Answer:
f(x) = 8x
Explanation:
4 x 2 =8
A scientist claims that 4% of viruses are airborne. If the scientist is accurate, what is the probability that the proportion of airborne viruses in a sample of 662 viruses would be greater than 6%
Answer:
The probability that the proportion of airborne viruses in a sample of 662 viruses would be greater than 6%=0.00427
Step-by-step explanation:
We are given that
[tex]\mu_{\hat{p}}=p=4%=0.04[/tex]
n=662
We have to find the probability that the proportion of airborne viruses in a sample of 662 viruses would be greater than 6%.
q=1-p=1-0.04=0.96
[tex]\sigma_{\hat{p}}=\sqrt{p(1-p)/n}[/tex]
[tex]\sigma_{\hat{p}}=\sqrt{\frac{0.04(1-0.04)}{662}}[/tex]
[tex]\sigma_{\hat{p}}=0.0076[/tex]
Now,
[tex]P(\hat{p}>0.06)=1-P(\hat{p}<0.06)[/tex]
[tex]=1-P(\frac{\hat{p}-\mu_{\hat{p}}}{\sigma_{\hat{p}}}<\frac{0.06-0.04}{0.0076})[/tex]
[tex]=1-P(Z<2.63)[/tex]
[tex]=1-0.99573[/tex]
[tex]P(\hat{p}>0.06)=0.00427[/tex]
Hence, the probability that the proportion of airborne viruses in a sample of 662 viruses would be greater than 6%=0.00427
A carpet expert believes that 9% of Persian carpets are counterfeits. If the expert is right, what is the probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%
Answer:
0.0060 = 0.6% probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A carpet expert believes that 9% of Persian carpets are counterfeits.
This means that [tex]p = 0.09[/tex]
Sample of 686:
This means that [tex]n = 686[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{0.09*0.91}{686}} = 0.0109[/tex]
What is the probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%?
Proportion lower than 9% - 3% = 6% or higher than 9% + 3% = 12%. The normal distribution is symmetric, thus these probabilities are equal, so we can find one of them and multiply by 2.
Probability it is lower than 6%
p-value of Z when X = 0.06. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0109}[/tex]
[tex]Z = -2.75[/tex]
[tex]Z = -2.75[/tex] has a p-value of 0.0030
2*0.0030 = 0.0060
0.0060 = 0.6% probability that the proportion of counterfeits in a sample of 686 Persian carpets would differ from the population proportion by greater than 3%
Approximate 5.7255 to the nearest thousand
round 5.7255 to thousands place
place after thousands place (5) rounds up the 5 before it
therefore 5.726 ur ans
MARK above ANS as branliest
jeremy drove to work with the average speed of 42 miles per hour. if he had driven with the speed of 48 mph, he would have arrived 10 minutes earlier. how far is it from his home to work?
9514 1404 393
Answer:
56 miles
Step-by-step explanation:
Let d represent the distance in miles. Then the drive time in hours is ...
d/42 = d/48 +10/60
8d = 7d +56 . . . . . . . . multiply by 336
d = 56
The distance from Jeremy's home to work is 56 miles.
_____
At 42 mph, his commute time is 1 hour 20 minutes.
Rewrite in simplest terms: (9x+5)-(-2x+10)(9x+5)−(−2x+10) . Someone please help me
Answer:
18x^(2)-69x-55
Step-by-step explanation:
dont have the time to rn
Answer:
[tex]{ \bf{(9x + 5) - ( - 2x + 10)(9x + 5) - ( - 2x + 10)}} \\ = { \tt{(9x + 5) - ( - {18x}^{2} + 80x + 50) - ( - 2x + 10)}} \\ = { \tt{(9 - 80 + 2)x + {18x}^{2} + 5 - 50 - 10 }} \\ = { \tt{ {18x}^{2} - 69x - 55}}[/tex]
Find the radius of the circle if the center is at (1, 2) and the point (-5, 6) lies on the circle.
On a coordinate plane, a circle has center point (1, 2). A point on the circle is at (negative 5, 6).
9514 1404 393
Answer:
2√13
Step-by-step explanation:
The distance between the center of the circle and a point on the circle is the radius. That distance is given by the distance formula:
d = √((x2 -x1)² +(y2 -y1)²)
d = √((-5 -1)² +(6 -2)²) = √(36 +16) = √52
d = 2√13
The radius of the circle is 2√13.
arrange the following in descending order - 5, 0, -15, 2.5, 2.05
Answer:
2.5, 2.05, 0, -5, -15
Step-by-step explanation:
for negative numbers the bigger is worth less
Find in the triangle. Round to the nearest degree.
Answer:
D. 34
Step-by-step explanation:
Because this is a right triangle we can use sin, cos, tan.
Use cosine because the values of the adjacent side and hypotenuse are already given.
cos(θ) = 72/87
Because we are solving for the angle measure (and not the measure of the side) we need to use inverse cos.
cos⁻¹ = 72/87
put into a calculator and answer is approximatelyn34 degrees.
What is y=-2(x+3)^2+2
Answer:
y = -2(x + 3)² + 2
y = 2{ -(x + 3)²+ 1}
y = 2{ -(x² + 6x + 9) + 1}
y = 2{ -x² - 6x - 9 + 1}
y = 2{ -x² - 6x - 8 }
y = -2 { x² + 6x + 8}
OR
y = -2{(x + 4)(x + 2)}
SCALCET8 3.9.004.MI. The length of a rectangle is increasing at a rate of 7 cm/s and its width is increasing at a rate of 8 cm/s. When the length is 15 cm and the width is 7 cm, how fast is the area of the rectangle increasing
Answer:
The area of the rectangle is increasing at a rate of 169 cm²/s
Step-by-step explanation:
Given;
increase in the length of the rectangle, [tex]\frac{dL}{dt} = 7 \ cm/s[/tex]
increase in the width of the rectangle, [tex]\frac{dW}{dt} = 8 \ cm/s[/tex]
length, L = 15 cm
width, W = 7 cm
The increase in Area is calculated as;
[tex]Area = Length \times Width\\\\A = LW\\\\\frac{dA}{dt} = L(\frac{dW}{dt} )\ + \ W(\frac{dL}{dt} )\\\\\frac{dA}{dt} = 15 \ cm(8\ \frac{ cm}{s} ) \ + \ 7 \ cm(7\ \frac{ cm}{s} ) \\\\\frac{dA}{dt} = 120 \ cm^2/s \ + \ 49 \ cm^2/s\\\\\frac{dA}{dt} = 169 \ cm^2/s[/tex]
Therefore, the area of the rectangle is increasing at a rate of 169 cm²/s
I need help asap and a step by step!!!!!!!!!!!!!!!!!!!!
Answer:
Step-by-step explanation:
1. subtract 3.5-3.5 and 12.5-3.5
2.You should 4t=9
3. Divide 4 ÷ 4 and 9 ÷ 4
4. You should have t = 2.25
Answer:
t = 2.25
Step-by-step explanation:
4t + 3.5 = 12.5Step 1 :- Divide both side by 3.5.
4t + 3.5 - 3.5 = 12.5 - 3.54t = 9Step 2 :- Divide each side by 4.
4t / 4 = 9 / 4t = 2.25a pie chart is divided into four sectors in fig. 12.42. Each sector represents a percentage of the whole. The two larger sectors are equal and each represents x%. What is the angle subtended by one of those larger sectors ?
Answer:
Angle formed by the sector measuring x% will be 126°.
Step-by-step explanation:
Since, sum of all sectors formed in a circle is 100%.
By adding the measures of all the sectors,
x + x + 21 + 9 = 100
2x + 30 = 100
2x = 70
x = 35%
Now we know sum of all the central angles formed at the center of a circle = 360°
Therefore, angle formed by x% = 360° × 35%
= [tex]\frac{360\times 35}{100}[/tex]
= 126°
find the degree of polynomial of the following
[tex]3x^{3} - x ^{5} [/tex]
Answer:
the degree is the value of the biggest exponent = 5 (fifth degree)
Step-by-step explanation:
Answer:
5
Step-by-step explanation:
Since the highest power of x is 5, the degree of the polynomial x
3
−9x+3x
5
is 5.
Why can you use cross products to solve the proportion StartFraction 18 over 5 EndFraction = StartFraction x over 100 EndFraction for x?
Answer:
45
Step-by-step explanation:
Please help it’s a test and I can’t get logged out
Answer:
the anwer is B ( i mean second option)
And you can try it
you will find ;
[tex]y = \frac{x}{3} - 1[/tex]
HAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ
The diagram shows the right-angled triangle. (a) Calculate the area.
(b) Calculate the perimeter
Step-by-step explanation:
no diagram visible. there is nothing to calculate.
Answer:
No diagram
Step-by-step explanation:
For area of right angled triangle 1/2 × base× height
Perimeter plus three sides of the triangle
8. Solve the system using elimination.
3x - 4y = 9
- 3x + 2y = 9
Answer:
3x−4y=9 −3x+2y=9
Add these equations to eliminate x: −2y=18
Then solve−2y=18
for y: −2y=18 −2y −2 = 18 −2 (Divide both sides by -2)
y=−9
Now that we've found y let's plug it back in to solve for x.
Write down an original equation: 3x−4y=9
Substitute−9for y in 3x−4y=9: 3x−(4)(−9)=9
3x+36=9(Simplify both sides of the equation)
3x+36+−36=9+−36(Add -36 to both sides)
3x=−27 3x 3 = −27 3 (Divide both sides by 3) x=−9
Answer: x=−9 and y=−9
Hope This Helps!!!
In a randomly selected sample of 100 students at a University, 81 of them had access to a computer at home. Give the value of the standard error for the point estimate.
Answer:
The value of the standard error for the point estimate is of 0.0392.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In a randomly selected sample of 100 students at a University, 81 of them had access to a computer at home.
This means that [tex]n = 100, p = \frac{81}{100} = 0.81[/tex]
Give the value of the standard error for the point estimate.
This is s. So
[tex]s = \sqrt{\frac{0.81*0.19}{100}} = 0.0392[/tex]
The value of the standard error for the point estimate is of 0.0392.
On a 9 question multiple-choice test, where each question has 5 answers, what would be the probability of getting at least one question wrong?
Answer:
P(at least one wrong) = 1- P(all correct) =1-.25^6=1-1/4096=4095/4096. This assumes that the answers are picked at random. This kind of question is always the complement of an extreme binomial outcome.
pls help me and answer it correctly:)
Answer:
the biggest frequency is 6
and the least frequency is 4
can someone help with this
Answer:
[tex]\frac{8}{45}[/tex]
Step-by-step explanation:
'of' means 'multiply'
4/5 × 2/9 = 8/45
The endpoints of PC are P(4, 1) and Q(4,8). Find the midpoint of PQ
A. (4, 4.5)
B. (0, -3.5)
C. (4.5, 4)
D. (6, 3.5)
Answer:
A. (4,4.5)
Step-by-step explanation:
Midpoint={x1+x2/2,y1+y2/2}
M={4+4/2,1+8/2}
M={8/2,9/2}
M={4,4.5}
HELP HELP HELPPPP
ILL GIVE BRAINLIEST HELPPPPPPPPP
100 POINTSSS
Answer:
C. 0.48
Step-by-step explanation:
Probability = number of required outcome
_______________________
number of possible outcome
= total volleyball game events
_______________________
total sophomore + junior
= 66/137
= 0.48
Answer: D) 0.31
Step-by-step explanation:
Let A denote the event that a person is a sophomore.
Let B denote the event that a person has attended volleyball game.
A∩B denote the event that a person is a sophomore and attend volleyball game.
Let P denote the probability of an event.
We are asked to find:
P(A∩B)
From the table provided to us we see that:
A∩B=42
Hence,
P(A∩B)=42/137=0.3065 which is approximately equal to 0.31. Therefore ur answer will be 0.31.
Check out this app! It's millions of students helping each other get through their schoolwork. https://brainly.app.link/qpzV02MawO
Answer: this app help me
Step-by-step explanation: it is so fun the answers is it is so good
Slope intercept
6times+5y=15
Answer:
y= (-6/5)x+3
Step-by-step explanation:
6x+5y=15
Divide everything by 5
(6/5)x + y = 3
Move (6/5)x to the other side of the = sign by subtracting
y= (-6/5)x + 3
That's your answer!
Hope it helps!
what is a value between 1/4 and 1/3 is
9514 1404 393
Answer:
2/7
Step-by-step explanation:
Any unit fraction with a denominator between 3 and 4 will be between 1/3 and 1/4. For example, ...
1/3.5 = 2/7 . . . . is between 1/3 and 1/4
__
You can also go at this considering decimal equivalents.
1/4 = 0.25
1/3 = 0.333... (repeating)
So, decimal numbers like 0.26, 0.295, 0.3330 are all values that are between 1/4 and 1/3.
Rajah 1 menunjukkan lukisan pelan berskala bagi sebuah rumah
lantainya berbentuk dua segi empat sama.
Skala yang digunakan adalah 1:200. Jika
kos memasang jubin jalah Rm 30 per m3
berapakah jumlah kos memasang jubin bagi
rumah tersebut?
Answer:
RM 1200 kalau ada gambar cuba insert
can a horizontal line be written in slope intercept form
Answer:
it can be in point intercept form
Step-by-step explanation:
Answer:
it can be point intercept from
I need help on this question someone please help
Answer:
x > -2
Step-by-step explanation:
the graph stops at x = -2 and doesn't move further down
A Roper survey reported that 65 out of 500 women ages 18-29 said that they had the most say when purchasing a computer; a sample of 700 men (unrelated to the women) ages 18-29 found that 133 men said that they had the most say when purchasing a computer. What is the 99% confidence interval for the difference of the two proportions
Answer:
[tex]Z=-2.87[/tex]
Step-by-step explanation:
From the question we are told that:
Probability on women
[tex]P(W)=65 / 500[/tex]
[tex]P(W) = 0.13[/tex]
Probability on women
[tex]P(M)=133 / 700[/tex]
[tex]P(M) = 0.19[/tex]
Confidence Interval [tex]CI=99\%[/tex]
Generally the equation for momentum is mathematically given by
[tex]Z = \frac{( P(W) - P(M) )}{\sqrt{(\frac{ \sigma_1 * \sigma_2 }{(1/n1 + 1/n2)}}})[/tex]
Where
[tex]\sigma_1=(x_1+x_2)(n_1+n_2)[/tex]
[tex]\sigma_1=\frac{( 65 + 133 )}{ ( 500 + 700 )}[/tex]
[tex]\sigma_1=0.165[/tex]
And
[tex]\sigma_2=1 - \sigma = 0.835[/tex]
Therefore
[tex]Z = \frac{( 0.13 - 0.19)}{\sqrt{\frac{( 0.165 * 0.835}{ (500 + 700) )}}}[/tex]
[tex]Z=-2.87[/tex]