Answer:
A chemical reaction is a process in which one or more substances, also called reactants, are converted to one or more different substances, known as products. ... A chemical reaction rearranges the constituent atoms of the reactants to create different substances as products.
Explanation:
Hopefully this is what you needed
Based on the diagram below, how much of the excess reactant is left over? *
2 slices of bread and 3 pieces of lunchmeat
2 slices of bread and 2 slices of cheese
2 of lunchmeat and 3 slices of cheese
3 of lunchmeat and 2 slices of cheese
Answer:
3 pieces of lunch-meat and 2 slices of cheese
Explanation:
You have enough bread to make 3 sandwiches
You have enough lunch-meat to make 4 sandwiches
You have enough cheese to make 5 sandwiches
In all you have enough material to make 3 sandwiches
so if you subtract three from each number above you will have no bread, enough lunch-meat to make one sandwich and enough cheese to make two sandwiches
luch-meat for one sandwich is: 3 pieces
Cheese for two sandwiches is: 2 pieces
Heat required to raise 1 g of a substance 1°C
Answer:
Specific heat
Explanation:
Answer:
Specific Heat
Explanation:
A P E X
Describe the catenation property of carbon by illustrating the formation of a straight chain and branched chain compounds
Answer:
Catenation refers to the ability of an atom to link to other atoms of the same kind to form a chain.
Explanation:
Catenation is the binding of an element to itself through covalent bonds to form chain or ring .Catenation can also be defined as the self-linking of atoms of an element to form chains and rings. This definition can be extended to include the formation of layers like two-dimensional catenation and space lattices like three-dimensional catenation. Thus, we can boldly say that, Catenation occurs when atoms of the same element covalently bond to one another to create a chain or ring.
Catenation occurs most readily in carbon, forming covalent bonds to and longer chains and structures with other carbon atoms. This is why the vast number of organic compounds are found in nature. Carbon is best known for its catenation properties, with the analysis of catenated carbon structures in organic chemistry.
Carbon is by no means the only element capable of forming such catenae, however, and several other main group elements are capable of forming a wide range of catenae, including silicon, sulfur, and boron. In group 14, the high bond energy of carbon makes it able to self-link almost indefinitely when compared with other members of the group which form only a few bonds to other atoms of the same element.
2. What are the similarities between law of triads and law of octaves?
Answer:
The similarities are the groups, triads law is a law where they are in groups or three, the octaves law is the 'best' law, is the one who every atom wants, they do everything to be in groups of eight.
Explanation:
Changes in pressure can have a large effect on equilibrium systems containing gaseous components.
1. changing the concentration of gaseous components
2. adding an inert gas has no effect since the gas does not take part in the reaction, all partial pressures stay the same
3.changing the volume of the reaction vessel. This will cause a shift in the equilibrium position if the number of moles of gas is different on the reactant and product side (so Δn = n products - n reactants)
How would you change the volume for each of the following reactions to increase the yield of the product(s)?1. CaCO3(s) ⇋ CaO(s) + CO2(g) (increase, decrease, no change)2. S(s) + 3F2(g) ⇋ SF6(g) (increase, decrease, no change)3. Cl2(g) + I2(g) ⇋ 2ICl(g) (increase, decrease, no change)
Answer:
The correct option is 1, since by changing the partial pressures the gas pressures change, the gases go from the zones of higher partial pressure to the zones of lower partial pressure, an example of this is the homeostasis of the human pulmonary alveolus in gas exchange with CO2 and O2.
Explanation:
In the first it increases, in the second the volume is maintained, and in the third reaction it decreases.
Answer:
1. Increase volume.
2. No change.
3. No change.
Explanation:
Hello,
In this case, if we want to shift the reaction rightwards, based on the Le Chatelier's principle we would have to:
1. For this reaction:
[tex]CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)[/tex]
- Increase the volume or decrease the pressure, since there are more gaseous moles at the products.
2. For this reaction:
[tex]S(s) + 3F_2(g) \rightleftharpoons SF_6(g)[/tex]
- Do nothing since it is not possible to achieve it as we have the same number of gaseous moles at both reactants and products.
3. For this reaction:
[tex]Cl_2(g) + I_2(g)\rightleftharpoons 2ICl(g)[/tex]
- Do nothing since it is not possible to achieve it as we have the same number of gaseous moles at both reactants and products.
Regards.
Help Ill give you the brainiest answer thing please just give me the right answer
Answer:
the 3rd one
Explanation:
A characteristic that describe a plant that can make its own food is
Answer:
Photosynthesis
this is correct
Oxygen gas O2 was placed into a closed container at 273.15K. What is the change in temperature that is required in order to increase the pressure from 2.50atm to 7.50atm and decrease the volume from 3.50L to 1.50L?
Answer: 351.19K
Explanation: This is a case were the combined gas equation can be applied.
Combined gas equation is given as; P1V1/T1 = P2V2/T2,
where P1 = Initial pressure = 2.50 atm
P2= Final pressure = 7.50 atm
V1 = Initial volume = 3.50L
V2 = Final Volume = 1.50L
T1 = Initial Temperature = 273.15K
T2 = Final Temperature = ?
∴ 2.50atm x 3.50L / 273.15K = 7.50atm x 1.50L / T2
Making T2 the subject of Formular; we then have;
T2 = P2 V2 T1 / P1 V1 = 7.50atm x 1.50L x 273.15K / 2.50atm x 3.50L
= 3072.94 / 8.75 = 351.19K
The change in temperature (T2) is 351.19K.
Please help! BRAINLIEST to correct answer!!!!
Answer:
Exothermic ProcessExplanation:
Use the periodic table to complete this nuclear fission equation.
Superscript 235 Subscript 92 Baseline U + Superscript 1 Subscript 0 Baseline n yields Superscript 139 Subscript 56 Baseline B a + Superscript A Subscript B Baseline C + 3 Superscript 1 Subscript 0 Baseline n
What is the value of A, B, and C
Answer:
A: 94
B: 36
C: Kr
Explanation:
Got them right & hope it helps :)
Answer:
A: 94
B: 36
C: Kr
Explanation:
edg2020
A. An element with the valence electron configuration 5s1 would form a monatomic ion with a charge of ________. In order to form this ion, the element will _______ electron(s) from/into the _______ subshell(s).
B. An element with the valence electron configuration 2s22p4 would form a monatomic ion with a charge of ______. In order to form this ion, the element will ______ electron(s) from/into the _______ subshell(s)
Answer:
A) An element with the valence electron configuration 5s¹ would form a monatomic ion with a charge of +1. In order to form this ion, the element will lose electron(s) from/into the 5s subshell(s).
B) An element with the valence electron configuration 2s²2p⁴ would form a monatomic ion with a charge of +1. In order to form this ion, the element will lose electron(s) from/into the 2p (2pₓ specifically) subshell(s).
Explanation:
The secret to this task is to follow those rules for the stability of electronic structures of elements. The rules include
- Electrons are filled firstly into shells or subshells of lower energies first.
- While filling electronic structure or writing electronic structures for elements/ions, electrons are fed singly to the suborbital before pairing occurs, this is because the totally paired up electrons of a suborbital are more stable than the totally unpaired electrons of the same suborbital which is now in turn more stable than the combination of paired and unpaired electrons in the suborbitals.
A) For an element with its valence electron on 5s¹, this means that there is one valence electron on this atom's outermost shell and outermost suborbitals. So, to form a monoatomic ion, it would take between losing and gaining an electron. Gaining an electron leads to a 5s², which indicates empty 5p orbitals too and is therefore less stable than losing an electron which would lead to the loss of the shell 5 and focus on a completely filled 4-shell.
So, losing the electron from the 5s suborbital to become a monotonic ion makes it acquire a charge of +1.
B) Just like the explanation in (A), to form a monoatomic ion would require a loss or gain of an electron. With valence electrons 2s²2p⁴, gaining an electron would have led to a 2s²2p⁵ and a further breakdown as 2s²2pₓ²2pᵧ²2pz¹ which has unpaired and paired electrons in the 2p suborbital. This is evidently less stable than if an electron was lost, the valence electrons are 2s²2p³ and they are positioned in a totally unpaired fashion in the 2p suborbital as 2s²2pₓ¹2pᵧ¹2pz¹.
Hence, the more stable alternative is more likely to occur and the electron is lost from the 2pₓ suborbital to make the monoatomic ion of the element acquire a +1 charge status too because of lost electron too.
Hope this Helps!!!
The octet rule states that the atoms of the elements bond to each other in an attempt to complete their valence shell with eight electrons. In other words, the atoms will tend to give up or share electrons to complete eight electrons in the valence shell through an ionic, covalent or metallic bond.
In other words, the goal is to have the closest noble gas electron configuration, thus having the last complete electron shell and acquiring stability.
So, in this case, to comply with the octet rule:
A. An element with the valence electron configuration 5s¹ would form a monatomic ion with a charge of +1. In order to form this ion, the element will lose one electron from the 5s subshell.
For an element with its valence electron at 5s¹, this means that there is one valence electron in the outermost shell of this atom and in the outermost suborbitals. To form a monatomic ion, it would be necessary between losing or gaining an electron and that ion is stable. It takes less energy to lose the electron of the suborbital 5s and acquire a charge of of +1, than to acquire an electron, because it forms the 5s² suborbital, which indicates empty 5p orbitals too and is therefore less stable.
Also, in this way, the octet rule is fulfilled.
B. An element with the valence electron configuration 2s²2p⁴ would form a monatomic ion with a charge of -2. In order to form this ion, the element will gain two electron into the 2p subshell(s).
After gain two electron the atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas (2s²2p⁶). In this way, the octet rule is fulfilled and the ion is stable.
Learn more:
https://brainly.com/question/14077115?referrer=searchResultshttps://brainly.com/question/13980678?referrer=searchResults
Which metal is most easily oxidized?
A) Cu B) Ag C) Mg D) Co
Answer:
It is Magnesium because magnesium is the most active out of those three
Explanation:
The metal which is most easily oxidized is : ( C ) Magnesium ( Mg )
What is Oxidization ?
Oxidization involves the process of the addition of oxygen and the removal of electrons from a compound when Magnesium reacts with oxygen it easily gets oxidized when compared to other metals in the question since magnesium is the most active.
Hence we can conclude that The metal which is most easily oxidized is : ( C ) Magnesium ( Mg ).
Learn more about oxidization :https://brainly.com/question/8990767
#SPJ2
Complex ions with different ligands have different colors because the ligands: Group of answer choices are different colors affect the energy levels of the lone-pair electrons on the metal have different energies for their bonding electrons affect the energy levels of the metal d orbitals have different energies for their lone-pair electrons
Answer:
The correct answer is the second last statement, that is, it affects the energy levels of the metal d orbitals.
Explanation:
It is because of the d-d transition of electrons that the metal complexes exhibit color. When bonding of the ligands takes place with the transition metal ion, a repulsion results between the electrons in the d orbitals of the metal ion and the electrons found within the ligands. This increases the d orbitals' energy level.
However, based on the alignment of the d orbitals in the space, all of the energies do not get elevated by the same level, it gets dissociate into two groups. This dissociation of the d-orbitals relies upon the ligand's strength. More amount of energy would be required to encourage an electron from the lower orbitals groups to the move towards the higher ones in case if the splitting is more.
Greater energy is equivalent to shorter wavelengths in terms of the color of the light absorbed. The complex ions possessing different ligands show distinct kinds of colors as the energy levels of the d orbitals of the metal get affected by the ligands.
If I add 50 mls of water to 300 mls of 0.6M KNO3 solution, what will be the molarity of the diluted solution?
Answer:
[tex]M_2=0.51M[/tex]
Explanation:
Hello,
In this case, for this dilution process, we understand that the moles of the solute (potassium nitrate) remain unchanged upon the addition of diluting water. However, the resulting or final volume includes the added water as shown below:
[tex]V_2=300mL+50mL=350mL[/tex]
In such a way, we are able to relate the solution before and after the dilution by:
[tex]V_1M_1=V_2M_2[/tex]
Hence, we solve for the final molarity as:
[tex]M_2=\frac{M_1V_1}{V_2}=\frac{0.6M*300mL}{350mL}[/tex]
Best regards.
[tex]M_2=0.51M[/tex]
Is it true or false?
Answer:
True
Explanation:
Burning waste can lead to air pollution and release of greenhouse gases. Carbon dioxide is one of those gases.
What is the concentration of a solution if 0.450 mol of NaCl dissolved in 750 mL of water?
Answer:
.6mol/L
Explanation:
molarity = number of moles / volume of solvent (in L)
750mL / 1000mL/L = .75L
M = .450mol / .75L
M = .6mol/L
What is the boiling point of water
Answer:
100 °CExplanation:
The boiling point of water is 100 °C or 212 °F at 1 atmosphere of pressure (sea level).
Consider the half reaction below.
2 upper C l superscript minu (a q) right arrow upper C l subscript 2 (g) plus 2 e superscript minus.
Which statement best describes what is taking place?
Chlorine is losing electrons and being oxidized.
Chlorine is losing electrons and being reduced.
Chlorine is gaining electrons and being oxidized.
Chlorine is gaining electrons and being reduced.
In this reaction, chlorine is losing electrons and being oxidized. Therefore, option A is correct.
What is an electron ?The elementary electric charge of the electron is a negative one, making it a subatomic particle. Due to their lack of components or substructure, electrons, which are part of the lepton particle family's first generation, are typically regarded to be elementary particles.
Quarks make up protons and neutrons, but not electrons. We believe that quarks and electrons are fundamental particles that are not composed of lesser subatomic particles. Saying that everything is formed of particles is one thing.
An electron's energy is determined by where it is in relation to the atom's nucleus. The distance an electron in an atom has to travel from the nucleus depends on its energy level.
Thus, option A is correct.
To learn more about an electron, follow the link;
https://brainly.com/question/1255220
#SPJ6
Answer:
Explanation:
Option A - chlorine is losing electrons and being oxidized.
What is the hydrogen ion concentration [H+] of a HCl solution if the pH is measured to be 2.0?
Answer:
.01
Explanation:
H+=10^-pH
- Hope that helps! Please let me know if you need further explanation.
Two liquids, A and B, have equal masses and equal initial temperatures. Each is heated for the same length of time over identical burners. Afterward, liquid A is hotter than liquid B. Which has the larger specific heat? Two liquids, A and B, have equal masses and equal initial temperatures. Each is heated for the same length of time over identical burners. Afterward, liquid A is hotter than liquid B. Which has the larger specific heat? Liquid A. There's not enough information to tell. Liquid B.
Answer:
Liquid A.
Explanation:
Specific heat is defined as the amount of heat required per unit of mass to raise the temperature by one degree celsius.
When two liquids are heated, the liquid with larger specific heat is the one which is hotter. That is because is required more energy to decrease its temperature by 1°C.
Thus, in the problem, liquid A has the larger specific heat
a fertilizer manufacturer makes a batch of 20kg of ammonium nitrate. what mass of ammonia in kg, does the manufacturer need to start with?
Answer:
[tex]m_{NH_3}=4.25kgNH_3[/tex]
Explanation:
Hello,
In this case, for the production of ammonium nitrate we shall consider the following chemical reaction:
[tex]NH_3+HNO_3\rightarrow NH_4NO_3[/tex]
Hence, since the molar mass of ammonium nitrate is 80 g/mol and the molar mass of ammonia is 17 g/mol, we could compute the required mass of ammonia to produce 20 kg of ammonium nitrate by using kilo-based units:
[tex]m_{NH_3}=20kgNH_4NO_3*\frac{1kmol}{80kgNH_4NO_3}*\frac{1kmolNH_3}{1kmolNH_4NO_3}*\frac{17kgNH_3}{1kmolNH_3} \\\\m_{NH_3}=4.25kgNH_3[/tex]
Best regards.
Why did the Mt. Pinatubo eruption result in global temperatures dropping almost two degrees?
Answer:
In the case of Mount Pinatubo, the result was a measurable cooling of the Earth's surface for a period of almost two years. Because they scatter and absorb incoming sunlight, aerosol particles exert a cooling effect on the Earth's surface.
Explanation:
Temperature measures the average kinetic energy of particles of the substances. Therefore, the Mt. Pinatubo eruption result in global temperatures dropping almost two degrees.
What is temperature?Temperature is used to measure degree or intensity of heat of a particular substance. Temperature is measured by an instrument called thermometer.
Temperature can be measured in degree Celsius °c, Kelvin k or in Fahrenheit. Temperature is a physical quantity. Heat always flow from higher temperature source to lower temperature source.
We can convert these units of temperature into one another. The relationship between degree Celsius and Fahrenheit can be expressed as:
°C={5(°F-32)}÷9
The Mt. Pinatubo eruption result in global temperatures dropping almost two degrees because they scatter and absorb incoming sunlight, aerosol particles exert a cooling effect on the Earth's temperature.
Therefore, the Mt. Pinatubo eruption result in global temperatures dropping almost two degrees.
To know more about temperature, here:
https://brainly.com/question/13694966
#SPJ6
Which of the following will increase the boiling point of water?
Adding more water
Adding sugar
Removing some of the water
None of the above
Answer:
Explanation:
Adding sugar
What is the molar mass of ethanol (C2H60)?
Answer:
46.07 g/mol is the molar mass of ethonal
If you have 67.31g of CH4, how many moles do you have?
Answer:
If you have 67.31 g of CH₄, you have 4.21 moles
Explanation:
To know the amount of moles if you have 67.31 g of CH₄, you must know the molar mass, that is, the mass of one mole of a substance, which can be an element or a compound.
On the periodic table, the molar mass of the elements, also called the atomic mass or atomic weight, can be found at the bottom of the element. In this case:
C: 12 g/moleH: 1 g/moleTo calculate the molar mass of a compound, the molar mass of the elements of the compound must be added multiplied by the times they appear. So in this case the molar mass of CH₄ is:
CH₄= 12 g/mole + 4* 1 g/mole= 16 g/mole
Now you can apply the following rule of three: if 16 g are contained in 1 mole of CH4, 67.31 g in how many moles are present?
[tex]moles=\frac{67.31 g*1 mole}{16 g}[/tex]
moles= 4.21
If you have 67.31 g of CH₄, you have 4.21 moles
Calculate the pH of a [0.000765) M solution of KOH
Answer:
pH=10.88
Explanation:
Hello,
In this case, since potassium hydroxide is completely dissociated as shown below:
[tex]KOH\rightarrow K^++OH^-[/tex]
For which we understand it is a base, more specifically, a strong base; it means that the concentration of the OH⁻ equals the concentration of the potassium hydroxide, that is 0.000765M, for that reason we can directly compute the pOH:
[tex]pOH=-log([OH^-])=-log(0.000765)=3.12[/tex]
Finally, since the pOH and the pH are related by:
[tex]pOH+pH=14[/tex]
The pH turns out:
[tex]pH=14-3.12\\pH=10.88[/tex]
Best regards.
When you need to produce a variety of diluted solutions of a solute, you can dilute a series of stock solutions. A stock solution has a significantly higher concentration of the given solute (typically 101 to 104 times higher than those of the diluted solutions). The high concentration allows many diluted solutions to be prepared using minimal amounts of the stock solution. What volume of a 6.01 M stock solution do you need to prepare 100. mL of a 0.3624 M solution of HCl?
Answer:
Volume of stock solution needed = 6.0299 mL
Explanation:
Dilution consists of lowering the amount of solute per unit volume of solution. It is achieved by adding more diluent to the same amount of solute.
This is deduced when thinking that both the dissolution at the beginning and at the end will have the same amount of moles.
Data:
M1 = 6.01 M stock solution concentration
M2 = 0.3624 M diluted solution concentration
V2 =100 mL diluted solution volume
V1 = ? stock solution volume
M1 * V1 = M2 * V2
[tex]V1=\frac{M2*V2}{M1} =\frac{0.3624M*100mL}{6.01M} =6.0299 mL[/tex]
if a sample of gas at 25.2 c has a volume of 536mL at 637 torr, what will its volume be if the pressure is increased to 712 torr?
If a 1.45 M solution has 2.43 g HCl dissolved, what is the volume of solution? (Change g HCl into mol using molar mass)
Answer: The volume of solution is 0.0459 L
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution
[tex]Molarity=\frac{n}{V_s}[/tex]
where,
n = moles of solute
[tex]V_s[/tex] = volume of solution in L
moles of HCl (solute) = [tex]\frac{\text {given mass}}{\text {Molar mass}}=\frac{2.43g}{36.5g/mol}=0.0666[/tex]
Now put all the given values in the formula of molality, we get
[tex]1.45M=\frac{0.0666}{V_s}[/tex]
[tex]V_s=\frac{0.0666}{1.45}=0.0459[/tex]
Therefore, the volume of solution is 0.0459 L
SCIENCE QUESTION:
The picture below shows a satellite image of Earth from outer space.What is labeled “White” on the satellite image of Earth?
A. gas in Earth's atmosphere, which keeps Earth's temperature moderate, cycles fluids, and prevents most objects from impacting Earth's surface
B. gravity, which holds all living organisms to Earth, pulls water from clouds, and keeps Earth circulating around the Sun
C. a magnetic field, which controls the movement of water in Earth's water cycle
D. atmospheric ice crystals, which never melt and keep Earth's temperature coo
Answer:
C
Explanation:
The reflection if sunlight on the water makes the water look silver,gray,white