The set of all functions from X to Y, mathematicians can explore the relationships and Transformations between different sets.
"The set of all functions from X to Y" refers to the collection or group of all possible functions that can be defined from the set X to the set Y. In mathematics, a function is a relation between two sets, where each element in the first set (X) is associated with a unique element in the second set (Y).
When we talk about the set of all functions from X to Y, we are considering all the different ways in which elements from X can be mapped or related to elements in Y. Each function within this set represents a distinct mapping or correspondence between the elements of X and Y.
The set of all functions from X to Y can be denoted as F(X, Y) or sometimes written as Y^X, emphasizing that it represents the power set or the collection of all possible functions from X to Y.
The elements of this set are individual functions, where each function takes an input from X and produces an output in Y. These functions can have various properties, such as being continuous, differentiable, or having specific algebraic expressions.
By considering the set of all functions from X to Y, mathematicians can explore the relationships and transformations between different sets. This concept plays a fundamental role in various branches of mathematics, including analysis, algebra, topology, and more. It provides a framework for studying functions and their properties, enabling deeper insights into mathematical structures and their interconnections.
To know more about Transformations .
https://brainly.com/question/29788009
#SPJ8
Pat receives a series of four annual federally subsidized student loans, each for $5400 at 6.5%. To defray rising costs for her senior year, 3 years after acquiring the first loan she takes out a private student loan for $4100 at 7.5% interest with a term of 10 years and capitalizes the interest for her last year of college. She graduates 9 months after getting the private loan. Payments on all loans are deferred until 6 months after graduation. Find her monthly payment.
Pat's approximate monthly Payment would be $304.32 to repay all her loans after the deferment period.
The Pat's monthly payment, we need to consider the terms and interest rates of each loan. Let's break down the calculation step by step:
1. Federally subsidized student loans:
- Pat receives four annual loans, each for $5400 at an interest rate of 6.5%.
- Since the loans are annual, we need to calculate the interest for each year and add it to the principal amount.
- The total principal amount for the four loans is $5400 * 4 = $21,600.
- The interest for each year is $21,600 * 6.5% = $1,404.
- Therefore, the total amount owed for the federally subsidized loans is $21,600 + ($1,404 * 4) = $27,816.
2. Private student loan:
- Pat takes out a private student loan for $4100 at an interest rate of 7.5% for a term of 10 years.
- The loan is capitalized, which means the interest is added to the principal amount.
- The total principal amount for the private loan is $4100.
- The interest for each year is $4100 * 7.5% = $307.50.
- Since Pat capitalizes the interest for her last year of college, the loan will accrue interest for a total of 9 months.
- Therefore, the total interest accrued for the private loan is ($307.50 * 9) = $2767.50.
- The total amount owed for the private loan is $4100 + $2767.50 = $6867.50.
3. Total amount owed:
- To find the total amount owed by Pat, we add the amounts from the federally subsidized loans and the private loan.
- Total amount owed = $27,816 + $6867.50 = $34,683.50.
4. Monthly payment:
- The monthly payment is calculated based on the total amount owed and the repayment term.
- The term is 10 years for the private loan, but since payments are deferred until 6 months after graduation, the actual term is 10 years - 0.5 years = 9.5 years.
- The number of monthly payments is 9.5 years * 12 months/year = 114 months.
- Therefore, the monthly payment is $34,683.50 / 114 months ≈ $304.32.
So, Pat's approximate monthly payment would be $304.32 to repay all her loans after the deferment period.
For more questions on Payment .
https://brainly.com/question/25792915
#SPJ8
Kendall is solving this inequality.
x/2 + 6 > 42
What should she do first to solve?
a. Add 42 to both sides of the inequality.
b. Subtract 6 from both sides of the inequality.
c. Add 6 to both sides of the inequality.
d. Divide both sides of the inequality by 2.
Answer:
B) Subtract 6 from both sides of the inequality.
Step-by-step explanation:
By doing so, we have the following:
x/2 + 6 > 42
x/2 + 6 > 42 - 6
x/2 > 36
(x/2)*2 > 36*2
x > 72
Answer:
B. subtract 6 from both sides of the inequality.
Step-by-step explanation:
Kendall, when solving inequality, would isolate the variable, x.
The first step will be to subtract 6 from both sides of the inequality:
[tex]\frac{x}{2} + 6 > 42\\\frac{x}{2} + 6 (-6) > 42 (-6)\\\frac{x}{2} > 36[/tex]
The next step will be to multiply 2 to both sides of the inequality:
[tex]\frac{x}{2} > 36\\\frac{x}{2} *2 > 36 *2\\x > 36 * 2\\x > 72[/tex]
x > 72 would be the answer.
~
Learn more about solving inequality, here:
https://brainly.com/question/26855203
Ken's living room and computer room have the dimensions shown.
What is the total volume of the rooms, in cubic feet?
Answer:
The total volume is 1660 cubic feet.
Step-by-step explanation:
The volume of a room is:
Vol = l × w × h
We calculate the two rooms separately, then add them together for the final answer.
The large room is:
Vol = 14 × 9 × 10
= 1260
The smaller room is:
Vol = 8 × 5 × 10
= 400
The total volume is
1260 + 400
= 1660
The total volume of the two rooms is 1660 cubic feet.
Triangle with one square corner
show work if possible
Answer:
C. 33
Step-by-step explanation:
(√121) (√9) = (√11*11) (√3*3)
= (√11^2) (√3^2)
= (11)(3)
= 33
What the meaning of statement this?
This symbol " [tex]\phi = {u : u\neq u}[/tex]" given in set statement means that the set is empty and has no element in it.
What is the meaning of [tex]\phi = {u : u\neq u}[/tex]?[tex]\phi = {u : u\neq u}[/tex] is a set notation that represents the empty set. In set theory, the empty set, denoted by the symbol [tex]\phi[/tex] or {}.
An empty set is defined as a set that does not contain any elements and it is just empty or null.
For this question, [tex]\phi = {u : u\neq u}[/tex] , the set is defined using a condition or property.
The condition given is u ≠ u, which is always false for any element. So we can say that it implies that there is no element that satisfies the condition u ≠ u, meaning there are no elements in the set.
Hence, the set is empty.
Learn more about empty set here: brainly.com/question/30325026
#SPJ1
help is it 32 or what help
Answer:
45
Step-by-step explanation:
Consider the rhombus above. What is the measure of angle BDA? (NOTE: not drawn to scale)
The measure of angle BDA is 3
How to calculate the measure of angle BDA?From the question, we have the following parameters that can be used in our computation:
ABC = 4x - 2
DBC = 3x - 3
The figure is a rhombus
This means that
ABC = 2 * DBC
So, we have
4x - 2 =2 * (3x - 3)
When evaluated, we have
4x - 2 = 6x - 6
When solved for x, we have
2x = 4
So, we have
x = 2
This also means that
BDA = DBC = 3x - 3
So, we have
BDA = 3(2) - 3
Evaluate
BDA = 3
Hence, the measure of angle BDA is 3
Read more about angles at
https://brainly.com/question/31898235
#SPJ1
PLEASE SOMEONE HELP ME !!!!
At the end of October, Allen Springer's check register
balance was $812.45. His bank statement balance was
$624.77. An examination of his statement and check
register showed that an ATM withdrawal of $200 had
not been entered in the register, Check 201 for $92.49
was outstanding, and Check 202 for $80.17 was cashed
but not recorded in the register. Reconcile the checking
account.
The reconciled balance is $600.13.
please help me with this
Answer:
3/4
Step-by-step explanation:
The 0 <= theta <= pi/2 makes it so the angle must be in the first quadrant. From there, you can use the fact that sin = opposite / hypotenuse.
Thus the opposite side length would be 5, the hypotenuse would be 5, and the adjacent side length would be 3 (by Pythagorean theorem).
Recall that cot = cotangent = 1 / tan. And recall that tan is opposite of adjacent. So tan(theta) = 4/3, and cot (theta) = 3/4.
6.- María le dice a Susy: "Cuando yo tenga la
edad que tú tienes, tu edad será 2 veces la que
tengo y sabes que cuando tenía 10 años, tu
tenías la edad que tengo". ¿Cuánto suman las
edades actuales de ambas?.
Maria's current age is 15 and Susy's current age is 5.
We have,
Let's denote Maria's current age as M and Susy's current age as S.
We can use the given information to set up a system of equations and solve for their ages.
According to the first statement, "When I have the age that you are, your age will be 2 times that I have," we can write the equation:
M + S = 2(M - S)
Expanding and simplifying:
M + S = 2M - 2S
S + 2S = 2M - M
3S = M
According to the second statement, "When I was 10 years old, you were the age that I am," we can write the equation:
M - 10 = S
Now we have a system of equations:
3S = M
M - 10 = S
To solve the system, we can substitute the value of M from the first equation into the second equation:
3S - 10 = S
Simplifying:
2S = 10
S = 5
Substituting the value of S back into the first equation:
3(5) = M
M = 15
Therefore,
Maria's current age is 15 and Susy's current age is 5.
Learn more about equations here:
https://brainly.com/question/17194269
#SPJ1
The complete question:
Maria tells Susy: "When I have the age that you are, your age will be 2 times that I have and you know that when I was 10 years old, you were the age that I am".
How much do the current ages of both?
(q2) A civil engineer wants to find out the length of a rod which stretches for 1 meter and can be given by the function x=2y^((3)/(2)) Find the length of the rod.
The Length of the rod is 3/5 meters.
The civil engineer wants to find the length of a rod that stretches for 1 meter and can be given by the function x=2y^(3/2).
To find the length of the rod, we need to integrate the function x=2y^(3/2) with respect to y. Integrating both sides of the equation,
we have:'int dx = int 2y^(3/2) evaluating the left-hand side gives x = 2/5 y^(5/2) + C, where C is the constant of integration. To find the value of C,
we use the given information that the rod stretches for 1 meter. At y = 0, x = 0 since the rod has no length when it is not stretched. At y = 1, x = 1 since the rod stretches for 1 meter.
Therefore, we have:1 = 2/5 (1)^(5/2) + C1 = 2/5 + CC = 3/5 Substituting C = 3/5 back into the equation for x,
we have:x = 2/5 y^(5/2) + 3/5
The length of the rod is given by the value of x when y = 1. Substituting y = 1,
we have:x = 2/5 (1)^(5/2) + 3/5 = 3/5
The length of the rod is 3/5 meters.
To know more about Length .
https://brainly.com/question/30582409
#SPJ8
What are the base angles z & j of the equal sided triangle below? Type in the single angle only - not the sum of the two! numerical answer only
Answer:
58° + x = 180°
x = y = 122°
z = j, so 122° + 2z = 180°
2z = 58°
z = j = 29°
You are contracted to fabricate a gate with specifications shown below. What angle are the bars placed in the top arc so they are equally spaced between bars?
18 degrees
30 degrees
36 degrees
25 degrees
Answer:
The correct answer is 30 degrees.
The quantities
�
xx and
�
yy are proportional.
�
xx
�
yy
3
33
30
3030
10
1010
100
100100
16
1616
160
160160
Find the constant of proportionality
(
�
)
(r)left parenthesis, r, right parenthesis in the equation
�
=
�
�
y=rxy, equals, r, x.
�
=
r=r, equals
The Constant of proportionality (r) in the equation x = ry is 1/11.
The constant of proportionality (r) in the equation x = ry, where x and y are proportional, we can use the given pairs of values for x and y and solve for r.
Let's consider the given pairs of values:
x = 3, y = 33
x = 30, y = 3030
x = 10, y = 1010
x = 100, y = 100100
x = 16, y = 1616
x = 160, y = 160160
We can select any pair of values and set up the equation x = ry. Let's choose the pair x = 3 and y = 33:
3 = r * 33
To find r, we divide both sides of the equation by 33:
r = 3 / 33 = 1 / 11
Therefore, the constant of proportionality (r) in the equation x = ry is 1/11.
We can verify this by substituting other pairs of values into the equation and checking if the equation holds true. For example, let's substitute x = 160 and y = 160160:
160 = (1/11) * 160160
160 = 14560
The equation holds true, confirming that the constant of proportionality is indeed 1/11.
Hence, the constant of proportionality (r) in the equation x = ry is 1/11.
To know more about Constant .
https://brainly.com/question/28581458
#SPJ8
The Peace Barber Shop employs four barbers. One barber, who also serves as the manager, is paid a salary of $1,800 per month. The other barbers are paid $1,300 per month. In addition, each barber is paid a commission of $4 per haircut. Other monthly costs are: store rent $800 plus 60 cents per haircut, depreciation on equipment $500, barber supplies 40 cents per haircut, utilities $300, and advertising $200. The price of a haircut is $11.
Instructions
Determine the variable cost per haircut and the total monthly fixed costs.
Compute the break-even point in i) units and ii) dollars.
Determine the net income, assuming 1,500 haircuts are given in a month.
a.i) The variable cost per haircut is $5.
a.ii) The monthly fixed costs are $2,800
b.i) The break-even point in units is approx. 467 haircuts.
b.ii) The break-even point in dollars is $5,137.
c) The net income, assuming 1,500 haircuts are given in a month, is $6,200.
How to solve the cost problems?We shall first break down the costs to estimate the variable cost per haircut and the total monthly fixed costs.
Then, we shall use the results to calculate the break-even point in units and dollars. Lastly, we compute the net income.
a.i) Variable cost per haircut (VC):
Total variable cost per haircut = Commission + Store rent + Barber supplies
Given:
Commission for each haircut per barber = $4
Rent for store per haircut = $0.60
Barber supplies per haircut = $0.40
Price of a haircut (P): $11
VC = $4 + $0.60 + $0.40
= $5
So, the variable cost per haircut is $5.
a.i)Total monthly fixed costs (TFC)
Total monthly fixed costs: Manager's salary + Depreciation on equipment + Utilities + Advertising
Given:
Manager's salary = $1,800
Depreciation on equipment = $500
Utilities =$300
Advertising = $200
TFC = $1,800 + $500 + $300 + $200
= $2,800
Therefore, the total monthly fixed costs are $2,800.
b) Break-even point:
The break-even point is the point: total revenue = total costs.
b.i) Break-even point in units = TFC divided by contribution margin per unit
contribution margin = price - VC
= $11 - $5
= $6
break-even point in units = $2,800 / $6
= 466.67
So, the break-even point in units is ≈ 467 haircuts.
b.ii) Break-even point in dollars:
Break-even point (in dollars) = break-even point (in units) * P
= 467 * $11
= $5,137
Thus, the break-even point in dollars is $5,137.
c) The net income:
Total costs(TC) - Total Revenue (TR):
TR = Number of haircuts * P
= 1,500 * $11
= $16,500
Total Cost (TC) = TVC + TFC
TC = (Variable cost per haircut * Number of haircuts) + Total fixed costs
= ($5 * 1,500) + $2,800
= $7,500 + $2,800
= $10,300
Net income = TR- TC
= $16,500 - $10,300
= $6,200
Hence, the net income, assuming 1,500 haircuts are given in a month, is $6,200.
Learn more about variable costs at brainly.com/question/13896920
#SPJ1
Apply the distributive property to factor out the greatest common factor.
24+32p= _____
Answer:
8(3+4p)
Step-by-step explanation:
8 goes into 24 and 32, so it can be factored out:
[tex]24+32p=8(3+4p)[/tex]
Answer:
8(3 + 4p)
Step-by-step explanation:
Factor 24 + 32p
First, factor out the GCF. In this case, the GCF is 8, and we have
8(3 + 4p)
We can't factor anymore so the answer is 8(3 + 4p)
In addition to low iron levels, some of your patients have had high potassium levels while
taking NT71C. While reviewing the data during rounds, you and your colleagues estimate
that the patients need 5.2µg of iron and 1.3mg of potassium each day. The iron
supplements you've purchased contain 1.2µg of iron and 0.3mg of potassium per dose,
while the patient's daily meals contain 0.4µg of iron and 0.1 mg of potassium per serving.
What balance of iron supplement dose and ordinary food servings should you use to
meet the patients' nutritional needs?
To determine the balance of iron supplement dose and ordinary food servings needed to meet the patients' nutritional needs, let's assign variables to represent the quantities:
Let:
- x = number of iron supplement doses per day
- y = number of ordinary food servings per day
Based on the information given, we can establish the following equations:
Equation 1: Iron Balance
1.2µg * x + 0.4µg * y = 5.2µg
Equation 2: Potassium Balance
0.3mg * x + 0.1mg * y = 1.3mg
We can solve this system of equations to find the values of x and y that satisfy both equations.
Multiplying Equation 1 by 10 and Equation 2 by 1000 will help us eliminate the decimal points:
Equation 1 (revised): 12µg * x + 4µg * y = 52µg
Equation 2 (revised): 300µg * x + 100µg * y = 1300µg
Now, we can use any method to solve the equations. Let's solve them using the substitution method:
From Equation 1 (revised), we can express x in terms of y:
12µg * x = 52µg - 4µg * y
x = (52µg - 4µg * y) / 12µg
x = (13µg - µg * y) / 3µg
x = 13/3 - y/3
Substituting this value of x into Equation 2 (revised):
300µg * (13/3 - y/3) + 100µg * y = 1300µg
Simplifying and solving for y:
(3900µg - 100µg * y + 100µg * y) / 3 = 1300µg
3900µg / 3 = 1300µg
1300µg = 1300µg
The equation is satisfied for any value of y. This means that there is no unique solution for the system of equations. In other words, any combination of iron supplement doses (x) and ordinary food servings (y) that satisfy the equation 1.2µg * x + 0.4µg * y = 5.2µg will also satisfy the equation 0.3mg * x + 0.1mg * y = 1.3mg.
Therefore, there are multiple ways to achieve the balance of iron and potassium needed to meet the patients' nutritional needs. The specific values of x and y will depend on the preferences of the patients and the dosing recommendations by healthcare professionals.
Find the equation of a line parallel to y=x−1 that contains the point (−3,−2). Write the equation in slope-intercept form.
Answer:
y = x + 1
Step-by-step explanation:
Parallel lines have same slope.
y = x - 1
Compare with the equation of line in slope y-intercept form: y = mx +b
Here, m is the slope and b is the y-intercept.
m =1
Now, the equation is,
y = x + b
The required line passes through (-3 ,-2). Substitute in the above equation and find y-intercept,
-2 = -3 + b
-2 + 3 = b
[tex]\boxed{b= 1}[/tex]
Equation of line in slope-intercept form:
[tex]\boxed{\bf y = x + 1}[/tex]
The equation is :
↬ y = x + 1Solution:
We KnowIf two lines are parallel to each other, then their slopes are equal. The slope of y = x - 1 is 1. Hence, the slope of the line that is parallel to that line is 1.
We shouldn't forget about a point on the line : (-3, -2).
I plug that into a point-slope which is :
[tex]\sf{y-y_1=m(x-x_1)}[/tex]
Slope is 1 so
[tex]\sf{y-y_1=1(x-x_1)}[/tex]
Simplify
[tex]\sf{y-y_1=x-x_1}[/tex]
Now I plug in the other numbers.
-3 and -2 are x and y, respectively.
[tex]\sf{y-(-2)=x-(-3)}[/tex]
Simplify
[tex]\sf{y+2=x+3}[/tex]
We're almost there, the objective is to have an equation in y = mx + b form.
So now I subtract 2 from each side
[tex]\sf{y=x+1}[/tex]
Hence, the equation is y = x + 1b) Find the least number that must be subtracted from 2120 so that the result is a perfect square.
Answer: 4
I’m sorry, I could not find any other methods except for finding the closest perfect square which was 2116. (46^2)
Please help me im not good at math
Answer:
2m - 72
Step-by-step explanation:
2x Malik's age = 2 × m, m represents his age because it is unknown
72 less means -72
Write two numbers that multiply to the value on top and add to the value on bottom.
6
-7
Answer:
-1 and -6
Step-by-step explanation:
If you multiply negative times negative or minus times minus it will turn to plus so
- x - = +
-1 x -6 = +6
If you add negative plus negative or minus plus minus it remain negative or minus
- + - = -
-1 + -6 = -7
The two numbers that multiply to 6 and add to -7 are -1 and -6.
We are given two conditions:
xy = 6
x + y = -7
We can rearrange equation 2 to express one variable in terms of the other.
x = -7 - y
Now we can substitute this expression for x in equation 1:
(-7 - y) y = 6
Expanding the equation:
-7y - y²= 6
Rearranging the equation to bring it to a quadratic form:
y² + 7y + 6 = 0
We can now solve this quadratic equation to find the values of y.
Factoring the quadratic equation:
(y + 6)(y + 1) = 0
Setting each factor equal to zero and solving for y:
y + 6 = 0 --> y = -6
y + 1 = 0 --> y = -1
So we have two possible values for y: -6 and -1.
Substituting these values back into equation 2 to find the corresponding values of x:
For y = -6:
x + (-6) = -7
x = -1
For y = -1:
x + (-1) = -7
x = -6
Therefore, the two numbers that multiply to 6 and add to -7 are -1 and -6.
To learn more on Equation:
https://brainly.com/question/10413253
#SPJ1
..........................................................................................................................
Answer:
B) m = (9/10)v------------------------
Direct variation equation in terms of given values:
m = kv, where k- coefficient10 cm³ of oil has a mass of 9 grams:
v = 10, m = 9Substitute values of m and v and find the value of k:
9 = 10kk = 9/10Substitute the value of k back to initial equation:
m = (9/10)vThe matching choice is B.
Answer:
[tex]m= \frac{9}{10}*v[/tex]
Step-by-step explanation:
Since the mass of cooking oil is directly proportional to the oil's volume, we can write the following equation:
m = kv
where k is the constant of proportionality.
We know that when v = 10, m = 9, so we can plug these values into the equation to solve for k:
9 = k * 10
k =[tex]\frac{9}{10}[/tex]
Now, we can plug k =[tex]\frac{9}{10}[/tex] into the original equation to get the following equation:
m =[tex]\frac{9}{10}[/tex] v
You are contracted to fabricate a gate with specifications shown below. As you start, you realize making a jig for the bottom spacing would make life easier. What is the spacing between bars?
5.85"
6"
5.95"
5.7"
Answer:
Let x be the measure of the spacing between the bars.
6.25" + 5x = 36"
5x = 29.75"
x = 5.95"
50 POINTS
The Jordans are considering buying a house with a market value of $250,000. The assessed value of the house is a dollars. The annual property tax is $2.45 per $100 of assessed value. What is the property tax on this house?
To find the property tax on the house, we need to calculate the assessed value and then multiply it by the property tax rate.
The property tax rate is $2.45 per $100 of assessed value, which can be written as 0.0245 (since $2.45 divided by $100 is 0.0245).
To calculate the assessed value, we need to find the assessed value as a percentage of the market value. Let's assume the assessed value is x.
x/100 * $250,000 = $a
We don't have the value of 'a,' so we can't directly calculate the assessed value.
Could you please provide the value of 'a' (the assessed value) so that we can calculate the property tax on the house?
~~~Harsha~~~
Answer:
$4,593.75
Step-by-step explanation:
To find the property tax on the house, we need to first determine the assessed value of the house.
If the market value of the house is $250,000, and the assessed value is a dollars, then we can set up the following equation:
a = 0.75 x 250,000
where 0.75 represents the assessment rate, which is typically a percentage of the market value used to determine the assessed value for tax purposes.
Simplifying the equation, we get:
a = 187,500
Therefore, the assessed value of the house is $187,500.
To find the property tax, we can use the given tax rate of $2.45 per $100 of assessed value.
First, we need to convert the assessed value from dollars to hundreds of dollars, which we can do by dividing by 100:
187,500 / 100 = 1,875
Next, we can multiply the assessed value in hundreds of dollars by the tax rate per hundred dollars:
1,875 x 2.45 = 4,593.75
Therefore, the property tax on the house is $4,593.75.
2.3 CD is a tangent to the circle ABDEF at D. Chord AB is produced to C. Chord BE cuts chord AD in H and chord FD in G. ACFD and AB = EF. Let D₁ = x and D₁ = y A C B 1 3 H 2 1 N 2 D G 1 2 2 2.3.1 Name with reasons THREE other angles equal to x. 2.3.2 Show that BDE = x + 2y 2.3.3 Prove that BCDH is a cyclic quadrilateral. 1 Assignment/ Term 2 E (4) (4) [28] TOTAL [50]
The three angles equal to x are: ∠x = ∠BAD = ∠BED = ∠BFD
It is proved that, ABHD ||AFED and proved that AB BD = FD BH
Here, we have,
from the given figure, we get,
CD is a tangent to the circle ABDEF at D.
Chord AB is produced to C.
Chord BE cuts chord AD in H and chord FD in G.
ACFD and AB = EF.
we have,
AC || FD
FE = AB
i) The three angles equal to x are:
∠x = ∠BAD = ∠BED = ∠BFD
as the angles on the same chord.
ii) ∠DBH = ∠DFE [angle on same chord DE ]
∠BDH = ∠FDE [angle inscribed by equal chord]
∠BHD = ∠FED [ when two angles of a triangle are equal so the other will
also equal ]
so, we get, by AAA similarity ΔBHD ≡ Δ FDE
iii) now, we have, from ΔBHD ≡ Δ FDE
BD/BH = FD/FE
=> BD/BH = FD/AB
=> AB.BD = FD.BH [by cross multiplication]
Hence, Proved.
To learn more on angle click:
brainly.com/question/28451077
#SPJ1
complete question:
CD is a tangent to circle ABDEF at D Chord AB IS produced to C Chord BE cuts chord AD in H and chord FD in G ACI/FD and FE = AB Let ZD4 = and ZD = y 1 2 3 Determine THREE other angles that are equal tox Prove that ABHD ||AFED Hence or otherwise, prove that AB BD = FD BH
Can someone help me wit this please
Answer:
Hi
Please mark brainliest ❣️
The diameter of the spherical planet Ozoid is about 1.66 x 105 kilometers. A day on Ozoid lasts about 113 hours. At what speed does a point on the planet's equator move around the planet's center? A point on Ozoid's equator moves at_______km/h around the center.
Answer:
12
Step-by-step explanation:
Write the result in lowest terms:
1.). -15-(5)=
2.) 5/9 divided by 10/18=
3.) 2/5+4/7=
Answer:
To write the result in lowest terms, we need to simplify the fractions by dividing both the numerator and the denominator by their greatest common factor (GCF). Here are the solutions for each problem:
1.) -15-(5)= -20. This is already in lowest terms because it is an integer.
2.) 5/9 divided by 10/18= (5/9) * (18/10) = 90/90 = 1. This is in lowest terms because the GCF of 90 and 90 is 90.
3.) 2/5+4/7= (14/35)+(20/35) = 34/35. This is in lowest terms because the GCF of 34 and 35 is 1.
MARK AS BRAINLEIST!!
NO LINKS!! URGENT HELP PLEASE!!
O is the center of the regular decagon below. Find its area. Round to the nearest tenth if necessary.
[tex]\underset{ \textit{angle in degrees} }{\textit{area of a regular polygon}}\\\\ A=\cfrac{nr^2}{2}\sin(\frac{360}{n}) ~~ \begin{cases} r=\stackrel{ circumcircle's }{radius}\\ n=sides\\[-0.5em] \hrulefill\\ n=10\\ r=13 \end{cases}\implies A=\cfrac{(10)(13)^2}{2}\sin(\frac{360}{10}) \\\\\\ A=845\sin(36^o)\implies A\approx 496.7[/tex]
Answer:
496.7 square units
Step-by-step explanation:
A regular polygon is a polygon with equal side lengths and equal interior angles, meaning all of its sides and angles are congruent.
The radius of a regular polygon is the distance from the center of the polygon to any of its vertices.
The given figure is a regular decagon (10-sided figure) with a radius of 13 units.
To find the area of a regular polygon given its radius, use the following formula:
[tex]\boxed{\begin{minipage}{6cm}\underline{Area of a regular polygon}\\\\$A=nr^2\sin \left(\dfrac{180^{\circ}}{n}\right)\cos\left(\dfrac{180^{\circ}}{n}\right)$\\\\\\where:\\\phantom{ww}$\bullet$ $n$ is the number of sides.\\ \phantom{ww}$\bullet$ $r$ is the radius.\\\end{minipage}}[/tex]
Substitute n = 10 and r = 13 into the formula and solve for A:
[tex]A=10 \cdot 13^2 \cdot \sin\left(\dfrac{180^{\circ}}{10}\right)\cdot \cos\left(\dfrac{180^{\circ}}{10}\right)[/tex]
[tex]A=10 \cdot 169 \cdot \sin\left(18^{\circ}\right) \cdot \cos \left(18^{\circ}\right)[/tex]
[tex]A=496.678538...[/tex]
[tex]A=496.7\; \sf square \; units[/tex]
Therefore, the area of a regular decagon with a radius of 13 units is 496.7 square units (to the nearest tenth).