What is the arc length travelled by the pointer on a record
player if the record spun for 400 s at an angular velocity of
0.005236 rad/s? radius is 0.40 cm

Answers

Answer 1

To summarize,The arc length traveled by the pointer on a record player can be calculated using the formula s = rθ, where s is the arc length, r is the radius, and θ is the angular displacement. Given that the record spins for 400 s at an angular velocity of 0.005236 rad/s and a radius of 0.40 cm, we can calculate the arc length to be approximately 8.35 cm.

To calculate the arc length traveled by the pointer on a record player, we use the formula s = rθ, where s represents the arc length, r is the radius of the circular path, and θ is the angular displacement. Given that the record spins for 400 s at an angular velocity of 0.005236 rad/s, we can find the angular displacement using the formula θ = ωt, where ω is the angular velocity and t is the time. Substituting the given values, we get θ = 0.005236 rad/s × 400 s = 2.0944 rad.

Now, we can calculate the arc length by substituting the radius (0.40 cm) and angular displacement (2.0944 rad) into the formula s = rθ: s = 0.40 cm × 2.0944 rad ≈ 0.8376 cm. Therefore, the arc length traveled by the pointer on the record player is approximately 8.35 cm.

learn more about arc length here:

https://brainly.com/question/31762064

#SPJ11


Related Questions

Click Submit to complete this assessment. Question 5 A 0.6 kg rock is attached to a string 0.5 m long and swings in a horizontal circle with a speed of 5 m/s. Find the centripetal force (in N) on the

Answers

The centripetal force acting on the rock is 15 N.

To find the centripetal force on the rock, we can use the formula:

Fc =[tex]m * v^{2} / r[/tex]

Where:

Fc is the centripetal force

m is the mass of the rock

v is the velocity of the rock

r is the radius of the circular path

Given:

Mass of the rock, m = 0.6 kg

Velocity of the rock, v = 5 m/s

Radius of the circular path, r = 0.5 m

Substituting the given values into the formula, we can calculate the centripetal force:

Fc = (0.6 kg) * (5 m/s)² / (0.5 m)

Simplifying the equation:

Fc = 0.6 kg * [tex]25 m^{2} /s^{2}[/tex] / 0.5 m

Fc = 15 N

To know more about centripetal force, here

brainly.com/question/14021112

#SPJ4

A solid wooden sphere rotates in place about its central axis. The radius of the sphere is 0.65 m and its mass is 3300 kg.
A. What is the rotational inertia I of this sphere?
B. If the sphere has 13,000 J of rotational kinetic energy, what is the angular velocity ω of the sphere?

Answers

The rotational inertia (I) of the wooden sphere is determined using the formula I = (2/5) * m * [tex]r^2[/tex], where m is the mass of the sphere and r is its radius. The angular velocity (ω) of the sphere can be found using the formula ω = √(2K / I), where K is the rotational kinetic energy. By substituting the given values, the angular velocity of the sphere can be determined.

A. To find the rotational inertia (I) of the sphere, we can use the formula I = (2/5) * m * [tex]r^2[/tex], where m is the mass of the sphere and r is its radius. Substituting the given values, we have I = (2/5) * 3300 kg * [tex](0.65 m)^2[/tex]. Evaluating this expression   gives the value of I.

B. Given that the sphere has 13,000 J of rotational kinetic energy (K), we can use the formula K = (1/2) * I * [tex]ω^2[/tex] to find the angular velocity ω. Rearranging the formula, we have ω = √(2K / I). Plugging in the values of K and I calculated in part A, we can determine the angular velocity ω of the sphere.

To know more about rotational inertia refer to-

https://brainly.com/question/31369161

#SPJ11

A
body whose density is 2500 kg/m' weighs 98 N in air and 66.64 N
submerged in a liquid. N. Find the density of the liquid

Answers

Answer:  the density of the liquid is approximately 2499.2 kg/m³

Explanation:

To find the density of the liquid, we can use Archimedes' principle, which states that the buoyant force experienced by an object submerged in a fluid is equal to the weight of the fluid displaced by the object.

The weight of the body in air is given as 98 N, and the weight of the body submerged in the liquid is given as 66.64 N. The difference in weight between the two states represents the weight of the liquid displaced by the body.

Weight of the liquid displaced = Weight in air - Weight submerged = 98 N - 66.64 N = 31.36 N

Now, we can use the formula for density:

Density = (Weight of the liquid displaced) / (Volume of the liquid displaced)

Since the weight of the liquid displaced is 31.36 N and the density of the body is given as 2500 kg/m³, we can rearrange the formula to solve for the volume of the liquid displaced:

Volume of the liquid displaced = (Weight of the liquid displaced) / (Density of the body)

Volume of the liquid displaced = 31.36 N / 2500 kg/m³ = 0.012544 m³

Now, we can find the density of the liquid:

Density of the liquid = (Weight of the liquid displaced) / (Volume of the liquid displaced)

Density of the liquid = 31.36 N / 0.012544 m³ ≈ 2499.2 kg/m³

Question 14 (2 points) Listen In its own rest frame a certain particle exists, from its creation until its subsequent decay, for 1 micro-second. Relative to a certain laboratory it travels with a spee

Answers

In its rest frame, a particle exists for 1 microsecond until its decay. But relative to a laboratory, it moves at a speed that is very close to that of light and for a shorter time. In this situation, special relativity can be applied to see what happens to the time and space measurements of the particle during its movement.

What is special relativity Special relativity is a theory developed by Albert Einstein in 1905, which revolutionized the understanding of time and space. This theory provides a means of calculating the physical measurements of space and time for objects that are moving relative to each other at high speeds (close to the speed of light).

This theory describes the fundamental laws of physics and how the physical laws apply to the objects in motion at high speeds. This theory is essential to modern physics and helps to explain the behavior of subatomic particles. It shows how space and time are intertwined, and that they are not separate concepts.

Instead, they are intertwined and become spacetime. Special relativity is applicable only in the absence of gravitational fields. What happens to time in special relativity In special relativity, time is not absolute but is relative to the observer. Time dilation is one of the key phenomena in special relativity, which shows that time passes more slowly for objects moving at high speeds relative to those that are stationary.

To know more about relativity visit:

https://brainly.com/question/31293268

#SPJ11

Consider a rectangular bar composed of a conductive metal. l' = ? R' = ? R + V V 1. Is its resistance the same along its length as across its width? Explain.

Answers

The resistance of a rectangular bar composed of a conductive metal is not the same along its length as across its width. The resistance along the length (R') depends on the length and cross-sectional area.

No, the resistance is not the same along the length as across the width of a rectangular bar composed of a conductive metal. Resistance (R) is a property that depends on the dimensions and material of the conductor. For a rectangular bar, the resistance along its length (R') and across its width (R) will be different.

The resistance along the length of the bar (R') is determined by the resistivity of the material (ρ), the length of the bar (l'), and the cross-sectional area of the bar (A). It can be calculated using the formula:

R' = ρ * (l' / A).

On the other hand, the resistance across the width of the bar (R) is determined by the resistivity of the material (ρ), the width of the bar (w), and the thickness of the bar (h). It can be calculated using the formula:

R = ρ * (w / h).

Since the cross-sectional areas (A and w * h) and the lengths (l' and w) are different, the resistances along the length and across the width will also be different.

Learn more about ”resistance” here:

brainly.com/question/29427458

#SPJ11

Calculate the number of photons emitted per second from one square meter of the sun's surface (assume that it radiates like a black-body) in the wavelength range from 1038 nm to 1038.01 nm. Assume the surface temperature is 5500 K Your answer _______________ photons/m²/s

Answers

The number of photons emitted per second from one square meter of the Sun's surface in the specified wavelength range is approximately 4.59 x 10^13 photons/m²/s.

To calculate the number of photons emitted per second from one sq meter of the Sun's surface in the given wavelength range, we can use Planck's law and integrate the spectral radiance over the specified range.

Assuming the Sun radiates like a black body with a surface temperature of 5500 K, the number of photons emitted per second from one square meter of the Sun's surface in the wavelength range from 1038 nm to 1038.01 nm is approximately 4.59 x 10^13 photons/m²/s.

Planck's law describes the spectral radiance (Bλ) of a black body at a given wavelength (λ) and temperature (T). It can be expressed as Bλ = (2hc²/λ⁵) / (e^(hc/λkT) - 1), where h is Planck's constant, c is the speed of light, and k is Boltzmann's constant.

To calculate the number of photons emitted per second (N) from one square meter of the Sun's surface in the given wavelength range, we can integrate the spectral radiance over the range and divide by the energy of each photon (E = hc/λ).

First, we calculate the spectral radiance at the given temperature and wavelength range. Using the provided values, we find Bλ(λ = 1038 nm) = 6.37 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹ and Bλ(λ = 1038.01 nm) = 6.31 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹. Next, we integrate the spectral radiance over the range by taking the average of the two values and multiplying it by the wavelength difference (∆λ = 0.01 nm).

The average spectral radiance = (Bλ(λ = 1038 nm) + Bλ(λ = 1038.01 nm))/2 = 6.34 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹.

Finally, we calculate the number of photons emitted per second:

N = (average spectral radiance) * (∆λ) / E = (6.34 x 10^13 W·m⁻²·sr⁻¹·nm⁻¹) * (0.01 nm) / (hc/λ) = 4.59 x 10^13 photons/m²/s.

Therefore, the number of photons emitted per second from one square meter of the Sun's surface in the specified wavelength range is approximately 4.59 x 10^13 photons/m²/s.

Learn more about Planck's law here:

brainly.com/question/31832964

#SPJ11

In the partial wave analysis of low-energy scattering, we often find that S-wave scattering phase shift is all we need. Why do the higher partial waves tend not to contribute to scattering at this limit?

Answers

In partial wave analysis, the S-wave scattering phase shift is all we need to analyze low-energy scattering. At low energies, the wavelength is large, which makes the effect of higher partial waves to be minimal.

In partial wave analysis, the S-wave scattering phase shift is all we need to analyze low-energy scattering. The reason why the higher partial waves tend not to contribute to scattering at this limit is due to the following reasons:

The partial wave expansion of a scattering wavefunction involves the summation of different angular momentum components. In scattering problems, the energy is proportional to the inverse square of the wavelength of the incoming particles.

Hence, at low energies, the wavelength is large, which makes the effect of higher partial waves to be minimal. Moreover, when the incident particle is scattered through small angles, the dominant contribution to the cross-section comes from the S-wave. This is because the higher partial waves are increasingly suppressed by the centrifugal barrier, which is proportional to the square of the distance from the nucleus.

In summary, the contribution of higher partial waves tends to be negligible in the analysis of low-energy scattering. In such cases, we can get an accurate description of the scattering process by just considering the S-wave phase shift. This reduces the complexity of the analysis and simplifies the interpretation of the results.

This phase shift contains all the relevant information about the interaction potential and the scattering properties. The phase shift can be obtained by solving the Schrödinger equation for the potential and extracting the S-matrix element. The S-matrix element relates the incident and scattered waves and encodes all the scattering information. A simple way to extract the phase shift is to analyze the behavior of the wavefunction as it approaches the interaction region.

Learn more About S-wave from the given link

https://brainly.com/question/30540515

#SPJ11

A well-known (but probably apocryphal) Einstein quote is 'Sit on a hot stove for five minutes, and it feels like an hour. Talk to a pretty girl for an hour, and it feels like five minutes. That's relativity. (a) Einstein (at rest, frame S) sits on pins and needles for five minutes. Could there be a moving frame S' in which this same period lasts an hour? If so, determine the velocity of that frame with respect to S, if not, explain why not. (b) Einstein talks with Marilyn Monroe for an hour. (According to another well-known anecdote, during this conversation Marilyn Monroe would have said to Einstein 'If we were to have children, and they'd have your brains and my looks, wouldn't that be fantastic?", to which Einstein replied 'Yes, but what if they'd have your brains and my looks?"). Both Einstein and Monroe are at rest in frame S. Could there be a moving frame S' in which this same period lasts five minutes? If so, determine the velocity of that frame with respect to S, if not, explain why not.

Answers

The velocity of this frame with respect to S would be v = c * sqrt(1 - (T'/T)^2). Yes, there could be a moving frame S' in which the five minutes that Einstein sits on pins and needles last an hour.

a) Yes, there could be a moving frame S' in which the five minutes that Einstein sits on pins and needles last an hour. The velocity of this frame with respect to S would be:

v = c * sqrt(1 - (T'/T)^2)

where:

v is the velocity of S' with respect to S

c is the speed of light

T' is the time interval in frame S'

T is the time interval in frame S

In this case, T' is 60 minutes and T is 5 minutes. Substituting these values into the equation for v, we get:

v = c * sqrt(1 - (60/5)^2) = 0.994 c

This means that the frame S' is moving at 99.4% of the speed of light with respect to frame S.

b) No, there could not be a moving frame S' in which the hour that Einstein talked with Marilyn Monroe lasted five minutes. This is because the time interval is the same for all observers, regardless of their motion. The only way that the hour could last five minutes in frame S' is if the time dilation factor, gamma, were greater than one. However, gamma can never be greater than one. The maximum value of gamma is one, which occurs when the velocity of the observer is equal to the speed of light.

In conclusion, the quote by Einstein is not entirely accurate. The passage of time is not relative to the observer's motion. The time interval is the same for all observers, regardless of their motion. The only way that the passage of time can appear to be different for different observers is if the observers are moving at a significant fraction of the speed of light.

To learn more about velocity click here

https://brainly.com/question/30265720

#SPJ11

A 70 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined 16° above the horizontal. (a) If the coefficient of static friction is 0.44, what minimum force magnitude is required from the rope to start the crate moving? N (b) If μ = 0.29, what is the magnitude of the initial acceleration of the crate?

Answers

The minimum force magnitude required from the rope to start the crate moving is approximately 302.5 N and the magnitude of the initial acceleration of the crate depends on the tension in the rope.

(a) The minimum force magnitude required from the rope to start the crate moving can be determined by considering the forces acting on the crate. The force required to overcome static friction is given by:

F_static = μ_static * N

Where:

- F_static is the force required to overcome static friction.

- μ_static is the coefficient of static friction.

- N is the normal force.

The normal force is equal to the weight of the crate, which is given by:

N = m * g

Where:

- m is the mass of the crate (70 kg).

- g is the acceleration due to gravity (approximately [tex]9.8 m/s^2[/tex]).

Substituting the given values, we can calculate the minimum force magnitude:

F_static = 0.44 * (70 kg) * (9.8 m/s^2)

The minimum force magnitude required from the rope to start the crate moving is approximately 302.5 N.

(b) To calculate the magnitude of the initial acceleration of the crate, we need to consider the forces acting on the crate after it starts moving. The net force can be expressed as:

Net force = T - F_friction

Where:

- T is the tension in the rope.

- F_friction is the force of kinetic friction.

The force of kinetic friction can be calculated using:

F_friction = μ * N

Where:

- μ is the coefficient of kinetic friction.

- N is the normal force.

Using the given coefficient of kinetic friction μ = 0.29, we can calculate the magnitude of the initial acceleration:

Net force = T - μ * (70 kg) * [tex](9.8 m/s^2)[/tex]

ma = T - μ * (70 kg) *  [tex](9.8 m/s^2)[/tex]

The magnitude of the initial acceleration of the crate depends on the tension in the rope, which would require additional information to determine.

Learn more about force, here:

https://brainly.com/question/30507236

#SPJ4

The magnitude of the initial acceleration of the crate is; 49.377/70 = 0.70539 m/s² (approx. 0.71 m/s²)

When the rope is inclined at an angle of 16° above the horizontal and a 70 kg crate is pulled on the floor, the minimum force required to start the crate moving can be determined by multiplying the coefficient of static friction by the weight of the crate. This is because the force required to start moving the crate is equal to the force of static friction acting on the crate. Here,μ = 0.44m = 70 kgθ = 16°(a)

The minimum force magnitude required to start the crate moving can be calculated as follows; F = μmgsinθF = 0.44 × 70 × 9.81 × sin 16°F = 246.6 N

Thus, the minimum force magnitude required from the rope to start the crate moving is 246.6 N.(b) When the coefficient of kinetic friction μ = 0.29, the magnitude of the initial acceleration of the crate can be determined by subtracting the force of kinetic friction from the force exerted on the crate.

F(k) = μmg

F(k) = 0.29 × 70 × 9.81

F(k) = 197.223 N

Force applied - force of kinetic friction = ma

F - F(k) = ma246.6 - 197.223 = 70a49.377 = 70a. The magnitude of the initial acceleration of the crate is 0.71 m/s² (approx.) if the coefficient of kinetic friction is 0.29.

Learn more about initial acceleration

https://brainly.com/question/13727465

#SPJ11

As has focal length 44 cm Part A Find the height of the image produced when a 22 cas high obard is placed at stance +10 cm Express your answer in centimeters

Answers

The height of the image is 58.74 cm.

Given data:

Focal length = 44 cm

Height of object = 22 cm

Object distance (u) = -10 cm

Image distance (v) =?

Formula: Using the lens formula `1/f = 1/v - 1/u`,

Find the image distance (v).

Using the magnification formula m = -v/u`,

Find the magnification (m).

Using the magnification formula m = h₂/h₁`,

Find the height of the image (h₂).

As per the formula, `

1/f = 1/v - 1/u`

1/44 = 1/v - 1/(-10)

1/v =1/44 + 1/10

v = 26.7 cm.

The image distance (v) is 26.7 cm.

As per the formula, `m = -v/u`

m = -26.7/-10

m = 2.67.

The magnification is 2.67.

As per the formula, `m = h₂/h₁`

2.67 = h₂/22

h₂ = 58.74 cm.

Therefore The height of the image is 58.74 cm.

Learn more about height and Focal length https://brainly.com/question/28039799

#SPJ11

For Questions 6 and 7 The dry-bulb temperature and wet-bulb temperature of a sample of air are 23°C and 18°C, respectively. The pressure of the air is 97 kPa. If the air was adiabatically saturated: Question 6 Calculate the humidity ratio in kg of vapor per kg of dry air. Round your answer to 5 decimal places. Add your answer 10 Poin Question 7 What is its degree of saturation in %? Round your answer to 0 decimal places. Add your answer

Answers

The humidity ratio of the adiabatically saturated air sample is 0.01195 kg of vapor per kg of dry air. Its degree of saturation is 82%.

To calculate the humidity ratio, we can use the formula:

Humidity Ratio = (0.622 * Partial Pressure of Water Vapor) / (Pressure - Partial Pressure of Water Vapor)

First, we need to find the partial pressure of water vapor. For that, we can use the difference between the dry-bulb temperature and wet-bulb temperature.

From the psychrometric chart, we can determine that the saturation pressure at 18°C (wet-bulb temperature) is 1.9423 kPa, and at 23°C (dry-bulb temperature) is 3.1699 kPa.

Now, we can calculate the partial pressure of water vapor:

Partial Pressure of Water Vapor = Saturation Pressure at Wet-Bulb Temperature - Saturation Pressure at Dry-Bulb Temperature

                            = 1.9423 kPa - 3.1699 kPa

                            = -1.2276 kPa

Since the partial pressure cannot be negative, we consider it as zero, as the air is adiabatically saturated.

Next, we substitute the values into the humidity ratio formula:

Humidity Ratio = (0.622 * 0) / (97 kPa - 0)

             = 0

Thus, the humidity ratio is 0 kg of vapor per kg of dry air.

To calculate the degree of saturation, we can use the formula:

Degree of Saturation = (Partial Pressure of Water Vapor / Saturation Pressure at Dry-Bulb Temperature) * 100

Since the partial pressure is zero, the degree of saturation is also zero.

Therefore, the degree of saturation is 0%.

Learn more about humidity ratio

brainly.com/question/32229458

#SPJ11

Part A If the magnetic field in a traveling EM wave has a peak magnitude of 20.0 nT , what is the peak magnitude of the electric field? E =

Answers

The peak magnitude of the electric field is 6.00 N/C.

Given that the magnetic field in a traveling electromagnetic wave has a peak magnitude of 20.0 nT.

We are to calculate the peak magnitude of the electric field.

The formula that relates the magnetic field and the electric field in a travelling electromagnetic wave is;

`E/B = c`

Where, `E` is the electric field, `B` is the magnetic field, and `c` is the speed of light.

Substitute the values in the formula

`E/B = c`; `B = 20.0 nT`, `c = 3 × 10⁸ m/s`.

Therefore; `E/20.0 × 10⁻⁹ = 3 × 10⁸`

Rearrange the above equation and solve for `E`:

`E = B × c`

`E = 20.0 × 10⁻⁹ × 3 × 10⁸`

`E = 6.00 N/C`

Hence, the peak magnitude of the electric field is 6.00 N/C.

Let us know more about magnetic field : https://brainly.com/question/30331791.

#SPJ11

During an Earthquake, the power goes out in LA county. You are trying to get home which is located directly North of where you currently are. You don't know exactly how to get there, but you have a compass in your pocket. A friend is with you, but doesn't know how a compass works and until they understand they are unwilling to follow you. Describe to your friend how a compass works and how you know which direction North is.

Answers

A compass works by using a magnetized needle that aligns with the Earth's magnetic field. By observing which way the marked end of the needle is pointing, we can determine the direction of North.

A compass is a simple navigational tool that can help us determine the direction of North. It consists of a magnetized needle, which aligns itself with the Earth's magnetic field. The needle has one end that is colored or marked to indicate the North pole. This information can be used for navigation to find our way home, as North is directly opposite to our current location.

To find North, hold the compass horizontally, ensuring it is level and not affected by nearby metal objects. The needle will align itself with the Earth's magnetic field, with the marked end pointing towards the North pole. The opposite end of the needle points towards the South pole.

By observing the direction the marked end of the needle is pointing, we can determine which way is North. We can then use this information to navigate and find our way home, as North is directly in the opposite direction from where we are.

Learn more about ”magnetic field” here:

brainly.com/question/12244454

#SPJ11

A 112 kg astronaut is tethered to the International Space Station (ISS) and is 26 m from the center of mass
of the ISS. The gravitational force between the astronaut and the ISS is 4.64 × 10^-6 N.
Calculate the mass of the ISS.
Write your answer using two significant figures.

Answers

The mass of the ISS is approximately 362,464 kg.

The gravitational force between two objects can be calculated using Newton's law of universal gravitation:

F = (G * m1 * m2) / r²

where F is the gravitational force, G is the gravitational constant (approximately 6.67430 × 10^-11 N·m²/kg²), m1 and m2 are the masses of the two objects, and r is the distance between their centers of mass.

Given:

F = 4.64 × 10^-6 N

m1 = 112 kg (mass of the astronaut)

r = 26 m

We need to solve for the mass of the ISS (m2).

Rearranging the formula, we get:

m2 = (F * r²) / (G * m1)

Substituting the values:

m2 = (4.64 × 10^-6 N * (26 m)²) / (6.67430 × 10^-11 N·m²/kg² * 112 kg)

m2 ≈ 362,464 kg

Therefore, the mass of the ISS is approximately 362,464 kg.

Learn more about gravitational force:

https://brainly.com/question/27943482

#SPJ11

A proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp), and an alpha particle (charge +2e, mass 4m) are accelerated from rest through a common potential difference AV. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius p (a) In terms of r, determine the radius r of the circular orbit for the deuteron.

Answers

The radius of the circular orbit for the deuteron and the alpha particle can be determined in terms of the radius r of the circular orbit for the proton.

The centripetal force required to keep a charged particle moving in a circular path in a magnetic field is provided by the magnetic force. The magnetic force is given by the equation F = qvB, where q is the charge of the particle, v is its velocity, and B is the magnetic field strength.

For a proton in a circular orbit of radius r, the magnetic force is equal to the centripetal force, so we have qvB = mv²/r. Rearranging this equation, we find that v = rB/m.

Using the same reasoning, for a deuteron (with charge +e and mass 2m), the velocity can be expressed as v = rB/(2m). Since the radius of the orbit is determined by the velocity, we can substitute the expression for v in terms of r, B, and m to find the radius r for the deuteron's orbit: r = (2m)v/B = (2m)(rB/(2m))/B = r.

Similarly, for an alpha particle (with charge +2e and mass 4m), the velocity is v = rB/(4m). Substituting this into the expression for v, we get r = (4m)v/B = (4m)(rB/(4m))/B = r.

Therefore, the radius of the circular orbit for the deuteron and the alpha particle is also r, the same as that of the proton.

Learn more about velocity here ;

brainly.com/question/30540135

#SPJ4

In terms of r, the radius of the circular orbit for the deuteron is r.

The magnetic field B that each of the particles enters is uniform. The particles have been accelerated from rest through a common potential difference AV, and their velocities are directed at right angles to B. Given that the proton moves in a circular path of radius p. We need to determine the radius r of the circular orbit for the deuteron in terms of r.

Deuteron is a nucleus that contains one proton and one neutron, so it has double the mass of the proton. Therefore, if we keep the potential difference constant, the kinetic energy of the deuteron is half that of the proton when it reaches the magnetic field region. The radius of the circular path for the deuteron, R is given by the expression below; R = mv/(qB)Where m is the mass of the particle, v is the velocity of the particle, q is the charge of the particle, B is the magnetic field strength in Teslas.

The kinetic energy K of a moving object is given by;K = (1/2) mv²For the proton, Kp = (1/2) mpv₁²For the deuteron, Kd = (1/2) (2mp)v₂², where mp is the mass of a proton, v₁ and v₂ are the velocities of the proton and deuteron respectively at the magnetic field region.

Since AV is common to all particles, we can equate their kinetic energy at the magnetic field region; Kp = Kd(1/2) mpv₁² = (1/2) (2mp)v₂²4v₁² = v₂²From the definition of circular motion, centripetal force, Fc of a charged particle of mass m with charge q moving at velocity v in a magnetic field B is given by;Fc = (mv²)/r

Where r is the radius of the circular path. The centripetal force is provided by the magnetic force experienced by the particle, so we can equate the magnetic force and the centripetal force;qvB = (mv²)/rV = (qrB)/m

Substitute for v₂ and v₁ in terms of B,m, and r;(qrB)/mp = 2(qrB)/md² = 2pThe radius of the deuteron's circular path in terms of the radius of the proton's circular path is;d = 2p(radius of proton's circular path)r = (d/2p)p = r/2pSo, r = 2pd.

Learn more about deuteron

https://brainly.com/question/31978176

#SPJ11

What is the average power consumption of an appliance that use5.00kwh of energy /day? how many joules of energy does this appliance consume in a year?

Answers

The average power consumption of an appliance that uses 5.00 kWh of energy per day can be calculated by dividing the energy consumption (5.00 kWh) by the time taken (24 hours in a day).

This gives us the average power consumption in kilowatts (kW). The average power consumption of the appliance is approximately 0.2083 kW. To calculate the energy consumption in joules in a year, we need to convert kilowatts to joules. Since 1 kilowatt is equal to 3.6 million joules (1 kW = 3.6 x 10^6 J), we can multiply the average power consumption (0.2083 kW) by the number of hours in a year (365 days x 24 hours/day). Therefore, the appliance would consume approximately 1,826,040 joules of energy in a year.

In conclusion, the average power consumption of the appliance is 0.2083 kW, and it consumes around 1,826,040 joules of energy in a year. To calculate the energy consumption in joules in a year, we need to convert kilowatts to joules. Since 1 kilowatt is equal to 3.6 million joules, we can multiply the average power consumption by the number of hours in a year (365 days x 24 hours/day). This results in an energy consumption of approximately 1,826,040 joules in a year. So, the average power consumption of the appliance is 0.2083 kW, and it consumes around 1,826,040 joules of energy in a year.

To know more about consumption visit:

https://brainly.com/question/31868349

#SPJ11

Please Help
A simple ac circuit is composed of an inductor connected across the terminals of an ac power source. If the frequency of the source is halved, what happens to the reactance of the inductor? It is unch

Answers

When the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases.

The reactance of an inductor is directly proportional to the frequency of the AC power source. Reactance is the opposition that an inductor presents to the flow of alternating current. It is determined by the formula Xl = 2πfL, where Xl is the inductive reactance, f is the frequency, and L is the inductance.

When the frequency is halved, the value of f in the formula decreases. As a result, the inductive reactance increases. This means that the inductor offers greater opposition to the flow of current, causing the current to be impeded.

Halving the frequency of the AC power source effectively reduces the rate at which the magnetic field in the inductor changes, leading to an increase in the inductive reactance. It is important to consider this relationship between frequency and reactance when designing and analyzing AC circuits with inductors.

In conclusion, when the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases, resulting in greater opposition to the flow of current.

To know more about Frequency visit-

brainly.com/question/14320803

#SPJ11

A 3
kg object moves with an initial speed of V0= (2i+3j) m/s. A net
force acts on the object so its final speed is vf=(3i+8.7j) m/s.
Calculate the net work done by the force.

Answers

A 3kg object is initially moving with a velocity of V0 = (2i+3j) m/s. A net force acts on the object, resulting in a final velocity of vf = (3i+8.7j) m/s. The net work done by the force acting on the object is (71.69i + 5.4j) Joules.

The objective is to calculate the net work done by the force on the object. To calculate the net work done by the force, we can use the work-energy theorem, which states that the work done on an object is equal to the change in its kinetic energy. The change in kinetic energy can be expressed as ΔKE = KEf - KE0, where KEf is the final kinetic energy and KE0 is the initial kinetic energy.

The initial kinetic energy can be calculated using the formula KE0 = (1/2) * m * V0^2, where m is the mass of the object and V0 is its initial velocity. Substituting the given values, we have KE0 = (1/2) * 3kg * (2i+3j)^2.

Similarly, the final kinetic energy can be calculated as KEf = (1/2) * m * vf^2, where vf is the final velocity. Substituting the given values, we have KEf = (1/2) * 3kg * (3i+8.7j)^2.

Finally, we can calculate the net work done as W = ΔKE = KEf - KE0. Substituting the values of KEf and KE0, we can evaluate the net work done by the force on the object.

In conclusion, by applying the work-energy theorem and calculating the initial and final kinetic energies, we can determine the net work done by the force on the object.

Learn more about velocity here: https://brainly.com/question/30559316

#SPJ11

The displacement equation of a standing wave on a string fixed at both ends is = 0.10 sin 5x cos4πt where y and x are in meters and t is in second. It produces for loops. (i) What is the wavelength and wave speed of the individual waves? (ii) Find the length of the string. (iii) Is there a node or antinode at x = 0?(iv) Write down the individual equations of the waves whose resultant is the standing wave.

Answers

The resultant of four waves is the standing wave given by y = 0.10 sin 5x cos(4πt)

Therefore, these are the individual equations of the waves whose resultant is the standing wave.

The displacement equation of a standing wave on a string fixed at both ends is y = 0.10 sin 5x cos(4πt) where y and x are in meters and t is in seconds. It produces four loops.

(i) The displacement equation is given by

y = 0.10 sin 5x cos(4πt)

The amplitude A of the wave is 0.1 m.

The angular frequency ω of the wave is 4π rad/s.

The wave number k is given by k = 5 m^–1.

The wavelength λ of the wave is given by

λ = 2π/kλ

= 2π/5

= 1.26 m

The wave speed v is given by

v = ω/k

= 4π/5

= 2.51 m/s

(ii) For a standing wave, the length of the string L is half the wavelength of the wave.

Thus, L = λ/2

= 1.26/2

= 0.63 m

(iii) At a node of a standing wave, there is zero displacement. Thus, y = 0 at x = 0.

We can substitute these values into the given equation to find that cos(0) = 1 and sin(0) = 0.

Therefore, y = 0.

(iv) The individual waves that make up the standing wave can be found by taking the sum of the waves moving in the opposite direction.

For a standing wave, the individual waves have the same amplitude and frequency, but are moving in opposite directions. Thus, the individual waves can be written as

y1 = 0.05 sin 5x cos(4πt)

y2 = 0.05 sin 5x cos(4πt + π)

y3 = –0.05 sin 5x cos(4πt)

y4 = –0.05 sin 5x cos(4πt + π)

The resultant of these four waves is the standing wave given by y = 0.10 sin 5x cos(4πt)

Therefore, these are the individual equations of the waves whose resultant is the standing wave.

To know more about standing wave, visit:

https://brainly.com/question/14176146

#SPJ11

For each of the three sheets of polarizing material shown in the drawing, the orientation of the transmission axis is labeled relative to the vertical. The incident beam of light is unpolarized and has an intensity of 1420 W/m2. What is the intensity of the beam transmitted through the three sheets when θ1​= 17.3∘,θ2​=53.6∘, and θ3​=101∘? Number Units

Answers

The intensity I₃ = I₂ * cos²101° of the beam transmitted through the three sheets of polarizing material with given transmission axis orientations and incident angle values can be calculated by applying Malus' law.

According to Malus' law, the intensity of light transmitted through a polarizing material is given by the equation:

I = I₀ * cos²θ

where I is the transmitted intensity, I₀ is the incident intensity, and θ is the angle between the transmission axis of the polarizer and the polarization direction of the incident light.

For the first sheet, with θ₁ = 17.3°, the transmitted intensity can be calculated as:

I₁ = 1420 * cos²17.3°

For the second sheet, with θ₂ = 53.6°, the transmitted intensity is:

I₂ = I₁ * cos²53.6°

Finally, for the third sheet, with θ₃ = 101°, the transmitted intensity is:

I₃ = I₂ * cos²101°

By substituting the given values into the equations and performing the calculations, the final intensity of the beam transmitted through the three sheets can be determined.

To learn more about polarizing -

brainly.com/question/13778472

#SPJ11

The outside mirror on the piger side of a son and has focal length of sometive to the mirror a truck traveling in the rear has an object distance of time (a) Find the image distance of the truck m ASK Vind the magnification of the mirror

Answers

The outside mirror on the passenger side of a car is convex and has a focal length of- 7.0 m. Relative to this mirror, a truck traveling in the rear has an object distance of 11 m.(a)the image distance of the truck is approximately -4.28 meters.(b)the magnification of the convex mirror is approximately -0.389.

To find the image distance of the truck and the magnification of the convex mirror, we can use the mirror equation and the magnification formula.

Given:

Focal length of the convex mirror, f = -7.0 m (negative because it is a convex mirror)

Object distance, do = 11 m

a) Image distance of the truck (di):

The mirror equation is given by:

1/f = 1/do + 1/di

Substituting the given values into the equation:

1/(-7.0) = 1/11 + 1/di

Simplifying the equation:

-1/7.0 = (11 + di) / (11 × di)

Cross-multiplying:

-11 × di = 7.0 * (11 + di)

-11di = 77 + 7di

-11di - 7di = 77

-18di = 77

di = 77 / -18

di ≈ -4.28 m

The negative sign indicates that the image formed by the convex mirror is virtual.

Therefore, the image distance of the truck is approximately -4.28 meters.

b) Magnification of the mirror (m):

The magnification formula for mirrors is given by:

m = -di / do

Substituting the given values into the formula:

m = (-4.28 m) / (11 m)

Simplifying:

m ≈ -0.389

Therefore, the magnification of the convex mirror is approximately -0.389.

To learn more about Magnification of the mirror visit: https://brainly.com/question/13080012

#SPJ11

An object is standing in front of a convex mirror. The image is reflected 12 feet behind the mirror which has a focal length of 1 feet. The image is 4 ft tall. How tall is the object? Express your answer with at least two decimal places Note: When entering your final answer in the input box, include the sign if the answer involves a negative sign e.g.-14.22. If positive, there's no need to include the sign.

Answers

The object's height is 4 feet, determined using the magnification equation for a convex mirror and given image and focal lengths.

The magnification equation for a convex mirror is given by:

1/f = 1/dₒ + 1/dᵢ

Where f is the focal length of the mirror, dₒ is the object distance, and dᵢ is the image distance.

Given that the focal length (f) is 1 foot and the image distance (dᵢ) is 12 feet, we can rearrange the equation to solve for the object distance (dₒ):

1/dₒ = 1/f - 1/dᵢ

1/dₒ = 1/1 - 1/12

1/dₒ = 11/12

dₒ = 12/11 feet

The height of the object (hₒ) and the height of the image (hᵢ) are related by the magnification equation:

m = -hᵢ/hₒ

Given that the height of the image (hᵢ) is 4 feet, we can solve for the height of the object (hₒ):

m = -hᵢ/hₒ

-4/hₒ = -1/1

hₒ = 4 feet

Therefore, the height of the object is 4 feet.

To learn more about magnification, click here: https://brainly.com/question/31595015

#SPJ11

Two transverse waves y1 = 4 sin( 2t - rex) and y2 = 4 sin(2t - TeX + Tu/2) are moving in the same direction. Find the resultant amplitude of the interference between these two waves.

Answers

Two transverse waves y1 = 4 sin( 2t - rex) and y2 = 4 sin(2t - TeX + Tu/2) are moving in the same direction. the resultant amplitude of the interference between these two waves is given by:Amplitude = 4 [sin(Tex)cos(Tu/2) - cos(Tex)sin(Tu/2) - cos(rex)sin(2t) + sin(rex)cos(2t)]

To find the resultant amplitude of the interference between the two waves, we need to add their wave functions.

The given wave functions are:

y1 = 4 sin(2t - rex)

y2 = 4 sin(2t - TeX + Tu/2)

To add these wave functions, we can combine their corresponding terms. The common terms are the time component (2t) and the phase shift (-rex or -TeX + Tu/2). The amplitude of the resulting interference wave will depend on the sum of the individual wave amplitudes.

Adding the wave functions:

y = y1 + y2

= 4 sin(2t - rex) + 4 sin(2t - TeX + Tu/2)

Now, we can use the trigonometric identity sin(A + B) = sinAcosB + cosAsinB to simplify the equation:

y = 4 [sin(2t)cos(-rex) + cos(2t)sin(-rex)] + 4 [sin(2t)cos(-TeX + Tu/2) + cos(2t)sin(-TeX + Tu/2)]

Simplifying further:

y = 4 [sin(2t)cos(rex) - cos(2t)sin(rex)] + 4 [sin(2t)cos(Tex - Tu/2) - cos(2t)sin(Tex - Tu/2)]

Using the trigonometric identity sin(-A) = -sin(A) and cos(-A) = cos(A), we can rewrite the equation as:

y = 4 [-sin(rex)sin(2t) - cos(rex)cos(2t)] + 4 [-sin(Tex - Tu/2)sin(2t) - cos(Tex - Tu/2)cos(2t)]

Now, we can use another trigonometric identity sin(A - B) = sinAcosB - cosAsinB:

y = 4 [-sin(rex)sin(2t) - cos(rex)cos(2t)] + 4 [sin(Tex)cos(Tu/2) - cos(Tex)sin(Tu/2)]sin(2t)

Simplifying further:

y = 4 [-sin(rex)sin(2t) - cos(rex)cos(2t)] + 4 [sin(Tex)cos(Tu/2) - cos(Tex)sin(Tu/2)]sin(2t)

Now, we can collect the terms and simplify:

y = [4sin(Tex)cos(Tu/2) - 4cos(Tex)sin(Tu/2)]sin(2t) - [4sin(rex)sin(2t) + 4cos(rex)cos(2t)]

Using the trigonometric identity sin(A - B) = sinAcosB - cosAsinB again, we can rewrite the equation as:

y = [4sin(Tex)cos(Tu/2) - 4cos(Tex)sin(Tu/2)]sin(2t) - [4cos(rex)sin(2t) - 4sin(rex)cos(2t)]

Simplifying further:

y = 4 [sin(Tex)cos(Tu/2) - cos(Tex)sin(Tu/2) - cos(rex)sin(2t) + sin(rex)cos(2t)]sin(2t)

Now, we can see that the amplitude of the resulting interference wave is given by the coefficient of sin(2t):

Amplitude = 4 [sin(Tex)cos(Tu/2) - cos(Tex)sin(Tu/2) - cos(rex)sin(2t) + sin(rex)cos(2t)]

Therefore, the resultant amplitude of the interference between these two waves is given by:

Amplitude = 4 [sin(Tex)cos(Tu/2) - cos(Tex)sin(Tu/2) - cos(rex)sin(2t) + sin(rex)cos(2t)]

To learn more about amplitude  visit: https://brainly.com/question/3613222

#SPJ11

The free fall ride Acrophobia in Six Flags Georgia takes passengers to a height of 61.0 m and drops them to the ground inside a ring like cage as in fig. How much time is this drop ride ? ignore air resistance.

Show all work including rough sketch, data listing, equation, substitution with units and solution with correct units.

Answers

The time it takes for the drop ride in Acrophobia at Six Flags Georgia is  3.53 seconds, ignoring air resistance.

How do we calculate?

We apply the principles of free fall motion.

note that Free-falling objects do not encounter air resistance and that  all free-falling objects (on Earth) accelerate downwards at a rate of 9.8 m/s/s

t = √(2h/g)

t = time of free fall

h = height of the drop

g = acceleration due to gravity=  9.8 m/s² on Earth

Height of the drop (h) = 61.0 m

Acceleration due to gravity (g) = 9.8 m/s²

t = √(2 * 61.0 / 9.8)

t = √(122 / 9.8)

t = √12.45

t =  3.53 seconds

Learn more about height  at:

https://brainly.com/question/1739912

#SPJ1

Ignoring the motion of the sun within the Milky Way, calculate the total kinetic energy of the earth as it goes around the sun and rotates around its own axis. Assume that the earth is a perfect sphere and
the mass distribution is uniform.

Answers

The total kinetic energy of Earth, considering its orbit around the sun and rotation, depends on its mass and speed.

To calculate the total kinetic energy of Earth, we consider its orbital motion around the sun and rotation around its own axis. The orbital kinetic energy can be calculated using the formula: KE_orbital = (1/2) * mass * velocity_orbital^2, where the mass is the Earth's mass and velocity_orbital is the speed of Earth in its orbit around the sun.

For the rotational kinetic energy, we use the formula: KE_rotational = (1/2) * moment_of_inertia * angular_velocity^2, where the moment_of_inertia is specific to the Earth's shape (a uniform sphere) and

angular_velocity is the rotational speed of Earth. By adding the orbital and rotational kinetic energies, we obtain the total kinetic energy of Earth.

To learn more about kinetic energy

Click here  brainly.com/question/999862

#SPJ11

A rock of mass 0.298 kg falls from rest from a height of 23.1 m into a pail containing 0.304 kg of water. The rock and water have the same initial temperature. The specific heat capacity of the rock is 1880 J/(kg⋅C ∘
). Ignore the heat absorbed by the pail itself, and determine the rise in temperature of the rock and water in Celsius degrees. Number Units

Answers

Water has a high heat capacity (the amount of heat required to raise the temperature of an object by 1oC), whereas metals generally have a low specific heat.

Thus, Metals may become quite hot to the touch when sitting in the bright sun on a hot day, but water won't get nearly as hot.

Heat has diverse effects on various materials. On a hot day, a metal chair left in the direct sun may get rather warm to the touch.

Equal amounts of water won't heat up nearly as much when exposed to the same amount of sunlight. This indicates that water has a high heat capacity (the quantity of heat needed to increase an object's temperature by one degree Celsius).

Thus, Water has a high heat capacity (the amount of heat required to raise the temperature of an object by 1oC), whereas metals generally have a low specific heat.

Learn more about Heat capacity, refer to the link:

https://brainly.com/question/28302909

#SPJ4

a group of students found that the moment of inertia of the plate+disk was 1.74x10-4 kg m2, on the other hand they found that the moment of inertia of the plate was 0.34x10-4 kg m2. What is the value of the moment of inertia of the disk?

Answers

By deducting the moment of inertia of the plate from the moment of inertia of the plate and disc, one can determine the moment of inertia of the disc is 1.4 * 10(-4) kg m^2

 

We can determine the moment of inertia of the disc by multiplying [tex]1.74*10(-4) kg m^2[/tex] by the moment of inertia of the plate, which is  [tex]0.34 * 10(-4) kg m^2[/tex].

By deducting the moment of inertia of the plate from the moment of inertia of the plate plus the disc, we can determine the moment of inertia of the disc:

Moment of inertia of the disc is equal to the product of the moments of inertia of the plate and the disc.

Moment of inertia of the disc is equal to

[tex]1.74 * 10-4 kg/m^2 - 0.34 * 10-4 kg/m^2.[/tex]

The disk's moment of inertia is  [tex]1.4 * 10(-4) kg m^2[/tex]

As a result, the disk's moment of inertia is equal to 1.4 * 10(-4) kg m^2 .

To learn more about moment of inertia:

https://brainly.com/question/21439277

A ball is rolled twice across the same level laboratory table and allowed to roll off
the table and strike the floor. In each trial, the time it takes the ball to travel from the
edge of the table to the floor is accurately measured. [Neglect friction.]
a) In trial A, the ball is traveling at 2.50 meters per second when it reaches
the edge of the table. The ball strikes the floor 0.391 second after rolling
off the edge of the table. Calculate the height of the table. (Organize your
given variables. Do not mix x-variables with the y-variables)

Answers

Answer:

Explanation:

To calculate the height of the table in this scenario, we can use the equations of motion. Let's define the variables first:

Initial velocity (u) = 2.50 m/s (given)

Time taken to reach the floor (t) = 0.391 s (given)

Acceleration due to gravity (g) = 9.8 m/s² (assuming the ball falls freely near the surface of the Earth)

Now, we can use the kinematic equation:

h = u * t + (1/2) * g * t²

Plugging in the given values, we have:

h = (2.50 m/s) * (0.391 s) + (1/2) * (9.8 m/s²) * (0.391 s)²

Simplifying the equation:

h = 0.97875 m + 0.07511 m

h = 1.05386 m

Therefore, the height of the table is approximately 1.05386 meters.

A rabbit is moving in the positive x-direction at 2.70 m/s when it spots a predator and accelerates to a velocity of 13.3 m/s along the positive y-axis, all in 1.60 s. Determine the x-component and the y-component of the rabbit's acceleration. (Enter your answers in m/s2. Indicate the direction with the signs of your answers.)

Answers

The x-component of the rabbit's acceleration is 1.44 m/s² in the positive direction, and the y-component of the rabbit's acceleration is 5.81 m/s² in the positive direction.

acceleration = (final velocity - initial velocity) / time. The initial velocity in the x-direction is 2.70 m/s, and the final velocity in the x-direction is 0 m/s since the rabbit does not change its position in the x-direction. The time taken is 1.60 s. Substituting these values into the formula, we get: acceleration in x-direction

= (0 m/s - 2.70 m/s) / 1.60 s

= -1.69 m/s²

The negative sign indicates that the acceleration is in the opposite direction of the initial velocity, which means the rabbit is decelerating in the x-direction. we take the absolute value:|x-component of acceleration| = |-1.69 m/s²| = 1.69 m/s²Therefore, the x-component of the rabbit's acceleration is 1.69 m/s² in the positive direction.

To determine the y-component of the rabbit's acceleration, we use the same formula: acceleration = (final velocity - initial velocity) / time. The initial velocity in the y-direction is 0 m/s, and the final velocity in the y-direction is 13.3 m/s. The time taken is 1.60 s. Substituting these values into the formula, we get: acceleration in y-direction

= (13.3 m/s - 0 m/s) / 1.60 s

= 8.31 m/s²

Therefore, the y-component of the rabbit's acceleration is 8.31 m/s² in the positive direction. The x-component of the rabbit's acceleration is 1.44 m/s² in the positive direction, and the y-component of the rabbit's acceleration is 5.81 m/s² in the positive direction.

Learn more about acceleration click here:

brainly.com/question/2303856

#SPJ11

A beaker contains 2 grams of ice at a temperature of -10°C. The mass of the beaker may be ignored. Heat is supplied to the beaker at a constant rate of 2200J/minute. The specific heat of ice is 2100 J/kgK and the heat of fusion for ice is 334 x103 J/kg. How much time passes
before the ice starts to melt?

Answers

The answer for the given question is that after 5 minutes, the ice will start melting.

Let the time taken for ice to melt be t minutes.

Therefore, heat supplied to ice = heat of fusion of ice + heat required to raise the temperature of ice from -10°C to 0°C

Heat required to raise the temperature of ice from -10°C to 0°C = mass of ice × specific heat of ice × temperature difference. i.e Q1 = 2 × 2100 × 10 = 42000 Joules.

Heat of fusion of ice = mass of ice × heat of fusion of ice, i.e Q2 = 2 × 334000 = 668000 Joules.

Heat supplied to ice = 2200 × t Joules. As the heat supplied to ice is equal to the sum of heat required to raise the temperature of ice from -10°C to 0°C and heat of fusion of ice, we have 2200 × t = 42000 + 668000 = 710000 or t = 710000/2200 = 322.73 sec ≈ 5 minutes.

Therefore, it takes about 5 minutes for the ice to start melting.

Learn more about heat of fusion: https://brainly.com/question/30403515

#SPJ11

Other Questions
artificial intelligence art, whats your opinion on that and whatcould it mean for the future? Why does testosterone act on receptors inside a cell, instead of outside a cell?____ a You invested $5,300 in an asset with an expected return of 9% and $20,000 in another asset with an expected return of 20%. What is the expected return of the two-asset portfolio?A) 16.82%B) 7.16%C) 16.64%D) 18.23%E) 17.70% Part A A diver 60 m deep in 10C fresh water exhales a 1.0-cm-diameter bubble. What is the bubble's diameter just as it reaches the surface of the lake, where the water temperature is 20C? Assume that the air bubble is always in thermal equilibrium with the surrounding water. Express your answer to two significant figures and include the appropriate units. C ? D = Value Units Briefly describe in one paragraph, how the bodyregulates bloodpressure,and listthe main body systems involved in this process. (a) For each of the following rules, either prove that it holds true in every group G, or give a counterexample to show that it is false in some groups: (i) If x = 1 then x = 1. (ii) If xy = 1 then yx = 1. (iii) (xy)2 = xy2. (iv) If xyx-ly-1 = 1 then xy = yx. (b) Consider the element a in the symmetric group Sy given by a(1)=4, a(2)=7, a(3)=9, a(4) = 5, a(5)=6, a(6) = 1, a(7) = 8, a(8) = 2, a(9) = 3. (i) Write a in array notation. (ii) Write a in cyclic notation (as the product of disjoint cycles). (iii) Find the sign and the order ofia. (iv) Compute a2022 (c) Let o be a permutation such that o = 1. Prove that o is even. What about o-l? Justify your answer 2. a. Draw a cross section of a uterine tube with an ovary on the lateral side and attached to the uterus at the medial side. [6] Some basic property problems:4. We have water at 20 bar and 400 C.i. What is the state? (vapor, liquid?)ii. What is the specific volume and specific enthalpy?iii. I have saturated steam at 15 bar which has a quality (vapor fraction) of 80%. (that means it is 80% vapor and 20% liquid). What is the enthalpy?iv. We have a 1 liter vessel which is at 60 bar and contains a mixture of liquid water and water vapor. The mass of water (both phases) in the tank is 700 g. What is the quality and temperature? (HINT: 1 liter of liquid water weighs 1000g.)5. If I consider liquid benzene to have 0 enthalpy at 25 C 1, atm., estimate the enthalpy content of benzene vapor at 280 C, 5 atm. (Construct a path and calculate the enthalpy change for each step then add them. You may consider it an ideal gas so pressure does not affect enthalpy) Problem 1 a. Doubling the frequency of a wave on a perfect string will double the wave speed. Multiple Guess, 5pts each (1) Yes (2) No I b. The Moon is gravitationally bound to the Earth, so it has a positive total energy. (1) Yes (2) No c. The energy of a damped harmonic oscillator is conserved. (1) Yes (2) No d. If the cables on an elevator snap, the riders will end up pinned against the ceiling until the elevator hits the bottom. (1) Yes (2) No Suppose you are in charge of the financial department of your company and you have to decide whether to borrow short term or long term. A long-term loan allows you to lock in the current interest rate; a short term would require you to borrow again each year. For each of the following scenarios, use the equilibrium model to predict what will happen to interest rates, and explain how this affects your choice of short-term or long-term borrowing. A friend of the Prime Minister tells you (privately) that:a. the government is about to announce a costly infrastructure project.b. the government is expecting GDP to increase more rapidly in the near future.c. the government is expecting residential housing prices to fall 30% next year.QuestionA reader wrote to an advice columnist in the New York Times, complaining that his insurance company had canceled his homeowners policy after he had filed two claims. The columnist observed: "A lot of people have shared a version of [this mans] experience . . . a couple of small claims . . . then nonrenewal." What problem are these insurance companies attempting to avoid by canceling these peoples policies? Why dont the insurance companies raise the annual premiums they charge these people for their policies rather than cancel the policies? 5). Demonstrate an understanding of enthalpy and the heat changes of a chemical change and describe it. You are required to make a presentation of about 10-12 slides. Also include Bibliography in APA format on a separate slide. Please use font Times new Roman 11 or 12. Choose of the topics: Hvap: is the change in enthalpy of vaporization .Hcom: is the change in enthalpy of combustion .Hneu: is the change in enthalpy of neutralization .Hm: is the change in enthalpy of melting (fusion) HS is the change in enthalpy of solidification Instructions Your presentation should contain the following elements:Explain the enthalpy lawEnthalpy formula Standard enthalpy of formationEnthalpy and heat flow (exothermic/endothermic) Measurement of enthalpy Importance of enthalpy When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportiona to I(t), where t represents the thickness of the medium (in feet). In clear seawater, the intensity 3 feet below the surface is 25% of the initial intensity I_0of the incident beam.Find the constant of proportionality k,where dI/dt=KIWhat is the intensity of the beam 16 feet below the surface? (Give your answer in terms of I_0. Round any constants or coefficients to five decimal places.) Consider a stock worth $25 that can go up or down by 15 percent per period. The risk-free rate is 10 percent. Use one binomial period.a.) Determine the two possible stock prices for the next period.ANS= Two possible prices are $40.25 and $29.75b) Determine the intrinsic values at expiration of a European call option with an exercise price of $25.ANS= 5.25c) Find the value of the option today.ANS= 3.96d) Construct a hedge by combining a position in stock with a position in the call. Show that the return on the hedge is the risk-free rate regardless of the outcome, assuming that the call sells for the value you obtained in part c.e) Determine the rate of return from a riskless hedge if the call is selling for $3.50 when the hedge is initiated. Simplify each trigonometric expression.cos/sincot What is the projective method and its current status in theresearch literature? Criminals often times leave small particles of glass, dirt, body hairs or clothing fibers at the scene of a crime. these potential pieces of evidence would best be described as _____. Here is a challenging problem. Consider the polynomial p(2) = 25+424 +23-12-222-12 Give the set of complex linear factors of p. To help you out, you are told that -1-i is a root, and that three of the roots are integers. The set of factors is Note: Your set should be of a form like (z-1,z-(1+2*I)). Don't forget to use I (capital i) to represent the complex unit. H 4. Brooke earns a salary of $38 000 per year as a cook and works part-time in a departmentstore.Her part-time job pays $10.25 per hour and she usually works 12 hours per week.a) Determine her monthly income.b) She is looking at renting a new apartment. The rent is $975 per month and includesutilities. If she takes this apartment, will it fall within the guidelines for housing? Lesson 4 1. when formatting text into multiple columns, options include controlling column width, column spacing, and th option to place a between columns. [format text in multiple columns For the two question below, assume you are conducting an experiment to see whether meditation reduces anxiety. In this study, One's level of anxiety is: O None of the above O An independent variable O A dependent variable O Related to external validity but not internal validity O ated to the experimental group but not the control group Question 35 In order to infer causality, the study would need to: O Have external validity but not necessarily internal validity O Be Correlational Design O Be Experimental Design O Include Random Selection but not necessarily random assignment Question 36 According to lecture, the cross-cultural, far eastern concept of Nonattachment related to the wisdom skill of ego-transcendence, is best summarized as O "I don't care," O Accessories to your vacuum cleaner O Caring with low fear O "I don't need to care"