What is the probability that either event will occur 3 1 2 circle

Answers

Answer 1

The probability that either event A or event B occurs is 1/4.

Two events A and B overlap each other partially, and the probability of A and B are P(A) and P(B) respectively.The events A and B overlapping each other.The probability that either event A or event B occurs is given by:

[tex]$$P(A \ \text{or} \ B)=P(A)+P(B)-P(A \ \text{and} \ B)$$[/tex]

Given that the probability of event A is 3/12, and the probability of event B is 1/6.

The overlapping area of A and B is given as 2/12.

Using the above formula, we can find the probability of either event A or event B occurs as follows:

[tex]$$\begin{aligned} P(A \ \text{or} \ B)&=P(A)+P(B)-P(A \ \text{and} \ B) \\ &=\frac{3}{12}+\frac{1}{6}-\frac{2}{12} \\ &=\frac{1}{4} \end{aligned}$$[/tex]

Hence, the probability that either event A or event B occurs is 1/4.

Learn more about probability  here:-

https://brainly.com/question/31828911

#SPJ11


Related Questions

1. Find the maxima and minima of f(x)=x³- (15/2)x2 + 12x +7 in the interval [-10,10] using Steepest Descent Method. 2. Use Matlab to show that the minimum of f(x,y) = x4+y2 + 2x²y is 0.

Answers

1. To find the maxima and minima of f(x) = x³ - (15/2)x² + 12x + 7 in the interval [-10, 10] using the Steepest Descent Method, we need to iterate through the process of finding the steepest descent direction and updating the current point until convergence.

2. By using Matlab, we can verify that the minimum of f(x, y) = x⁴ + y² + 2x²y is indeed 0 by evaluating the function at different points and observing that the value is always equal to or greater than 0.

1. Finding the maxima and minima using the Steepest Descent Method:

Define the function:

f(x) = x³ - (15/2)x² + 12x + 7

Calculate the first derivative of the function:

f'(x) = 3x² - 15x + 12

Set the first derivative equal to zero and solve for x to find the critical points:

3x² - 15x + 12 = 0

Solve the quadratic equation. The critical points can be found by factoring or using the quadratic formula.

Determine the interval for analysis. In this case, the interval is [-10, 10].

Evaluate the function at the critical points and the endpoints of the interval.

Compare the function values to find the maximum and minimum values within the given interval.

2. Using Matlab, we can evaluate the function f(x, y) = x⁴ + y² + 2x²y at various points to determine the minimum value.

By substituting different values for x and y, we can calculate the corresponding function values. In this case, we need to show that the minimum of the function is 0.

By evaluating f(x, y) at different points, we can observe that the function value is always equal to or greater than 0. This confirms that the minimum of f(x, y) is indeed 0.

Learn more about Steepest Descent Method

brainly.com/question/32509109

#SPJ11

What are the additive and multiplicative inverses of h(x) = x â€"" 24? additive inverse: j(x) = x 24; multiplicative inverse: k(x) = startfraction 1 over x minus 24 endfraction additive inverse: j(x) = startfraction 1 over x minus 24 endfraction; multiplicative inverse: k(x) = â€""x 24 additive inverse: j(x) = â€""x 24; multiplicative inverse: k(x) = startfraction 1 over x minus 24 endfraction additive inverse: j(x) = â€""x 24; multiplicative inverse: k(x) = x 24

Answers

The additive inverse of a function f(x) is the function that, when added to f(x), equals 0. In other words, the additive inverse of f(x) is the function that "undoes" the effect of f(x).

The multiplicative inverse of a function f(x) is the function that, when multiplied by f(x), equals 1. In other words, the multiplicative inverse of f(x) is the function that "undoes" the effect of f(x) being multiplied by itself.

For the function h(x) = x - 24, the additive inverse is j(x) = -x + 24. This is because when j(x) is added to h(x), the result is 0:

[tex]h(x) + j(x) = x - 24 + (-x + 24) = 0[/tex]

The multiplicative inverse of h(x) is k(x) = 1/(x - 24). This is because when k(x) is multiplied by h(x), the result is 1:

[tex]h(x) * k(x) = (x - 24) * 1/(x - 24) = 1[/tex]

Therefore, the additive inverse of  [tex]h(x) = x - 24[/tex] is [tex]j(x) = -x + 24\\[/tex],

and the multiplicative inverse of [tex]h(x) = x - 24[/tex]is [tex]k(x) = \frac{1}{x - 24}[/tex].

Learn more about additive inverse here:

brainly.com/question/30098463

#SPJ11

For a sequence \( 3,9,27 \)...find the sum of the first 5 th term. A. 51 B. 363 C. 243 D. 16

Answers

The sum of the first 5 term of the sequence 3,9,27 is 363.

What is the sum of the 5th term of the sequence?

Given the sequence in the question:

3, 9, 27

Since it is increasing geometrically, it is a geometric sequence.

Let the first term be:

a₁ = 3

Common ratio will be:

r = 9/3 = 3

Number of terms n = 5

The sum of a geometric sequence is expressed as:

[tex]S_n = a_1 * \frac{1 - r^n}{1 - r}[/tex]

Plug in the values:

[tex]S_n = a_1 * \frac{1 - r^n}{1 - r}\\\\S_n = 3 * \frac{1 - 3^5}{1 - 3}\\\\S_n = 3 * \frac{1 - 243}{1 - 3}\\\\S_n = 3 * \frac{-242}{-2}\\\\S_n = 3 * 121\\\\S_n = 363[/tex]

Therefore, the sum of the first 5th terms is 363.

Option B) 363 is the correct answer.

Learn more about geometric series here: brainly.com/question/19458543

#SPJ4

This is discrete math. Please show basis and induction step.
Don't answer if not able to explain and show work.

Answers

The basis step and induction step are two important components in a mathematical proof by induction. The basis step is the first step in the proof, where we show that the statement holds true for a specific value or base case. The induction step is the second step, where we assume that the statement holds true for a general case and then prove that it holds true for the next case.

Here is an example to illustrate the concept of basis and induction step in a discrete math proof:

Let's say we want to prove the statement that for all non-negative integers n, the sum of the first n odd numbers is equal to n².

Basis step:
To prove the basis step, we need to show that the statement holds true for the smallest possible value of n, which is 0 in this case. When n = 0, the sum of the first 0 odd numbers is 0, and 0² is also 0. So, the statement holds true for the basis step.

Induction step:
For the induction step, we assume that the statement holds true for some general value of n, and then we prove that it holds true for the next value of n.

Assume that the statement holds true for a particular value of n, which means that the sum of the first n odd numbers is n². Now, we need to prove that the statement also holds true for n + 1.

We can express the sum of the first n + 1 odd numbers as the sum of the first n odd numbers plus the next odd number (2n + 1):
1 + 3 + 5 + ... + (2n - 1) + (2n + 1)

By the assumption, we know that the sum of the first n odd numbers is n². So, we can rewrite the above expression as:
n² + (2n + 1)

To simplify this expression, we can expand n² and combine like terms:
n² + 2n + 1

Now, we can rewrite this expression as (n + 1)²:
(n + 1)²

So, we have shown that if the statement holds true for a particular value of n, it also holds true for n + 1. This completes the induction step.

By proving the basis step and the induction step, we have established that the statement holds true for all non-negative integers n. Hence, we have successfully proven the statement using mathematical induction.

To know more about mathematical induction, refer to the link below:

https://brainly.com/question/32650288#

#SPJ11

Density of orbitals in one and two dimensions. (a) Show that the density of orbitals of a free electron in one dimension is 1/2 2m D7(e) = 4 (19 where L is the length of the line. (b). Show that in two dimensions, for a square of area A, D,(E) = Am Th2 independent of E

Answers

The density of orbitals of a free electron in one dimension is (1/2)√(2m/π) / L. In two dimensions, for a square of area A, the density of orbitals is independent of energy E and is given by D(E) = A / (2π).

(a) To show that the density of orbitals of a free electron in one dimension is (1/2)√(2m/π) / L, where L is the length of the line, we need to consider the normalization condition for the wavefunction. The normalization condition states that the integral of the squared modulus of the wavefunction over all space should equal 1.

In one dimension, the wavefunction is given by ψ(x) = (1/√L) * e^(ikx), where k is the wavevector. The probability density is given by |ψ(x)|^2 = (1/L) * |e^(ikx)|^2 = (1/L).

Now, integrating the probability density over the entire line from -∞ to +∞ gives:

∫ |ψ(x)|^2 dx = ∫ (1/L) dx = 1.

To find the density of orbitals, we need to divide the probability density by the length of the line. Therefore, the density of orbitals is:

D(x) = (1/L) / L = 1/L^2.

Substituting L with √(2m/π) gives:

D(x) = 1/(√(2m/π))^2 = (1/2)√(2m/π) / L.

Therefore, the density of orbitals of a free electron in one dimension is (1/2)√(2m/π) / L.

(b) In two dimensions, for a square of area A, the density of orbitals is independent of energy E and is given by D(E) = A / (2π).

To understand this, let's consider a 2D system with an area A. The number of orbitals that can occupy this area is determined by the degeneracy of the energy levels. In 2D, the degeneracy is proportional to the area. Each orbital can accommodate one electron, so the density of orbitals is given by the number of orbitals divided by the area.

Therefore, D(E) = (Number of orbitals) / A.

Since the number of orbitals is proportional to the area A, we can write D(E) = k * A, where k is a constant. Dividing by 2π gives:

D(E) = A / (2π).

Hence, in two dimensions, for a square of area A, the density of orbitals is independent of energy E and is given by D(E) = A / (2π).

Learn more about density of orbitals here:-

https://brainly.com/question/28564553

#SPJ11

At the end of every 3 months teresa deposits $100 into account that pays 5% compound quarterly. after 5 years she outs accumulated ammount into certificate of deposit paying 8.5% compounded semi anual for 1 year. when this certificate matures how much will she have accumulated

Answers

After 5 years of quarterly deposits at a 5% interest rate, Teresa will have accumulated approximately $128.40. By investing this amount in a certificate of deposit for 1 year at an 8.5% interest rate compounded semiannually, she will have accumulated approximately $139.66 when the CD matures.

To calculate the accumulated amount after 5 years of making quarterly deposits at a 5% interest rate, and then investing the accumulated amount in a certificate of deposit (CD) paying 8.5% compounded semiannually for 1 year, we need to break down the calculation into steps:

Calculate the accumulated amount after 5 years of quarterly deposits at a 5% interest rate.

Teresa makes deposits of $100 every 3 months, which means she makes a total of 5 years * 12 months/3 months = 20 deposits.

Using the formula for compound interest: A = P(1 + r/n)^(nt), where A is the accumulated amount, P is the principal (initial deposit), r is the interest rate, n is the number of times the interest is compounded per year, and t is the number of years.

We have P = $100, r = 5% = 0.05, n = 4 (quarterly compounding), and t = 5 years.

Plugging in these values, we get:

A = $100(1 + 0.05/4)^(4*5)

A ≈ $100(1.0125)²⁰

A ≈ $100(1.2840254)

A ≈ $128.40

Therefore, after 5 years of quarterly deposits at a 5% interest rate, Teresa will have accumulated approximately $128.40.

Calculate the accumulated amount after 1 year of investing the accumulated amount in a CD paying 8.5% compounded semiannually.

Teresa now has $128.40 to invest in the CD. The interest rate is 8.5% = 0.085, and the interest is compounded semiannually, which means n = 2.

Using the same formula for compound interest with the new values:

A = $128.40(1 + 0.085/2)^(2*1)

A ≈ $128.40(1.0425)²

A ≈ $128.40(1.08600625)

A ≈ $139.66

Therefore, after 1 year of investing the accumulated amount in the CD, Teresa will have accumulated approximately $139.66.

Thus, when the certificate of deposit matures, Teresa will have accumulated approximately $139.66.

To know more about compound interest, refer to the link below:

https://brainly.com/question/14295570#

#SPJ11

Solve the inequality -7x > 21. What is the graph of the solution

Answers

Answer:

Step-by-step explanation:

-7x > 21.

-x>3

x<-3

The answer is:

x < -3

Work/explanation:

To solve the inequality, we should divide each side by -7.

Pay attention though, we're dividing each side by a negative, so the inequality sign will be reversed.

So if we have greater than, then once we reverse the sign, we will have less than.

This is how it's done :

[tex]\sf{-7x > 21}[/tex]

Divide :

[tex]\sf{x < -3}[/tex]

Therefore, the answer is x < -3 .

Find the direction of the
resultant vector.
Ө 0 = [ ? ]°
(-6, 16)
W
V
(13,-4)
Round to the nearest hundredth

Answers

The direction of the resultant vector is approximately -68.75°.

To find the direction of the resultant vector, we can use the formula:

θ = arctan(Vy/Vx)

where Vy is the vertical component (y-coordinate) of the vector and Vx is the horizontal component (x-coordinate) of the vector.

In this case, we have a resultant vector with components Vx = -6 and Vy = 16.

θ = arctan(16/-6)

Using a calculator or trigonometric table, we can find the arctan of -16/6 to determine the angle in radians.

θ ≈ -1.2039 radians

To convert the angle from radians to degrees, we multiply by 180/π (approximately 57.2958).

θ ≈ -1.2039 * 180/π ≈ -68.7548°

Rounding to the nearest hundredth, the direction of the resultant vector is approximately -68.75°.

for more such question on direction visit

https://brainly.com/question/29248951

#SPJ8

Find the first four nonzero terms in a power series expansion about x=0 for the solution to the given initial value problem. w ′′
+3xw ′
−w=0;w(0)=4,w ′
(0)=0 w(x)=+⋯ (Type an expression that includes all terms up to order 6 .)

Answers

The first four nonzero terms in the given power series expansion are 4, 0,

[tex]-2/9 x^2[/tex]

and 0.

The expression that includes all terms up to order 6 is

[tex]w(x) = 4 - (2/9) x^2 + 0 x^3 + 0 x^4 + (2/135) x^6 + O(x^7)[/tex]

What is power series expansion

To use a power series method, assume that the solution can be expressed as a power series about x=0:

[tex]w(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ...[/tex]

Take the first and second derivatives of w(x)

[tex]w'(x) = a_1 + 2a_2 x + 3a_3 x^2 + ... \\

w''(x) = 2a_2 + 6a_3 x + ...[/tex]

Substitute these expressions into the differential equation, we have;

[tex]2a_2 + 6a_3 x + 3x(a_1 + 2a_2 x + 3a_3 x^2 + ...) - (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ...) = 0[/tex]

Simplify and collect coefficients of like powers of x, we have

a_0 - 3a_2 = 0

a_1 - a_3 = 0

2a_2 + 3a_1 = 0

6a_3 + 3a_2 = 0

Using the initial conditions, solve for the coefficients:

a_0 = 4

a_1 = 0

a_2 = -2/9

a_3 = 0

The power series expansion of the solution to the given initial value problem about x=0 is:

[tex]w(x) = 4 - (2/9) x^2 + O(x^4)[/tex]

Hence, the first four nonzero terms in the power series expansion are:

4, 0, -2/9 x^2, 0

The expression that includes all terms up to order 6 is

[tex]w(x) = 4 - (2/9) x^2 + 0 x^3 + 0 x^4 + (2/135) x^6 + O(x^7)[/tex]

Learn more on power series on https://brainly.com/question/32659195

#SPJ4

The power series expansion of w(x) up to order 6 is: w(x) = 4 + 2x^2

To find the power series expansion about x = 0 for the solution to the given initial value problem, let's assume a power series solution of the form:

w(x) = a0 + a1x + a2x^2 + a3x^3 + ...

Differentiating w(x) with respect to x, we have:

w'(x) = a1 + 2a2x + 3a3x^2 + ...

Taking another derivative, we get:

w''(x) = 2a2 + 6a3x + ...

Substituting these derivatives into the given differential equation, we have:

2a2 + 6a3x + 3x(a1 + 2a2x + 3a3x^2 + ...) - (a0 + a1x + a2x^2 + a3x^3 + ...) = 0

Simplifying the equation and collecting like terms, we can equate coefficients of each power of x to zero. The equation becomes:

2a2 - a0 = 0 (coefficient of x^0 terms)

6a3 + 3a1 = 0 (coefficient of x^1 terms)

From the initial conditions, we have:

w(0) = a0 = 4

w'(0) = a1 = 0

Using these initial conditions, we can solve the equations to find the values of a2 and a3:

2a2 - 4 = 0 => a2 = 2

6a3 + 0 = 0 => a3 = 0

Therefore, the power series expansion of w(x) up to order 6 is: w(x) = 4 + 2x^2

Note that all the other terms of higher order (i.e., x^3, x^4, x^5, x^6, etc.) are zero, as determined by the initial conditions and the given differential equation.

Learn more about power series here:

https://brainly.com/question/14300219

#SPJ11

A can of soda at 80 - is placed in a refrigerator that maintains a constant temperature of 370 p. The temperature T of the aoda t minutes aiter it in pinced in the refrigerator is given by T(t)=37+43e−0.055t. (a) Find the temperature, to the nearent degree, of the soda 5 minutes after it is placed in the refrigerator: =F (b) When, to the nearest minute, will the terpperature of the soda be 47∘F ? min

Answers

(a) Temperature of the soda after 5 minutes from being placed in the refrigerator, using the formula T(t) = 37 + 43e⁻⁰.⁰⁵⁵t is given as shown below.T(5) = 37 + 43e⁻⁰.⁰⁵⁵*5 = 37 + 43e⁻⁰.²⁷⁵≈ 64°F Therefore, the temperature of the soda will be approximately 64°F after 5 minutes from being placed in the refrigerator.

(b) The temperature of the soda will be 47°F when T(t) = 47.T(t) = 37 + 43e⁻⁰.⁰⁵⁵t = 47Subtracting 37 from both sides,43e⁻⁰.⁰⁵⁵t = 10Taking the natural logarithm of both sides,ln(43e⁻⁰.⁰⁵⁵t) = ln(10)Simplifying the left side,-0.055t + ln(43) = ln(10)Subtracting ln(43) from both sides,-0.055t = ln(10) - ln(43)t ≈ 150 minutesTherefore, the temperature of the soda will be 47°F after approximately 150 minutes or 2 hours and 30 minutes.

Learn more about refrigerator

https://brainly.com/question/13002119

#SPJ11

The function xe^−x sin(9x) is annihilated by the operator The function x4e^−4x is annihilated by the operator

Answers

The operator that annihilates the function xe^(-x)sin(9x) is the second derivative operator, denoted as D^2. The function x^4e^(-4x) is also annihilated by the second derivative operator D^2.

This is because:
1. The second derivative of a function is obtained by differentiating twice. For example, if we have a function f(x), the second derivative is denoted as f''(x) or D^2f(x).

2. In this case, we have the function xe^(-x)sin(9x). To find the second derivative of this function, we need to differentiate it twice.

3. The first derivative of xe^(-x)sin(9x) can be found using the product rule, which states that the derivative of a product of two functions is equal to the derivative of the first function times the second function, plus the first function times the derivative of the second function.

4. Applying the product rule, we find that the first derivative of xe^(-x)sin(9x) is (e^(-x)sin(9x) - 9xe^(-x)cos(9x)).

5. To find the second derivative, we differentiate this result again. Applying the product rule and simplifying, we get (e^(-x)sin(9x) - 9xe^(-x)cos(9x))'' = (18e^(-x)cos(9x) + 162xe^(-x)sin(9x) - 18xe^(-x)sin(9x) + 9xe^(-x)cos(9x)).

6. Simplifying further, we obtain the second derivative as (18e^(-x)cos(9x) + 153xe^(-x)sin(9x)).

7. Now, if we substitute x^4e^(-4x) into the second derivative operator D^2, we find that (18e^(-x)cos(9x) + 153xe^(-x)sin(9x)) = 0. Therefore, the operator D^2 annihilates the function x^4e^(-4x).

In summary, the second derivative operator D^2 annihilates both the function xe^(-x)sin(9x) and x^4e^(-4x). This is because when we apply the operator to these functions, the result is equal to zero.

Learn more about the second derivative:

https://brainly.com/question/27220650

#SPJ11

HELP This item is a multi-select answer type. Credit is given only if both answer selections are correct.
Two objects, P and Q, attached by a thread, are separated by some distance. Consider them to be point masses.
Given:
The distance between the objects is 3 m.
The mass of Object P is 5 kg.
The mass of Object Q is 7 kg.
The mass of the thread is negligible.
What is the moment of inertia of the system of objects P and Q about a point midway between them? How does this compare to the moment of inertia of the system about its center of mass?
Select an answer for both questions
Question 2 options:
The moment of inertia about the midpoint is less than the moment of inertia about the center of mass
108 kg m2
The moment of inertia about the midpoint is greater than the moment of inertia about the center of mass
16 kg m2
5 kg m2
The moment of inertia about the midpoint is equal to the moment of inertia about the center of mass
27 kg m2
18 kg m2
54 kg m2

Answers

The moment of inertia about the midpoint is equal to the moment of inertia about the center of mass (27 kg m²).

The moment of inertia of the system of objects P and Q about a point midway between them can be calculated using the parallel axis theorem. The moment of inertia about the center of mass of the system can be determined using the formula for the moment of inertia of a system of point masses.

Question 1: What is the moment of inertia of the system of objects P and Q about a point midway between them?

To calculate the moment of inertia about the midpoint, we need to consider the masses and distances of the objects from the midpoint. Since the thread connecting P and Q is negligible in mass, we can treat each object as a separate point mass.

The moment of inertia of an object about an axis passing through its center of mass is given by the formula: I = m * r², where m is the mass of the object and r is the distance of the object from the axis.

For object P (mass = 5 kg) and object Q (mass = 7 kg), both objects are equidistant (1.5 m) from the midpoint. Therefore, the moment of inertia of each object about the midpoint is: I = m * r² = 5 kg * (1.5 m)² = 11.25 kg m².

To calculate the moment of inertia of the system about the midpoint, we sum the individual moments of inertia of P and Q:

[tex]I_{total} = I_P + I_Q[/tex]

       = 11.25 kg m² + 11.25 kg m²

       = 22.5 kg m².

Question 2: How does this compare to the moment of inertia of the system about its center of mass?

The moment of inertia of the system about its center of mass can be calculated using the formula for the moment of inertia of a system of point masses. Since the objects are symmetrical and have equal masses, the center of mass is located at the midpoint between P and Q.

The moment of inertia of a system of point masses about an axis passing through the center of mass is given by the formula: [tex]I_{total[/tex] = ∑([tex]m_i[/tex]* [tex]r_i[/tex]²), where [tex]m_i[/tex] is the mass of each object and [tex]r_i[/tex] is the distance of each object from the axis (center of mass).

In this case, both P and Q are equidistant (1.5 m) from the center of mass.

Therefore, the moment of inertia of each object about the center of mass is: I = m * r²

     = 5 kg * (1.5 m)²

     = 11.25 kg m².

Since the masses and distances from the axis are the same for both objects, the total moment of inertia of the system about its center of mass is: [tex]I_{total} = I_P + I_Q[/tex]

                      = 11.25 kg m² + 11.25 kg m²

                      = 22.5 kg m².

Therefore, the answer to both questions is:

The moment of inertia about the midpoint is equal to the moment of inertia about the center of mass (27 kg m²).

Learn more about Center of Mass at

brainly.com/question/27549055

#SPJ4

discrete math Work Problem Work Problem (15 pts) Let S(n) be
1/1.4 + 1/4.7 + + 1/(3n-2) (3n+1) = n/(3n+1)
Verify S(3)

Answers

The value of S(3) can be determined by substituting n = 3 into the equation S(n) = n/(3n+1). By doing so, we obtain S(3) = 3/(3*3+1) = 3/10.

To verify the equation S(n) = n/(3n+1), we need to evaluate S(3).

In the given equation, S(n) represents the sum of a series of fractions. The general term of the series is 1/[(3n-2)(3n+1)].

To find S(3), we substitute n = 3 into the equation:

S(3) = 1/[(33-2)(33+1)] + 1/[(34-2)(34+1)] + 1/[(35-2)(35+1)]

Simplifying the denominators:

S(3) = 1/(710) + 1/(1013) + 1/(13*16)

Finding the common denominator:

S(3) = [(1013)(1316) + (710)(1316) + (710)(1013)] / [(710)(1013)(13*16)]

Calculating the numerator:

S(3) = (130208) + (70208) + (70130) / (71010131316)

Simplifying the numerator:

S(3) = 27040 + 14560 + 9100 / (710101313*16)

Adding the numerator:

S(3) = 50600 / (710101313*16)

Calculating the denominator:

S(3) = 50600 / 2872800

Reducing the fraction:

S(3) = 3/10

Therefore, S(3) = 3/10, confirming the equation S(n) = n/(3n+1) for n = 3.

the process of verifying the equation by substituting the given value into the series and simplifying the expression.

Learn more about: determined .

brainly.com/question/29898039

#SPJ11

PLEASE HELP IM ON A TIMER

The matrix equation represents a system of equations.

A matrix with 2 rows and 2 columns, where row 1 is 2 and 7 and row 2 is 2 and 6, is multiplied by matrix with 2 rows and 1 column, where row 1 is x and row 2 is y, equals a matrix with 2 rows and 1 column, where row 1 is 8 and row 2 is 6.

Solve for y using matrices. Show or explain all necessary steps.

Answers

For the given matrix [2 7; 2 6]  [x; y] = [8; 6], the value of y  is 2.

How do we solve for the value of y in the given matrix?

Given the matrices in the correct form, we can write the problem as follows:

[2 7; 2 6]  [x; y] = [8; 6]

which translates into the system of equations:

2x + 7y = 8 (equation 1)

2x + 6y = 6 (equation 2)

Let's solve for y.

Subtract the second equation from the first:

(2x + 7y) - (2x + 6y) = 8 - 6

=> y = 2

Find more exercises on matrix;

https://brainly.com/question/28180105

#SPJ1

2. Rewrite log1112 using the change of base formula a) log12/log11 b) log11/log112 c) log(12/11) d) log(11/12)

Answers

The change of base formula is used for changing a logarithm to a different base. The formula is given as follows:For any positive real numbers a, b, and c, where a is not equal to 1 and c is not equal to 1,loga b = logc b / logc a.

The correct option is c. log(12/11).

Here, we have to rewrite log1112 using the change of base formula, which is given as follows:log1112 = logb 12 / logb 11We need to choose a value for the base b. The most common values for the base are 10, e, and 2. Here, we can choose any base that is not 1.Now, we will use the change of base formula to rewrite log1112 using each value of b.

We can see that log1112 is not equal to any of these values.b) log11 / log112 We can choose We can see that log1112 is not equal to any of these values except for log(12/11).Therefore, the answer is c. log(12/11).

To know more about logarithm visit :

https://brainly.com/question/30035551

#SPJ11

Find the vertices, foci, and asymptotes of each hyperbola.

4y²- 9x²=36

Answers

The vertices of the hyperbola are (0, ±3), the foci are located at (0, ±√13), and the asymptotes are given by y = ±(3/2)x

To find the vertices, foci, and asymptotes of the hyperbola given by the equation 4y² - 9x² = 36, we need to rewrite the equation in standard form.

Dividing both sides of the equation by 36, we get

(4y²/36) - (9x²/36) = 1.

we have

(y²/9) - (x²/4) = 1.

By comparing with standard equation of hyperbola,

(y²/a²) - (x²/b²) = 1,

we can see that a² = 9 and b² = 4.

Therefore, the vertices are located at (0, ±a) = (0, ±3), the foci are at (0, ±c), where c is given by the equation c² = a² + b².

Substituting the values, we find c² = 9 + 4 = 13, so c ≈ √13. Thus, the foci are located at (0, ±√13).

Finally, the asymptotes of the hyperbola can be determined using the formula y = ±(a/b)x. Substituting the values, we have y = ±(3/2)x.

Therefore, the vertices of the hyperbola are (0, ±3), the foci are located at (0, ±√13), and the asymptotes are given by y = ±(3/2)x.

To know more about hyperbola refer here:

https://brainly.com/question/27799190

#SPJ11

A loan of $2200 is due in 5 years. If money is worth 5.4% compounded annually, find the equivalent payments that would settle the debt at the times shown below (a) now (b) in 3 years (c) in 5 years (d) in 10 years

Answers

The equivalent payments that would settle the debt at the times shown are: a) Now - $2331.20 b) In 3 years - $575.34 c) In 5 years - $508.17d) In 10 years - $342.32

Given data: A loan of $2200 is due in 5 years. If money is worth 5.4% compounded annually. To find: Equivalent payments that would settle the debt at the times shown below (a) now (b) in 3 years (c) in 5 years (d) in 10 years.
Interest rate = 5.4% compounded annually a) Now (immediate payment)
Here, Present value = $2200, Number of years (n) = 0, and Interest rate (r) = 5.4%. The formula for calculating equivalent payment is given by [tex]P (\frac{r}{[1 - (1 + r)^{-n}]} )[/tex] where P = $2200

Equivalent payment = [tex]2200(\frac{0.054 }{[1 - (1 + 0.054)^0]} ) = \$2,331.20[/tex]
b) In 3 years
Here, the Present value = $2200. Number of years (n) = 2, Interest rate (r) = 5.4%.
The formula for calculating equivalent payment is given:
Equivalent payment = [tex]P (\frac{r}{[1 - (1 + r)^{-n}]} )[/tex]
= [tex]2200 (\frac{0.054}{[1 - (1 + 0.054)^{-2}]} )[/tex] = $575.34
c) In 5 years
Here, Present value = $2200, Number of years (n) = 5, Interest rate (r) = 5.4%The formula for calculating equivalent payment is given by [tex]P (\frac{r}{[1 - (1 + r)^{-n}]} )[/tex]
= [tex]2200 (\frac{0.054}{[1-(1 + 0.054)^{-5}]} )[/tex]
= $508.17
d) In 10 years. Here, the Present value = $2200. Number of years (n) = 10, Interest rate (r) = 5.4%. The formula for calculating equivalent payment is given:
Equivalent payment = [tex]P (\frac{r}{[1 - (1 + r)^{-n}]} )[/tex] = [tex]2200 (\frac{0.054}{[1 - (1 + 0.054)^{-10}]} )[/tex] = $342.32.

Learn more about compound interest here:

https://brainly.com/question/33108365

#SPJ11

Find the least squares solutions to [ 1 3 5 [ 3
1 1 0 x= 5
1 1 2 7
1 3 3 ] 3 ]

Answers

The least squares solutions of the given equation are x1 = 21/23, x2 = -5/23, x3 = 9/23, and x4 = -8/23.

To find the least squares solutions of the given equation, the following steps should be performed:

Step 1: Let A be the given matrix and x = [x1, x2, x3] be the required solution vector.

Step 2: The equation Ax = b can be represented as follows:[1 3 5 3] [x1]   [5][3 1 1 0] [x2] = [7][1 1 2 7] [x3]   [3][1 3 3 3]

Step 3: Calculate the transpose of matrix A, represented by AT.

Step 4: The product of AT and A, AT.A, is calculated.

Step 5: Calculate the inverse of the matrix AT.A, represented by (AT.A)^-1.

Step 6: Calculate the product of AT and b, represented by AT.b.

Step 7: The least squares solution x can be obtained by multiplying (AT.A)^-1 and AT.b. Hence, the least squares solution of the given equation is as follows:x = (AT.A)^-1 . AT . b

Therefore, by performing the above steps, the least squares solutions of the given equation are as follows:x = (AT.A)^-1 . AT . b \. Where A = [1 3 5 3; 3 1 1 0; 1 1 2 7; 1 3 3 3] and b = [5; 7; 3; 3].Hence, substituting the values of A and b in the above equation:x = [21/23; -5/23; 9/23; -8/23]. Therefore, the least squares solutions of the given equation are x1 = 21/23, x2 = -5/23, x3 = 9/23, and x4 = -8/23.

Learn more about vector : https://brainly.com/question/30355055

#SPJ11

Consider the following matrix equation
[ 1 3 −5
1 4 −8
−3 −7 9]
[x1 x2 x3] =
[ 1 −3 −1].
(a) Convert the above matrix equation into a vector equation.
(b) Convert the above matrix equation into a system of linear equations.
(c) Describe the general solution of the above matrix equation in parametric vector form.
(d) How many solutions does the above system have? If there are infinitely many solutions, give examples of
two such solutions.

Answers

a) Converting the matrix equation to a vector equation, we have:(b) To convert the given matrix equation into a system of linear equations,

we write the equation as a combination of linear equations as shown below:1x1 + 3x2 - 5x3 = 1.......................(1)1x1 + 4x2 - 8x3 = -3......................(2)-3x1 - 7x2 + 9x3 = -1......................(3)c)

The general solution of the matrix equation is given by:A = [1 3 -5; 1 4 -8; -3 -7 9] and b = [1 -3 -1]T.

We form the augmented matrix as shown below:[A|b] = [1 3 -5 1; 1 4 -8 -3; -3 -7 9 -1]Row reducing the matrix [A|b] gives:[1 0 1 0; 0 1 -1 0; 0 0 0 1]

From the row-reduced augmented matrix, we have the general solution:x1 = -x3x2 = x3x3 is a free variable in the system.d) Since there is a free variable in the system,

the system of linear equations has infinitely many solutions. Two possible solutions for x1, x2, and x3 are:
x1 = 1, x2 = -2, and x3 = -1x1 = -1, x2 = 1, and x3 = 1.

To know more about matrix, click here

https://brainly.com/question/28180105?

#SPJ11

help asap if you can pls!!!!!!

Answers

Answer:  SAS

Step-by-step explanation:

The angles in the midle of the triangles are equal because of vertical angle theorem that says when you have 2 intersecting lines the angles are equal.  So they have said a Side, and Angle and a Side are equal so the triangles are congruent due to SAS

Answer:

SAS

Step-by-step explanation:

The angles in the middle of the triangles are equal because of the vertical angle theorem that says when you have 2 intersecting lines the angle are equal. So they have expressed a Side, and Angle and a Side are identical so the triangles are congruent due to SAS

Calculate the resolving power of a 4x objective with a numerical aperture of 0.275

Answers

The resolving power of a 4x objective with a numerical aperture of 0.275 is approximately 0.57 micrometers.

The resolving power (RP) of an objective lens can be calculated using the formula: RP = λ / (2 * NA), where λ is the wavelength of light and NA is the numerical aperture.

Assuming a typical wavelength of visible light (λ) is 550 nanometers (0.55 micrometers), we substitute the values into the formula: RP = 0.55 / (2 * 0.275).

Performing the calculations, we find: RP ≈ 0.55 / 0.55 = 1.

Therefore, the resolving power of a 4x objective with a numerical aperture of 0.275 is approximately 0.57 micrometers.

Learn more about Resolving power

brainly.com/question/913003

brainly.com/question/31991352

#SPJ11

-100 Min 1 -88 -80 -68 -40 -20 nin I 2 8 Max I 20 20 Min I 34 48 60 нах 1 75 80 Max 1 88 100 01 D2 D3 Which of the following are true? A. All the data values for boxplot D1 are greater than the median value for D2. B. The data for D1 has a greater median value than the data for D3. OC. The data represented in D2 is symmetric. OD. At least three quarters of the data values represented in D1 are greater than the median value of D3. OE. At least one quarter of the data values for D3 are less than the median value for D2

Answers

B. The data for D1 has a greater median value than the data for D3.

In the given set of data values, D1 represents the range from -88 to 100, while D3 represents the range from 34 to 100. To determine the median value, we need to arrange the data in ascending order. The median is the middle value in a set of data.

For D1, the median value can be found by arranging the data in ascending order: -88, -80, -68, -40, -20, 1, 2, 8, 20, 20, 34, 48, 60, 75, 80, 88, 100. The middle value is the 9th value, which is 20.

For D3, the median value can be found by arranging the data in ascending order: 34, 48, 60, 75, 80, 88, 100. The middle value is the 4th value, which is 75.

Since the median value of D1 is 20 and the median value of D3 is 75, it is clear that the data for D1 has a smaller median value compared to the data for D3. Therefore, option B is true.

Learn more about Data

brainly.com/question/29117029

#SPJ11

The standard or typical average difference between the mean number of seats in the 559 full-service restaurants in delaware (µ = 99.2) and one randomly selected full-service restaurant in delaware is:

Answers

The standard deviation of the sampling distribution of the sample mean would be approximately 2.8284

To determine the standard deviation of the sampling distribution of the sample mean, we will use the formula;

σ_mean = σ / √n

where σ is the standard deviation of the population that is 20 and n is the sample size (n = 50).

So,

σ_mean = 20 / √50 = 20 / 7.07

σ_mean  = 2.8284

The standard deviation of the sampling distribution of the sample mean is approximately 2.8284 it refers to that the sample mean would typically deviate from the population mean by about 2.8284, assuming that the sample is selected randomly from the population.

Learn more about standard deviation here:

brainly.com/question/475676

#SPJ4

The complete question is;

Another application of the sampling distribution of the sample mean Suppose that, out of a total of 559 full-service restaurants in Delaware, the number of seats per restaurant is normally distributed with mean mu = 99.2 and standard deviation sigma = 20. The Delaware tourism board selects a simple random sample of 50 full-service restaurants located within the state and determines the mean number of seats per restaurant for the sample. The standard deviation of the sampling distribution of the sample mean is Use the tool below to answer the question that follows. There is a.25 probability that the sample mean is less than

The differential equation r^(3)-11r^(2)+39r-45 d³y dx3 - 11- + 39 - 45y = 0 has characteristic equation dx² dx y(x) = = 0 help (formulas) with roots 3,5 Note: Enter the roots as a comma separated list. Therefore there are three fundamental solutions e^(3x)+e^(5x) Note: Enter the solutions as a comma separated list. Use these to solve the initial value problem help (numbers) d³y d²y dx3 dy dx 11- +39- dx² help (formulas) - 45y = 0, y(0) = = −4, dy dx -(0) = = 6, help (formulas) d²y dx² -(0) -6

Answers

The solution to the initial value problem is y(x) = -4 * e^(3x) - 4 * e^(5x).

What is the solution of initial value problem?

To solve the given initial value problem, we will first find the general solution of the homogeneous differential equation and then use the initial conditions to determine the particular solution.

The characteristic equation of the differential equation is obtained by substituting the roots into the characteristic equation. The roots provided are 3 and 5.

The characteristic equation is:

(r - 3)(r - 5) = 0

Expanding and simplifying, we get:

r^2 - 8r + 15 = 0

The roots of this characteristic equation are 3 and 5.

Therefore, the general solution of the homogeneous differential equation is:

y_h(x) = C1 * e^(3x) + C2 * e^(5x)

Now, let's find the particular solution using the initial conditions.

Given:

y(0) = -4

y'(0) = 6

y''(0) = -6

To find the particular solution, we need to differentiate the general solution successively.

Differentiating y_h(x) once:

y'_h(x) = 3C1 * e^(3x) + 5C2 * e^(5x)

Differentiating y_h(x) twice:

y''_h(x) = 9C1 * e^(3x) + 25C2 * e^(5x)

Now we substitute the initial conditions into these equations:

1. y(0) = -4:

C1 + C2 = -4

2. y'(0) = 6:

3C1 + 5C2 = 6

3. y''(0) = -6:

9C1 + 25C2 = -6

We have a system of linear equations that can be solved to find the values of C1 and C2.

Solving the system of equations, we find:

C1 = -2

C2 = -2

Therefore, the particular solution of the differential equation is:

y_p(x) = -2 * e^(3x) - 2 * e^(5x)

The general solution of the differential equation is the sum of the homogeneous and particular solutions:

y(x) = y_h(x) + y_p(x)

     = C1 * e^(3x) + C2 * e^(5x) - 2 * e^(3x) - 2 * e^(5x)

     = (-2 + C1) * e^(3x) + (-2 + C2) * e^(5x)

Substituting the values of C1 and C2, we get:

y(x) = (-2 - 2) * e^(3x) + (-2 - 2) * e^(5x)

     = -4 * e^(3x) - 4 * e^(5x)

Therefore, the solution to the initial value problem is:

y(x) = -4 * e^(3x) - 4 * e^(5x)

Learn more about homogeneous

brainly.com/question/32618717

#SPJ11

Test will count as 60% of the test grade, Justin scores 70, 75, 80 and 90 in their
4 coursework assessments. What score does Justin need on the test in order to earn
an A, which requires an average of 80?
[5 marks]

Answers

Justin needs to score approximately 80.83 on the test in order to earn an A, which requires an average of 80.

To determine the score Justin needs on the test in order to earn an A, we can calculate the weighted average of their coursework assessments and the test score.

Test grade weight: 60%

Coursework assessments grades: 70, 75, 80, 90

Let's calculate the weighted average of the coursework assessments:

(70 + 75 + 80 + 90) / 4 = 315 / 4 = 78.75

Now, we can calculate the weighted average of the overall grade considering the coursework assessments and the test score:

(0.4 * 78.75) + (0.6 * Test score) = 80

Simplifying the equation:

31.5 + 0.6 * Test score = 80

Subtracting 31.5 from both sides:

0.6 * Test score = 48.5

Dividing both sides by 0.6:

Test score = 48.5 / 0.6 = 80.83

Therefore, Justin needs to score approximately 80.83 on the test in order to earn an A, which requires an average of 80.

Learn more about average at https://brainly.com/question/17061021

#SPJ11

Show that for any x0∈R,lim x→x0 x=x0

Answers

To show that for any given positive value ε, we can find a positive value δ such that if the distance between x and x₀ is less than δ (0 < |x - x₀| < δ), then the difference between x and x₀ is less than ε (|x - x₀| < ε). This demonstrates that as x approaches x₀, the value of x approaches x₀. Therefore, the limit of x as x approaches x₀ is indeed x₀.

To show that for any x₀ ∈ R, limₓ→ₓ₀ x = x₀, we need to demonstrate that as x approaches x₀, the value of x becomes arbitrarily close to x₀. We want to prove that as x approaches x₀, the value of x approaches x₀.

By definition, for any given ε > 0, we need to find a δ > 0 such that if 0 < |x - x₀| < δ, then |x - x₀| < ε.

Let's proceed with the proof:

1. Start with the expression for the limit:

  limₓ→ₓ₀ x = x₀

2. Let ε > 0 be given.

3. We need to find a δ > 0 such that if 0 < |x - x₀| < δ, then |x - x₀| < ε.

4. We can choose δ = ε as our value for δ. Since ε > 0, δ will also be greater than 0.

5. Assume that 0 < |x - x₀| < δ.

6. By the triangle inequality, we have:

  |x - x₀| = |(x - x₀) - 0| ≤ |x - x₀| + 0

7. Since 0 < |x - x₀| < δ = ε, we can rewrite the inequality as:

  |x - x₀| < ε + 0

8. Simplifying, we have:

  |x - x₀| < ε

9. Therefore, we have shown that for any ε > 0, there exists a δ > 0 such that if 0 < |x - x₀| < δ, then |x - x₀| < ε. This confirms that:

  limₓ→ₓ₀ x = x₀.

In simpler terms, as x approaches x₀, the value of x gets arbitrarily close to x₀.

Learn more about limit visit

brainly.com/question/32609652

#SPJ11

Let Q denote the field of rational numbers. Exercise 14. Let W€R be the Q vector space: What is dim(W)? Explain.
W = { a+b√2 | a,b € Q}
Is √3 € W? Explain

Answers

The dimension of the vector space W over the field of rational numbers Q is 2.

The vector space W is defined as W = {a + b√2 | a, b ∈ Q}, where Q represents the field of rational numbers. To determine the dimension of W, we need to find a basis for W, which is a set of linearly independent vectors that span the vector space.

In this case, any element of W can be written as a linear combination of two basis vectors. We can choose the basis vectors as 1 and √2. Since any element in W can be expressed as a scalar multiple of these basis vectors, they form a spanning set for W.

To show that the basis vectors 1 and √2 are linearly independent, we assume that c₁(1) + c₂(√2) = 0, where c₁ and c₂ are rational numbers. This implies that c₁ = 0 and c₂ = 0, since the square root of 2 is irrational. Therefore, the basis vectors are linearly independent.

Since we have found a basis for W consisting of two linearly independent vectors, the dimension of W is 2.

Regarding the question of whether √3 is an element of W, the answer is no. The vector space W consists of elements that can be expressed as a + b√2, where a and b are rational numbers. The square root of 3 is not expressible in the form a + b√2 for any rational values of a and b. Therefore, √3 is not an element of W.

Learn more about: Vector

brainly.com/question/24256726

#SPJ11

a. Find the eigenvalues of (3 2)
(3 -2)
b. Show that the vectors (4 6) and (2 3) are linearly independent

Answers

a. The eigenvalues of the given matrix (3 2, 3 -2) are λ = 5 and λ = -1.

b. The vectors (4 6) and (2 3) are linearly independent.

a. To find the eigenvalues of a matrix, we need to solve the characteristic equation. For a 2x₂  matrix A, the characteristic equation is given by:

det(A - λI) = 0

where A is the given matrix, λ is the eigenvalue, and I is the identity matrix.

For the given matrix (3 2, 3 -2), subtracting λI gives:

(3-λ 2)

(3 -2-λ)

Calculating the determinant and setting it equal to zero, we have:

(3-λ)(-2-λ) - 2(3)(2) = 0

Simplifying the equation, we get:

λ^2 - λ - 10 = 0

Factoring or using the quadratic formula, we find the eigenvalues:

λ = 5 and λ = -1

b. To determine if the vectors (4 6) and (2 3) are linearly independent, we need to check if there exist constants k₁ and k₂, not both zero, such that k₁(4 6) + k₂(2 3) = (0 0).

Setting up the equations, we have:

4k₁ + 2k₂ = 0

6k₁ + 3k₂ = 0

Solving the system of equations, we find that k₁ = 0 and ₂  = 0 are the only solutions. This means that the vectors (4 6) and (2 3) are linearly independent.

Learn more about Eigenvalues

brainly.com/question/29861415

#SPJ11

A company sells widgets. The amount of profit, y, made by the company, is related to the selling price of each widget, x, by the given equation. Using this equation, find out the maximum amount of profit the company can make, to the nearest dollar. y=-7x^2+584x-5454

Answers

The maximum amount of profit the company can make is approximately $8472, to the nearest dollar.

To find the maximum amount of profit the company can make, we need to find the vertex of the quadratic equation given by y = -7x^2 + 584x - 5454. The vertex of the quadratic function is the highest point on the curve, and represents the maximum value of the function.

The x-coordinate of the vertex is given by:

x = -b/2a

where a and b are the coefficients of the quadratic equation y = ax^2 + bx + c. In this case, a = -7 and b = 584, so we have:

x = -584/(2*(-7)) = 41.714

The y-coordinate of the vertex is simply the value of the quadratic function at x:

y = -7(41.714)^2 + 584(41.714) - 5454 ≈ $8472

For such more questions on maximum

https://brainly.com/question/30236354

#SPJ8

a square shaped garden is surrounded by 5 rows of 340 meter wires. What is the garden’s area?

Answers

Answer:

1700

Step-by-step explanation:

5X 340=1700

The total length of wire used to surround the square-shaped garden is 5 times the perimeter of the garden. If we divide the total length of wire by 5, we can find the perimeter of the garden.

Total length of wire used = 5 x 340 meters = 1700 meters

Perimeter of the garden = Total length of wire used / 5 = 1700 meters / 5 = 340 meters

Since the garden is square-shaped, all sides are equal in length. Therefore, each side of the garden is:

Perimeter / 4 = 340 meters / 4 = 85 meters

The area of the garden is the square of the length of one side:

Area = (side length)^2 = (85 meters)^2 = 7225 square meters

Therefore, the area of the garden is 7225 square meters.
Other Questions
List and explainthe procedures of a failure modes and effects analysis (FMEA)? When a -4.3 C charge moves at speed 312 m/s into into a magnetic field it experiences a magnetic force of magnitude 4.9 N. Calculate the magnitude of the magnetic field. (Give your answer in tesla but don't include the units.) The magnitude of the magnetic field at the center of a 29-turn loop of wire is 3.7 x 10-6 T. Calculate the current in the loop if the radius is 19 cm. (Give your answer in amps but don't include the units.) The rate constant for the decomposition of 5- hydroxymethyle furfural at 100 C's 1.22 hr 1 and at 130 C is 3.760 hr What is the activation energy in Kcal/mole and the frequency factor in sec1 for this breakdown. In what type of partnership do all of the partners have jointand several liability?- Sole proprietorship- General partnership- Limited partnership- Limited liability partnershipThe following is Question 5Find the 9th term for the following sequence1-1.3-9,27) A convex lens has a focal length f. An object is placed at aposition greater than 2f on the axis. The image formed is locatedat You have an infinite line of charge with a linear charge densityof 3.34 nC/m. What is the strength of the electric field strengthat a point 12 cm away?5105 N/C500 N/C250 N/C-250 N/C Question 3 1 pts A photon has a wavelength of 680nm. What is its frequency? O 2.0x10^2 Hz 6.8x10^14 Hz 2.3x10^-15 Hz 4.4x10^14 Hz Question 4 1 pts A certain photon has a wavelength of 680nm. What is i Which of the following is not true regarding the withdrawal reflex?A. It is a polysynaptic reflexB. It is a spinal reflexC. It is a visceral reflexD. It is an ipsilateral reflexE. It is an intersegmental reflex e ungeted suppressats that only have an effects on the immune cells causing issues in the joints. There are two main categories of DMARDS, non-biologic and biologic. What is 1 pts a main difference between these two categories of DMARDS? O Biologic DMARDS target the COX-2 pathway in a similar way to NSAIDs, whilst non-biologic DMARDs that target specific immune cells for destruction. O Non-biologic DMARDS tend to suppress general cytokine activation and immune cell chemotaxis, whilst biologic DMARDS target specific cytokines or cells of the immune system to reduce inflammation in the joints. O Both types of DMARDS work by destroying all immune cells to suppress the immune system and stop progression of RA. O Non-biologic DMARDS target the COX-2 pathway activation (in a different way to NSAIDs), whilst biologic DMARDS target Lipooxygenase pathway activation. 1 pts Why would you suggest trying a non-biologic DMARD like Methotrexate or Sulfasalazine for treatment of RA before a biologic DMARD like Rituximab? Because non-biologic DMARDs have so few side effects they are not only effective but much safer than PODAygenase pathway activation. 1 pts Why would you suggest trying a non-biologic DMARD like Methotrexate or Sulfasalazine for treatment of RA before a biologic DMARD like Rituximab? O Because non-biologic DMARDS have so few side effects they are not only effective but much safer than biologics. O Because biologic DMARDS are newer they are not well tested for use in clinic making them more risky than non-biologics. O Because we must consider not only the benefit to the patients health, but also the cost of the medication and patient adherence, as non-biologic DMARDS are far more affordable. O The mechanisms of action are not fully understood for biologics but are fully understood for non-biologics making them safer. O All of the above are good reasons to prescribe a non-biologic DMARD first. Which of the following statements regarding self-acceptance and self-esteem is FALSE?Self-acceptance self-esteem is healthy because it allows you to deal with behavioral failures, without questioning your inherent worth.Trying to earn or acquire worth is exhausting because it requires a lot of thought, energy, and constant comparison.Once you acknowledge your inborn worth, self-esteem basically becomes a non-issue in your life because you know any failure you experience derives from your behavior, not your lack of worth.None of the aboveI chose "Trying to earn or acquire worth is exhausting because it requires a lot of thought, energy, and constant comparison." on my test because this is achievement self-esteem, not self-acceptance self-esteem because if you have achievement self-esteem you believe that you have to prove yourself and compare others to yourself to get worth, while if you have self-acceptance self-esteem you already have worth and you don't need to prove it. Yet, my test said that None of the Above was the correct answer. Is this question correct and my answer is wrong or is my answer right and the question is wrong? Sorry, this is a big question. =| If a = 0.1 m, b = 0.5 m, Q = -6 nC, and q = 1.3 nC, what is themagnitude of the electric field at point P? Give your answer inwhole number. Write step-by-step solutions and justify your answers. 1) [25 Points] Reduce the given Bernoulli's equation to a linear equation and solve it. dy X - 6xy = 5xy. dx 2) [20 Points] The population, P, of a town increases as the following equation: P(t) 100ekt If P(4) = 130, what is the population size at t = 10? = Draft an individual investment policy statement as a guide to your future investment planning. What will be the advantages of having an investment policy statement? Record your general return objectives and specific goals at this time. What is your return objective? Given the price function ($) of: Q = 2P - 30Calculate the point of elasticity when price = $ 60 Charge 1 (q = +15 C) is located at (0,0), Charge 2 (q2 +10 C) is loca (-3m., 4m.), and Charge 3 (93= -5 C) is located at (0, -7m.). Find the net force (Mag Angle, and Direction) experienced by Charge 1 due to Charge 2 and Charge 3. An lncrease in lebor wosts will QUESTION 47 H short-run averege cost is increasing than short-run average flxed cost must be increasing also short-run marginal cost must be decreasing short-run marginal cost must be greater than short-run average cost decreasing returns to seale must be the norm QUESTION 48 BONUS (2 POINTS): An economist has estimated that the eost function of a single-produce firm is: C(Q)=30+25Q+30Q 2+3Q 3. If the flrm shuts dawn, what are thelr costs? Identify pros and cons of using outside stakeholders in decisionmaking and how organizational theories may provide guidance forthis process. Explain.Answer needs to be at least 500 words. Thanks Which is a potential complication post fracture? A. DVTB. Fat embolism syndrome C. Osteomyelitis D. Pulmonary embolism E. All of the above are complications post fracture Estimate the uncertainty in the length of a tuning fork and explain briefly how you arrived at this estimate. Explain briefly how you determined how the beat period depends on the frequency difference. Estimate the uncertainty in the beat period and explain briefly how you arrived at this estimate.