Answer:
f(3) = 1.432
Step-by-step explanation:
You want to know the third term of the sequence defined by ...
f(1) = 0.2f(n) = (2/5)f(n-1) +1SequenceThe terms of the sequence can be found one at a time by evaluating the recursive relation. The attached calculator output shows the first three terms are ...
f(1) = 0.2 . . . . . . . given
f(2) = 0.4(0.2) +1 = 1.08
f(3) = 0.4(1.08) +1 = 1.432
The third term of the sequence is 1.432.
__
Additional comment
The explicit form of the function is ...
f(n) = 5/3 -11/3(2/5)^n
Terms will asymptotically approach a value of 5/3.
<95141404393>
Find the length of KL.
Answer:
KL = 6
Step-by-step explanation:
We see that the length of IL includes IJ, JK, and Kl and is 26.
Since IL = 26 and IJ + JK + KL = IL, we can subtract the sum of the lengths of IJ and Jk from IL to find KL:
IL = IJ + JK + KL
26 = 9 + 11 + KL
26 = 20 + KL
6 = KL
Thus, the length of KL is 6.
We can confirm this fact by plugging in 6 for KL and checking that we get 26 on both sides of the equation when simplifying:
IL = IJ + JK + KL
26 = 9 + 11 + 6
26 = 20 + 6
26 = 26
Thus, our answer is correct.
ITV' is tangent to circle O at point H, and HIM
is a secant line. If mHM = 108°, find m/MHU.
Answer:
∠ MHU = 54°
Step-by-step explanation:
the angle MHU between the tangent and the secant is half the measure of the intercepted arc HM , then
∠ MHU = [tex]\frac{1}{2}[/tex] × 108° = 54°
GEOMETRY 80POINTS
ty
Answer:
37.98
Step-by-step explanation:
The grocery store has bulk pecans on sale, which is great since you're planning on making 9 pecan pies for a wedding. How many pounds of pecans should you buy?
First, determine what information you need to answer this question, then click here to display that info (along with other info).
How many pecans are needed for each pie? Your recipe calls for
cups pecans per pie. But there is no cup measure available, only a scale.
How many pecans are in a pound? Perhaps the nutritional info from a bag of pecans would be helpful.
Approximately 4.6 pounds of pecans are needed for one pecan pie.You should buy approximately 41.4 pounds of pecans to make 9 pecan pies.
To determine the number of pounds of pecans needed to make 9 pecan pies, we need to consider the amount of pecans required per pie and the number of pies we are making.
The recipe calls for 1 cup of pecans per pie, but we don't have a measuring cup available. However, we do have nutritional information from a bag of pecans, which states that there are 684 calories in 1 cup (99g) of pecans.
To find out how many pecans are in a pound, we can use the information that 1 cup of pecans weighs 99 grams. Since there are 454 grams in a pound, we can set up the following proportion:
1 cup (99g) = x pounds (454g)
Cross-multiplying, we get:
99g * x pounds = 1 cup * 454g
Simplifying, we have:
99x = 454
Dividing both sides by 99, we find:
x ≈ 4.5959 pounds
So, approximately 4.6 pounds of pecans are needed for one pecan pie.
Since we are making 9 pecan pies, we multiply the amount needed for one pie by the number of pies:
4.6 pounds/pie * 9 pies = 41.4 pounds
For more such questions on pounds visit:
https://brainly.com/question/12983359
#SPJ8
a. Find the slope of x^3+y^3-65xy=0 at the points (4,16) and (16,4).
b. At what point other than the origin does the curve have a horizontal tangent line?
c. Find the coordinates of the point other than the origin where the curve has a vertical tangent line.
a. The slope of the curve at the point (4,16) is approximately 1.165, and at the point (16,4) is approximately -0.496.
b. The curve has a horizontal tangent line at the points(0,0) and (3,27).
c. The curve has a vertical tangent lineat the points (0,0) and (65/2, (65/2)³).
How is this so?a. To find the slope of the curve given by the equation x³ + y³ - 65xy = 0 at the points (4,16) and (16,4),we can differentiate the equation implicitly with respect to x and solve for dy/dx.
Differentiating the equation with respect to x, we have -
3x² + 3y²(dy/dx) - 65y - 65x(dy/dx) = 0
To find the slope at a specific point, substitute the x and y coordinates into the equation and solve for dy/dx.
For the point (4,16) -
3(4)² + 3(16)²(dy/dx) - 65(16) - 65(4)(dy/dx) = 0
48 + 768(dy/dx) - 1040 - 260(dy/dx) = 0
508(dy/dx) = 592
(dy/dx) = 592/508
(dy/dx) ≈ 1.165
For the point (16,4) -
3(16)² + 3(4)²(dy/dx) - 65(4) - 65(16)(dy/dx) = 0
768 + 48(dy/dx) - 260 - 1040(dy/dx) = 0
(-992)(dy/dx) = 492
(dy/dx) = 492/(-992)
(dy/dx) ≈ -0.496
Thus, the slope of the curve at the point (4,16) isapproximately 1.165, and at the point (16,4) is approximately -0.496.
b. To find the point where the curve has a horizontal tangent line, we need to find the x-coordinate(s)where dy/dx equals zero.
This means the slope is zero and the tangent line is horizontal.
From the derivative we obtained earlier -
3x² + 3y²(dy/dx) - 65y - 65x(dy/dx) = 0
Setting dy/dx equal to zero -
3x² - 65y = 0
Substituting y = x³/65 into the equation -
3x² - 65(x³/65) = 0
3x² - x³ = 0
Factoring out an x² -
x²(3 - x) = 0
This equation has two solutions - x = 0 and x = 3.
hence, the curve has a horizontal tangent line at the points(0,0) and (3,27).
c. To find the point where the curve has a vertical tangent line, we need to find the x-coordinate(s) where the derivative is undefinedor approaches infinity.
From the derivative -
3x² + 3y²(dy/dx) - 65y - 65x(dy/dx) = 0
To find the vertical tangent line, dy/dx should be undefined or infinite. This occurs when the denominator of dy/dx is zero.
Setting the denominator equal to zero: -
65x = 65y
x = y
Substituting this condition back into the original equation -
x³ + x³ - 65x² = 0
2x³ - 65x² = 0
x²(2x - 65) = 0
This equation has two solutions - x = 0 and x = 65/2.
Therefore, the curve has a vertical tangent line at the points (0,0)
and(65/2, (65/2)³).
Learn more about slope:
https://brainly.com/question/3493733
#SPJ1
1. Suppose that f(x₁,x₂) =3/2x1² + x2² + x₁ - x₂, compute the step length a of the line search method at point x(k)= (1,-1) for the given descent direction PL = (1,0).
The step length 'a' for the line search method at point x(k) = (1, -1) with the descent direction PL = (1, 0) is 0.5.
To compute the step length 'a' using the line search method, we can follow these steps:
1: Calculate the gradient at point x(k).
- Given x(k) = (1, -1)
- Compute the gradient ∇f(x₁,x₂) at x(k):
∇f(x₁,x₂) = (∂f/∂x₁, ∂f/∂x₂)
∂f/∂x₁ = 3x₁ + 1
∂f/∂x₂ = 2x₂ - 1
Substituting x(k) = (1, -1):
∂f/∂x₁ = 3(1) + 1 = 4
∂f/∂x₂ = 2(-1) - 1 = -3
- Gradient at x(k): ∇f(x(k)) = (4, -3)
2: Compute the dot product between the gradient and the descent direction.
- Given PL = (1, 0)
- Dot product: ∇f(x(k)) ⋅ PL = (4)(1) + (-3)(0) = 4
3: Compute the norm of the descent direction.
- Norm of PL: ||PL|| = √(1² + 0²) = √1 = 1
4: Calculate the step length 'a'.
- Step length formula: a = -∇f(x(k)) ⋅ PL / ||PL||²
a = -4 / (1²) = -4 / 1 = -4
5: Take the absolute value of 'a' to ensure a positive step length.
- Absolute value: |a| = |-4| = 4
6: Finalize the step length.
- The step length 'a' is the positive value of |-4|, which is 4.
Therefore, the step length 'a' for the line search method at point x(k) = (1, -1) with the descent direction PL = (1, 0) is 4.
For more such questions on length, click on:
https://brainly.com/question/28322552
#SPJ8
Find the focus of the parabola defined by the equation 100 points.
Answer : Focus is (0,3)
To find the focus of the parabola defined by the equation (y - 3)² = -8(x - 2), we can compare it with the standard form of a parabolic equation: (y - k)² = 4a(x - h).
In the given equation, we have:
(y - 3)² = -8(x - 2)
Comparing it with the standard form, we can determine the values of h, k, and a:
h = 2
k = 3
4a = -8
Solving for a, we get:
4a = -8
a = -8/4
a = -2
Therefore, the vertex of the parabola is (h, k) = (2, 3), and the value of 'a' is -2.
The focus of the parabola can be found using the formula:
F = (h + a, k)
Substituting the values, we get:
F = (2 + (-2), 3)
F = (0, 3)
Therefore, the focus of the parabola defined by the equation (y - 3)² = -8(x - 2) is at the point (0, 3).
Answer:
Focus = (0, 3)
Step-by-step explanation:
The focus is a fixed point located inside the curve of the parabola.
To find the focus of the given parabola, we first need to find the vertex (h, k) and the focal length "p".
The standard equation for a sideways parabola is:
[tex]\boxed{(y-k)^2=4p(x-h)}[/tex]
where:
Vertex = (h, k)Focus = (h+p, k)If p > 0, the parabola opens to the right, and if p < 0, the parabola opens to the left.
Given equation:
[tex](y-3)^2=-8(x-2)[/tex]
Compare the given equation to the standard equation to determine the values of h, k and p:
h = 2k = 34p = -8 ⇒ p = -2The formula for the focus is (h+p, k).
Substituting the values of h, p and k into the formula, we get:
[tex]\begin{aligned}\textsf{Focus}&=(h+p,k)\\&=(2-2,3)\\&=(0,3)\end{aligned}[/tex]
Therefore, the focus of the parabola is (0, 3).
m(x) = x + x^2 -1 in standard form, its polynomial name, degree, leading coefficient, and constant term.
Answer:
To write the polynomial function m(x) = x + x^2 - 1 in standard form, we rearrange the terms in descending order of degree:
m(x) = x^2 + x - 1
Polynomial name: Quadratic polynomial
Degree: 2 (the highest exponent is 2)
Leading coefficient: 1 (the coefficient of the highest-degree term)
Constant term: -1 (the term without any variable)
Find the length of side a. 13, 5 B on a right triangle
In a right triangle, the length of side "a" is 12.
The Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides, can be used to find the length of side "a" in a right triangle with sides of 13 and 5 units.
Let's assign "a" as the unknown side. According to the Pythagorean theorem, we have the equation: [tex]a^{2}[/tex] = [tex]13^{2}[/tex] - [tex]5^{2}[/tex].
Simplifying the equation, we get [tex]a^{2}[/tex] = 169 - 25, which becomes [tex]a^{2}[/tex] = 144.
To solve for "a," we take the square root of both sides: a = √144.
The square root of 144 is 12. Therefore, side "a" has a length of 12 units.
In summary, using the Pythagorean theorem, we determined that side "a" in the right triangle with side lengths 13 and 5 units has a length of 12 units.
Know more about Pythagorean theorem here:
https://brainly.com/question/343682
#SPJ8
The base of a rectangular prism is a square whose sides each measure 9 inches. The height of the rectangular prism is 11 inches, find it’s volume?
Answer:
99
Step-by-step explanation:
since the height is 9 and the base is 11 we use the formula BH=V
substitute 9x11 and get 99
√7
7. Given that the sin(E)= 4 and TE = 4, determine the
remaining sides of A THE. Give exact answers.
E
Answer:
Step-by-step explanation:
To determine the remaining sides of triangle THE given that sin(E) = 4 and TE = 4, we can use the sine ratio.
The sine ratio is defined as the ratio of the length of the side opposite the angle to the length of the hypotenuse in a right triangle.
In this case, sin(E) = 4/TE, which means the side opposite angle E is 4 and the hypotenuse TE is 4.
Using the Pythagorean theorem, we can find the length of the remaining side TH:
TH^2 = TE^2 - HE^2
TH^2 = 4^2 - 4^2
TH^2 = 16 - 16
TH^2 = 0
TH = 0
Therefore, the length of side TH is 0.
3. Your family is planning a road trip stretching from coast to coast for this summer. The route and the time frame are nearly set; now you need to plan out the finances. Your parents have decided that rental of an RV will be cheaper than staying in hotels, but they would like an estimate on the total cost. Can you help them?
a. To rent an RV, the following costs apply: $125 per day, plus 32 cents per mile. Additionally, to drop off the RV on the other side of the country, there is an extra fee of $2,500. Write an equation to describe the total cost of RV rental.
b. Your parents have two options for their road trip plans. The first option stretches over 3500 miles and includes fewer stops but more beautiful scenery. It will take about a week and a half (11 days). The second option stretches over just 3000 miles, but it includes more overnight stops and will therefore take two weeks (14 days). Which of these two options is cheaper?
c. Your little sister really wants to take the two-week trip, but your parents really want to keep the RV rental cost under $5,000. You can compromise by either taking a more direct route (lessening the miles) or by stopping for less overnight stays (lessening the days of the rental). What would the domains be for these two compromises? Justify why you think your domains are correct.
d. Write and solve equations to find how many miles or how many days you would have to eliminate in order to stay under the $5,000 budget. Explain each step as you solve your equations. Finally, make a recommendation to your parents about which compromise you think is best.
Answer:
Step-by-step explanation:
a. To write an equation describing the total cost of RV rental, we can use the given information:
Let x be the number of days of rental.
Let y be the number of miles driven.
The total cost of RV rental can be calculated as follows:
Total cost = (125 * x) + (0.32 * y) + 2500
b. To compare the cost of the two options, we need to calculate the total cost for each option.
Option 1:
x = 11 days
y = 3500 miles
Total cost = (125 * 11) + (0.32 * 3500) + 2500
Option 2:
x = 14 days
y = 3000 miles
Total cost = (125 * 14) + (0.32 * 3000) + 2500
Compare the total costs of both options to determine which one is cheaper.
c. To compromise and keep the rental cost under $5,000, we can adjust either the number of miles driven or the number of days of rental.
For the first compromise (lessening the miles), let's assume the new number of miles driven is y1.
The domain for the compromise in miles would be 0 ≤ y1 ≤ 3500, as you cannot drive more miles than the original option or negative miles.
For the second compromise (lessening the days of rental), let's assume the new number of days of rental is x1.
The domain for the compromise in days would be 0 ≤ x1 ≤ 14, as you cannot have more days of rental than the original option or negative days.
The justification for these domains is that they restrict the values within the range of the original options while allowing for adjustments in the desired direction.
d. To find out how many miles or how many days need to be eliminated to stay under the $5,000 budget, we can set up and solve equations.
For the compromise in miles (y1):
(125 * x) + (0.32 * y1) + 2500 ≤ 5000
For the compromise in days (x1):
(125 * x1) + (0.32 * y) + 2500 ≤ 5000
Solve each equation by isolating the variable to determine the maximum allowed value for y1 or x1, respectively.
Finally, after solving the equations, compare the maximum allowed values for y1 and x1 and consider other factors like practicality, time constraints, and preferences to make a recommendation to your parents about which compromise is best.
Find the volume of the solid obtained by rotating the region
bounded by the graphs y=(x-4)^3,the x-axis, x=0, and x=5
about the y-axis? (Express numbers in exact form. Use symbolic
notation and fractions where needed.)
Answer:
Step-by-step explanation:
To find the volume of the solid obtained by rotating the region bounded by the graphs y = (x - 4)^3, the x-axis, x = 0, and x = 5 about the y-axis, we can use the method of cylindrical shells.
The formula for the volume of a solid obtained by rotating a region bounded by the graph of a function f(x), the x-axis, x = a, and x = b about the y-axis is given by:
V = 2π ∫[a, b] x * f(x) dx
In this case, the function f(x) = (x - 4)^3, and the bounds of integration are a = 0 and b = 5.
Substituting these values into the formula, we have:
V = 2π ∫[0, 5] x * (x - 4)^3 dx
To evaluate this integral, we can expand the cubic term and then integrate:
V = 2π ∫[0, 5] x * (x^3 - 12x^2 + 48x - 64) dx
V = 2π ∫[0, 5] (x^4 - 12x^3 + 48x^2 - 64x) dx
Integrating each term separately:
V = 2π [1/5 x^5 - 3x^4 + 16x^3 - 32x^2] evaluated from 0 to 5
Now we can substitute the bounds of integration:
V = 2π [(1/5 * 5^5 - 3 * 5^4 + 16 * 5^3 - 32 * 5^2) - (1/5 * 0^5 - 3 * 0^4 + 16 * 0^3 - 32 * 0^2)]
Simplifying:
V = 2π [(1/5 * 3125) - 0]
V = 2π * (625/5)
V = 2π * 125
V = 250π
Therefore, the volume of the solid obtained by rotating the region bounded by the graphs y = (x - 4)^3, the x-axis, x = 0, and x = 5 about the y-axis is 250π cubic units.
Read the following statements.
Statement 1: "If she is stuck in traffic, then she is late."
Statement 2: "If she is late, then she is stuck in traffic."
Statement 3: "If she is not late, then she is not stuck in traffic."
Meg writes, "Statement 3 is the inverse of statement 2 and contrapositive of statement 1."
Cassandra writes, "Statement 2 is the converse of statement 1 and inverse of statement 3."
Who is correct?
Both Meg and Cassandra are incorrect.
Only Meg is correct.
Both Meg and Cassandra are correct.
Only Cassandra is correct.
`Both Meg and Cassandra are incorrect in their assessments (option a).
Meg and Cassandra have both misunderstood the logical relationships between the statements. Let's analyze each statement and compare their claims:
Statement 1: "If she is stuck in traffic, then she is late."
Statement 2: "If she is late, then she is stuck in traffic."
Statement 3: "If she is not late, then she is not stuck in traffic."
Meg's claims: Meg states that Statement 3 is the inverse of Statement 2 and the contrapositive of Statement 1. However, this is incorrect. The inverse of Statement 2 would be "If she is not stuck in traffic, then she is not late," and the contrapositive of Statement 1 would be "If she is not late, then she is not stuck in traffic." So Meg's analysis is incorrect.
Cassandra's claims: Cassandra states that Statement 2 is the converse of Statement 1 and the inverse of Statement 3. However, this is also incorrect. The converse of Statement 1 would be "If she is late, then she is stuck in traffic," and the inverse of Statement 3 would be "If she is late, then she is stuck in traffic." So Cassandra's analysis is incorrect as well.
Therefore, both Meg and Cassandra are wrong in their assessments. The correct logical relationships are as follows:
- The contrapositive of Statement 1 is Statement 3.
- The converse of Statement 1 is Statement 2.
Hence, the correct answer is that both Meg and Cassandra are incorrect.
For more such questions on assessments, click on:
https://brainly.com/question/29041247
#SPJ8
I just need help with the range domain is [-2,3)
Answer:
We don't need to worry about the displaystyle- {3} −3 anyway, because we dcided in the first step that displaystyle {x}ge- {2} x ≥ −2. So the domain for this case is displaystyle {x}ge- {2}, {x}ne {3} x≥ −2,x≠ 3, which we can write as displaystyle {left [- {2}, {3}right)}cup {left ({3},inftyright)} [−2,3)∪(3,∞).
Step-by-step explanation:
Last year, Ali biked b miles. This year, he biked 358 miles. Using b, write an expression for the total number of miles he biked
James wants to have earned $6,180 amount of interest in 28 years. Currently he finds
that his annual interest rate is 6.12%. Calculate how much money James needs to invest
as his principal in order to achieve this goal.
Answer:
$3606.44
Step-by-step explanation:
The question asks us to calculate the principal amount that needs to be invested in order to earn an interest of $6180 in 28 years at an annual interest rate of 6.12%.
To do this, we need to use the formula for simple interest:
[tex]\boxed{I = \frac{P \times R \times T}{100}}[/tex],
where:
I = interest earned
P = principal invested
R = annual interest rate
T = time
By substituting the known values into the formula above and then solving for P, we can calculate the amount that James needs to invest:
[tex]6180 = \frac{P \times 6.12 \times 28}{100}[/tex]
⇒ [tex]6180 \times 100 = P \times 171.36[/tex] [Multiplying both sides by 100]
⇒ [tex]P = \frac{6180 \times 100}{171.36}[/tex] [Dividing both sides of the equation by 171.36]
⇒ [tex]P = \bf 3606.44[/tex]
Therefore, James needs to invest $3606.44.
An electric utility company determines the monthly bill for a residential customer by adding an energy charge of 9.32 cents per kilowatt-hour to its base charge of $18.32 per month. Write an equation for the monthly charge y in terms of x, the number of kilowatt-hours used.
Answer: y = 18.32 + 0.0932x
Step-by-step explanation:
Given that the base charge per month is $18.32 and the charge per kilowatt-hour is 9.32 cents, which is assigned to the variable x, we can write an equation to find the total monthly charge based on kilowatt-hours.
total = monthly charge + kilowatt-hour x the amount of kilowatts
y = 18.32 + 0.0932x
here we see that y is the total cost per month, our base monthly charge is $18.32, our kilowatt hour charge is 9.32 cents, which we write in terms of dollar amounts for the sake of the equation (just divide by 100), and our variable x represents the number of kilowatts.
please answer ASAP I will brainlist
Step-by-step explanation:
a) 23.6 (1.08)^x for 2016 x = 26 ('x' is the number of years past 1990)
23.6 (1.08)^(26) = 174.6 billion
b) 109 = 23.6 ( 1.08)^x
4.6186 = 1.08^x
x = log 4.6186 / log1.08 = 19.88 yrs
means 1990 + 19.88 yrs = year 2010
A bank deposit paying simple interest grew from an initial amount of $1300 to $1365 in 3 months. Find the interest rate.
%/year
Answer:
the interest rate. : 5%
[(1365-1300)/1300]*100 = 5%
Step-by-step explanation:
What is the perimeter of a rectangle with workings
Answer:
See below
Step-by-step explanation:
The perimeter of a rectangle is [tex]P=2L+2W[/tex] where L is the length and W is the width.
1cm on a picture of a swimming pool represents 1200cm of the actual swimming pool. The length of the pictured swimming pool is 4.5cm and the width is 3cm. What is the perimeter of the actual swimming pool? Express your answer in meters.
Answer:
180 meters
Step-by-step explanation:
To find the perimeter of the actual swimming pool, you need to first find the length and width of the actual swimming pool by multiplying the length and width of the pictured swimming pool by the scale factor of 1200 cm.
Length of actual swimming pool = 4.5 cm × 1200 cm = 5400 cmWidth of actual swimming pool = 3 cm × 1200 cm = 3600 cmPerimeter of actual swimming pool = (5400 cm + 3600 cm) × 2 = 18000 cm.Now that we know that the perimeter of the actual pool is 18000 centimeters, we need to convert that to meters! Keep in mind that:
100cm = 1mNow we can divide 18000 by 100:
18000 cm ÷ 100 = 180 m
Therefore, the perimeter of the actual swimming pool is 180 m.
Question 2 (1 point)
Which one of the following is true of the mean?
1) one of the less common averages
2) equals some whole number
observations must be ordered from least to most before calculating the
3)
mean
4) equals the sum of all observations divided by the number of observations
The correct statement about the mean is:
The mean equals the sum of all observations divided by the number of observations.
The mean is a commonly used measure of central tendency. It is calculated by summing up all the observations and then dividing the sum by the total number of observations. It provides an average value that represents the typical value of the data set.
To calculate the mean, it is not necessary to order the observations from least to most. The order of the observations does not affect the mean calculation.
The mean is not necessarily a whole number. It can be a decimal or a fraction, depending on the data set and the values of the observations. The mean represents the balance point of the data set and can take on any real number value.
for such more question on mean
https://brainly.com/question/14532771
#SPJ8
Five years older than Mukhari. Find the value of the expression if Mukhari is 43 years old.
Which rectangles are similar? Four rectangles have a length of 3 c m and a height of 5 c m, a length of 2 point 5 c m and a height of 5 point 5 c m, a length of 2 point 5 c m, and a height of 2 c m, and a length of 5 c m and a height of 4 c m respectively.
The rectangles that are similar are Rectangle 3 and Rectangle 4.
To determine which rectangles are similar, we need to compare their corresponding side lengths.
Rectangle 1:
Length: 3 cm
Height: 5 cm
Rectangle 2:
Length: 2.5 cm
Height: 5.5 cm
Rectangle 3:
Length: 2.5 cm
Height: 2 cm
Rectangle 4:
Length: 5 cm
Height: 4 cm
To determine similarity, we need to compare the ratios of the corresponding side lengths of the rectangles.
Comparing Rectangle 1 with Rectangle 2:
Length ratio: 3 cm / 2.5 cm = 1.2
Height ratio: 5 cm / 5.5 cm ≈ 0.91
The length ratio and height ratio are not equal, so Rectangle 1 and Rectangle 2 are not similar.
Comparing Rectangle 1 with Rectangle 3:
Length ratio: 3 cm / 2.5 cm = 1.2
Height ratio: 5 cm / 2 cm = 2.5
The length ratio and height ratio are not equal, so Rectangle 1 and Rectangle 3 are not similar.
Comparing Rectangle 1 with Rectangle 4:
Length ratio: 3 cm / 5 cm = 0.6
Height ratio: 5 cm / 4 cm = 1.25
The length ratio and height ratio are not equal, so Rectangle 1 and Rectangle 4 are not similar.
Comparing Rectangle 2 with Rectangle 3:
Length ratio: 2.5 cm / 2.5 cm = 1
Height ratio: 5.5 cm / 2 cm = 2.75
The length ratio and height ratio are not equal, so Rectangle 2 and Rectangle 3 are not similar.
Comparing Rectangle 2 with Rectangle 4:
Length ratio: 2.5 cm / 5 cm = 0.5
Height ratio: 5.5 cm / 4 cm = 1.375
The length ratio and height ratio are not equal, so Rectangle 2 and Rectangle 4 are not similar.
Comparing Rectangle 3 with Rectangle 4:
Length ratio: 2.5 cm / 5 cm = 0.5
Height ratio: 2 cm / 4 cm = 0.5
The length ratio and height ratio are equal, so Rectangle 3 and Rectangle 4 are similar.
Therefore, the rectangles that are similar are Rectangle 3 and Rectangle 4.
for more such question on rectangles visit
https://brainly.com/question/2607596
#SPJ8
Let f(x) = 4x² - 2x +11
The slope of the tangent line to the graph of f(x) at the point (3, 41)
Slope =
M=
B=
Answer:
f(x) = 4x² - 2x + 11
f'(x) = 8x - 2
m = f'(3) = 8(3) - 2 = 24 - 2 = 22
41 = 22(3) + b
41 = 66 + b
b = -25
y = 22x - 25
Which linear function has the greatest y-intercept?
y = 6 x + 1
On a coordinate plane, a line goes through points (0, 2) and (5, 0).
On a coordinate plane, a line goes through points (1, 2) and (0, negative 3).
y = 3 x + 4
The linear function that has the greatest y-intercept is [tex]y = 3x + 4[/tex].
In a linear equation, the y-intercept is where the line crosses the y-axis.
It is represented by the constant term in the equation.
So, to determine which linear function has the greatest y-intercept, we need to look at the constant term of each equation.
Let's consider each equation: [tex]y = 6x + 1[/tex]
The constant term in this equation is 1.
So, the y-intercept is 1.
On a coordinate plane, a line goes through points (0, 2) and (5, 0).
To find the equation of this line, we can use the point-slope form:
[tex]y - y1 = m(x - x1)[/tex]
where m is the slope and (x1, y1) is a point on the line.
Using the points (0, 2) and (5, 0), we get:
[tex]m = \frac{(0 - 2)}{(5 - 0)} =-\frac{2}{5}[/tex]
So, the equation of the line is:
[tex]y - 2 = (\frac{-2}{5} )(x - 0)[/tex]
[tex]y = (\frac{-2}{5} )x + 2[/tex]
The constant term in this equation is 2.
So, the y-intercept is 2.
On a coordinate plane, a line goes through points (1, 2) and (0, -3).
To find the equation of this line, we can use the point-slope form:
[tex]y - y1 = m(x - x1)[/tex]
where m is the slope and (x1, y1) is a point on the line.
Using the points (1, 2) and (0, -3), we get:
[tex]m = \frac{ (-3 - 2) }{(0 - 1)} = -5[/tex]
So, the equation of the line is:
[tex]y - 2 = (-5)(x - 1)y = -5x + 7[/tex]
The constant term in this equation is 7.
So, the y-intercept is 7.
[tex]y = 3x + 4[/tex]
The constant term in this equation is 4.
So, the y-intercept is 4.
Therefore, we can see that the linear function that has the greatest y-intercept is [tex]y = 3x + 4[/tex].
For such more questions on y-intercept
https://brainly.com/question/25722412
#SPJ8
Un objeto que se hace girar, se desplaza 25 radianes en 0.8 segundos. ¿cuál es la velocidad angular de dicho objeto?
The angular velocity of the object is 31.25 radians/second.
Angular velocity is defined as the change in angular displacement per unit of time. In this case, the object rotates a total of 25 radians in 0.8 seconds. Therefore, the angular velocity can be calculated by dividing the total angular displacement by the time taken.
Angular velocity (ω) = Total angular displacement / Time taken
Given that the object rotates 25 radians and the time taken is 0.8 seconds, we can substitute these values into the formula:
ω = 25 radians / 0.8 seconds
Simplifying the equation gives:
ω = 31.25 radians/second
So, the angular velocity of the object is 31.25 radians/second.
Angular velocity measures how fast an object is rotating and is typically expressed in radians per second. It represents the rate at which the object's angular position changes with respect to time.
In this case, the object completes a rotation of 25 radians in 0.8 seconds, resulting in an angular velocity of 31.25 radians per second. This means that the object rotates at a rate of 31.25 radians for every second of time.
For more such questions on angular velocity visit:
https://brainly.com/question/15154527
#SPJ8
Note the translated question is:
An object that is rotated moves 25 radians in 0.8 seconds. what is the angular velocity of said object?
In the diagram, mDGF = 62x+4. Find mDGF
O-210°
G
D
30x+5
F
E
The measure of the arc DGF which substends the angle DEF at the circumference of the circle is equal to 190°
What is angle subtended by an arc at the centerThe angle subtended by an arc of a circle at it's center is twice the angle it substends anywhere on the circles circumference.
Given that the arc DGF = (62x + 4)°
62x + 4 = 2(30x + 5)
62x + 4 = 60x + 10
62x - 60x = 10 - 4 {collect like terms}
2x = 6
x = 6/2
x = 3
arc DGF = 62(3) + 4 = 190°
Therefore, the measure of the arc DGF which substends the angle DEF at the circumference of the circle is equal to 190°
Read more about angle here:https://brainly.com/question/24423151
#SPJ1
Determine the limit in the following equation.
The limit of the expression lim (x² - √x⁴ + 3x²) as x approaches any value is indeterminate (∞ - ∞), except when x approaches zero, where the limit is 0.
How did we get the value?To find the limit of the expression lim (x² - √x⁴ + 3x²) as x approaches a certain value, we can simplify the expression and evaluate the limit.
First, let's simplify the expression:
lim (x² - √x⁴ + 3x²)
= lim (4x² - x² - √x⁴)
= lim (3x² - √x⁴)
Now, let's consider the behavior of the expression as x approaches a value.
As x approaches any finite value, the term 3x² will approach a finite value.
For the term √x⁴, as x approaches a finite value, the square root of x⁴ will approach the absolute value of x².
Therefore, the limit becomes:
lim (3x² - √x⁴) = lim (3x² - |x²|)
Next, let's consider the different cases as x approaches positive infinity, negative infinity, and zero.
1. As x approaches positive infinity, the term 3x² will tend to positive infinity, and |x²| will also tend to positive infinity. Thus, the expression becomes:
lim (3x² - |x²|) = lim (∞ - ∞)
In this case, the limit is indeterminate (∞ - ∞).
2. As x approaches negative infinity, the term 3x² will tend to positive infinity, and |x²| will also tend to positive infinity. Thus, the expression becomes:
lim (3x² - |x²|) = lim (∞ - ∞)
Again, in this case, the limit is indeterminate (∞ - ∞).
3. As x approaches zero, the term 3x² will tend to zero, and |x²| will also tend to zero. Thus, the expression becomes:
lim (3x² - |x²|) = lim (0 - 0) = 0
Therefore, the limit of the expression lim (x² - √x⁴ + 3x²) as x approaches any value is indeterminate (∞ - ∞), except when x approaches zero, where the limit is 0.
learn more about limit: https://brainly.com/question/29412132
#SPJ1