: Monitor (real-time, reporting, business reviews) - How do you recommend Dell improve this?Extend these concepts throughout the supply chain: Where else could Dell Supply Chain leadership help operations?Top management must be involved and committed: How important was/is this? (a) Suppose we have preferences U(X, Y)= X Y. Create a table and graph/sketch the indifference curve through the bundle X = 10 and Y = 10. What is the utility at (10, 10)? (b) The Marginal Rate of Substitution is MRSxy=-Y/3X. Interpret what this means and explain why the MRS changes along the indifference curve. (c) Let prices be Px = $5, Py=$10 and income M = $500. Draw/sketch the budget constraint. Explain what the slope of the budget line means in economic terms. (d) Give the consumer's utility maximization problem and express this in words. What are the two conditions (equations) that identify the optimum? Sketch this in a figure and explain. (e) Show and explain why these preferences imply that the consumer will spend 4 of her income on Good X and 4 of her income on Good Y (1 points) (f) (g) For the income and prices in (c), what is optimal X and Y? Show your work. Suppose Px rises to $6 and Py falls to $8 but income stays at $500. Does consumer utility rise or fall? Show and explain. (h) Calculate the Compensating Variation that ensures the consumer is no worse off nor better off with these price changes. Show and explain your work For some, world hunger is explainable as a problem caused by too many people and too little food. This is called thea. overpopulation explanationb. inequality explanationc. scarcity explanationd. limited resources explanation Explain each of the three important concepts behind the Federal Networking Council's definition of the term Internet. Explain how each of these technologies contributes to the functionality of the Internet today, what limitations if any they have, and what methods researchers are exploring to overcome these limitations for Internet. what is the solution to the equation sqrt x^2 2x-25 ? assume the range is all real numbers.