Answer:
Gravity.
Explanation:
Gravity causes the child on a sled to slide down the hill.
Hope this helps!
11. The figure shows a block of mass M = 7.75 kg hanging at rest. The light wire fastened to the wall is
horizontal and has a tension of 38 N. The wire fastened to the ceiling is also very light, has a tension
of 59 N and makes an angle with the ceiling. Find the angle 8.
QUA
The angle made with the ceiling by the tension force of the two wires is determined as 50⁰.
What is the angle made by the two tensions?The angle made by the two tensions is calculated by applying cosine rule as follows;
the force opposite the angle = weight of the block = mg
W = 7.75 kg x 9.8 m/s²
W = 75.95 N
The angle made by the two tensions is calculated as follows;
cos θ = (38 N ) / ( 59 N)
cos θ = 0.6441
θ = arc cos (0.6441)
θ = 50⁰
Thus, the angle made by the two tensions is determined as 50 degrees.
Learn more about angle between two tensions here: https://brainly.com/question/31410427
#SPJ1
The figure is in the image attached
2. Explain brightness of light using the wave model of light
The brightness of light is explained by the wave model of light. Brightness refers to the perceived intensity of light. Brightness is determined by the amplitude or intensity of light waves.
The larger the amplitude, the brighter the light. This can be explained using the wave model of light.Light is a form of electromagnetic radiation that is composed of oscillating electric and magnetic fields. The wave model of light states that light is a transverse wave that propagates through space. The wave model of light states that light travels in straight lines and can be reflected, refracted, and diffracted. Brightness is a measure of the intensity of light waves.
The intensity of light waves is determined by the amplitude of the wave.The amplitude of a wave is the maximum displacement of the wave from its equilibrium position. The larger the amplitude of a wave, the more energy the wave carries. This means that the larger the amplitude of light waves, the brighter the light. The brightness of light can be increased by increasing the amplitude of light waves. This can be achieved by increasing the intensity of light waves. The intensity of light waves can be increased by increasing the power of the light source. Thus, brightness can be explained by the wave model of light as it is determined by the amplitude or intensity of light waves.
for such more questions on intensity
https://brainly.com/question/14252912
#SPJ8
If two waves with equal amplitudes and wavelengths travel through a medium in such a way that a particular particle of the medium is at the crest of one wave and at the trough of the other wave at the same time, what will happen to that particle?
Question 4 options:
A)
The particle will cause beats as a result of the wave combination.
B)
The particle will vibrate with double amplitude due to resonance.
C)
The particle will move halfway to the crest due to reinforcement.
D)
The particle will remain stationary due to interference.
If two waves with equal amplitudes and wavelengths travel through a medium in such a way that a particular particle of the medium is at the crest of one wave and at the trough of the other wave at the same time then D) The particle will remain stationary due to interference.
When two waves with equal amplitudes and wavelengths pass through a medium, they undergo interference. Interference occurs when the crests and troughs of the waves overlap. In this case, if a particular particle of the medium is at the crest of one wave and at the trough of the other wave at the same time, it experiences what is called destructive interference.
Destructive interference happens when the peaks (crests) of one wave align with the troughs of the other wave. In this situation, the positive displacements caused by the crest are canceled out by the negative displacements caused by the trough. As a result, the net displacement of the particle is zero, and it remains stationary.
This phenomenon occurs due to the principle of superposition, which states that the total displacement of a particle at any point in a medium is the vector sum of the individual displacements caused by each wave. Therefore, in this scenario, the particle will remain stationary due to the destructive interference between the two waves. Therefore, Option D is correct.
Know more about wavelengths here:
https://brainly.com/question/10750459
#SPJ8
Answer: D
Explanation:
A model rocket is launched straight upward with an initial speed of 57.0 m/s. It accelerates with a constant upward acceleration of 1.50 m/s2 until its engines stop at an altitude of 140 m. Answer parts b-d.
a. The maximum height reached by the rocket is 1083 meters.
b. The rocket reaches its maximum height 38 seconds after liftoff.
c. The rocket is in the air for 1.09 seconds.
How do we calculate?(b)
We will apply equation of motion :
v² = u² + 2aΔy
Δy = (v² - u²) / (2a)
Δy = (0 - 57.0²) / (2 * 1.50)
Δy = (-57.0)² / 3.00
Δy = 3,249 / 3.00
Δy = 1083 m
(c)
v = u + at
0 = u + at
t = -u / a
t = -57.0 / 1.50
t = 38 seconds
(d)
Δy = ut + (1/2)at²
140 = 57.0t + (1/2)(1.50)t²
(1/2)(1.50)t² + 57.0t - 140 = 0
t = 1.09 seconds.
Learn more about equation of motion at:
https://brainly.com/question/25951773
#SPJ1
A person walks 3.30 km south and then 2.00 km east, all in 3.20 hours. Answer parts a-c.
(a) the magnitude of the displacement is approximately 3.85 km, and the direction is approximately 59.04° south of east.
(b) Magnitude of average velocity ≈ 3.85 km and Direction of average velocity ≈ -59.04° (south of east)
(c) the average speed during the given time interval is approximately 1.66 km/h.
(a) To find the magnitude and direction of the person's displacement, we can use the Pythagorean theorem and trigonometry.
Displacement in the x-direction = 2.00 km east
Displacement in the y-direction = -3.30 km south (negative because it is in the opposite direction of the positive y-axis)
Using the Pythagorean theorem:
Magnitude of displacement = √((2.00 km)^2 + (-3.30 km)^2)
Magnitude of displacement ≈ 3.85 km
To find the direction, we can use trigonometry:
θ = tan^(-1)(opposite/adjacent)
θ = tan^(-1)(-3.30 km / 2.00 km)
θ ≈ -59.04° (measured counterclockwise from the positive x-axis)
Therefore, the magnitude of the displacement is approximately 3.85 km, and the direction is approximately 59.04° south of east.
(b) Average velocity is defined as displacement divided by time. The magnitude and direction of average velocity will be the same as the magnitude and direction of displacement.
Magnitude of average velocity ≈ 3.85 km
Direction of average velocity ≈ -59.04° (south of east)
(c) Average speed is defined as total distance traveled divided by time. The total distance traveled is the sum of the magnitudes of the individual displacements.
Total distance = 3.30 km + 2.00 km = 5.30 km
Average speed = Total distance / Time
Average speed ≈ 5.30 km / 3.20 hours
Average speed ≈ 1.66 km/h
Therefore, the average speed during the given time interval is approximately 1.66 km/h.
for more questions on displacement
https://brainly.com/question/14422259
#SPJ8
Fig above shows a wave traveling through a medium. Use the fig to answer the questions below.
A.)What is the amplitude of the wave ? Include correct units.
B.)Use the graph to determine the time of one wave. Use it to find the frequency.
C.)If the speed of the wave is 25 m/s, what is the wavelength of the wave ? Show data listing, equation , substitution leading to the answer for full credit.
(a) The amplitude of the wave is 0.2 m.
(b) The period of the wave is 4 s.
(c) The wavelength of the wave is 100 m.
What is the amplitude of the wave?(a) The amplitude of the wave is the maximum displacement of the wave.
amplitude of the wave = 0.2 m
(b) The period of the wave is the time taken for the wave to make one complete cycle.
period of the wave = 5.5 s - 1.5 s = 4 s
(c) The wavelength of the wave is calculated as follows;
λ = v / f
where;
v is the speed of the wavef is the frequency of the wavef = 1/t = 1 / 4s = 0.25 Hz
λ = ( 25 m/s ) / 0.25 Hz
λ = 100 m
Learn more about wavelength here: https://brainly.com/question/10728818
#SPJ1
A tennis player moves in a straight-line path as shown in the figure below. Find her average velocity in the following time intervals. Find (a) - 0 to 1.0 s, find (b) 0 to 4s, find (c) - 1.0 s to 5.0 s, find (d) - 0 to 5.0 s.
(a) The average velocity of the tennis player at 0 to 1 s is 4 m/s.
(b) The average velocity of the tennis player at 0 to 4 s is -0.5 m/s.
(c) The average velocity of the tennis player at 1 to 5 s is 1 m/s.
(d) The average velocity of the tennis player at 0 to 5 s is 0.8 m/s.
What is the average velocity of the tennis player?The average velocity of the tennis player at the given time, is calculated by applying the formula for average velocity as follows;
average velocity = total displacement / total time
(a) The average velocity at 0 to 1 s;
average vel. = (4 m - 0 m ) / (1 s ) = 4 m/s
(b) The average velocity at 0 to 4 s;
average vel. = (-2 - 0 )m / 4 s = -0.5 m/s
(c) The average velocity at 1 to 5 s;
average vel. = (4 - 0 )m / (5 - 1) s = 1 m/s
(d) The average velocity at 0 to 5 s;
average vel. = (4 - 0 )m / (5 - 0) s = 0.8 m/s
Learn more about average velocity here: https://brainly.com/question/24445340
#SPJ1
.An electron of charge 1.6 x 10-19is situated in a uniform electric filed strength of 120 vm-1 Calculate the force acting on it
The force acting on the electron is 1.92 x 10^-17 N.
The problem states that an electron of charge 1.6 x 10^-19 is located in a uniform electric field of 120 Vm^-1, and it asks us to determine the force acting on it.
We can use Coulomb's law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. If the charges are of opposite signs, the force is attractive, while if the charges are of the same sign, the force is repulsive.
The formula for Coulomb's law is F = kq1q2/r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.
Since the electron has a charge of 1.6 x 10^-19 C, and the electric field strength is 120 Vm^-1, we can use the equation F = qE to find the force acting on it.
F = qE = (1.6 x 10^-19 C)(120 Vm^-1) = 1.92 x 10^-17 N.
Therefore, the force acting on the electron is 1.92 x 10^-17 N.
For more such questions on force, click on:
https://brainly.com/question/12785175
#SPJ8
A projectile is launched with an initial speed of 48.0 m/s at an angle of 34.0° above the horizontal. The projectile lands on a hillside 3.65 s later. Neglect air friction. (Assume that the +x-axis is to the right and the +y-axis is up along the page.) Answer parts a-b.
(a) The projectile's velocity at the highest point of its trajectory is approximately 27.01 m/s, counterclockwise from the +x-axis.
(b) The straight-line distance from where the projectile was launched to where it hits its target is approximately 144.93 m.
To solve this problem, we'll analyze the projectile's motion in two dimensions: horizontal and vertical.
(a) To find the projectile's velocity at the highest point of its trajectory, we need to consider the vertical component and horizontal component separately.
The initial velocity (V0) of the projectile is 48.0 m/s, and the launch angle (θ) is 34.0° above the horizontal.
The vertical component of velocity (Vy) can be found using the equation:
Vy = V0 * sin(θ)
Plugging in the known values:
Vy = 48.0 m/s * sin(34.0°)
Calculating Vy, we find:
Vy ≈ 27.01 m/s
The horizontal component of velocity (Vx) can be found using the equation:
Vx = V0 * cos(θ)
Plugging in the known values:
Vx = 48.0 m/s * cos(34.0°)
Calculating Vx, we find:
Vx ≈ 39.79 m/s
Therefore, at the highest point of its trajectory:
- The magnitude of the projectile's velocity is approximately 27.01 m/s.
- The direction of the velocity is straight up, counterclockwise from the +x-axis.
(b) To find the straight-line distance from where the projectile was launched to where it hits its target, we need to consider the horizontal motion of the projectile.
The time of flight (t) is given as 3.65 s.
The horizontal distance (x) can be found using the equation:
x = Vx * t
Plugging in the known values:
x = 39.79 m/s * 3.65 s
Calculating x, we find:
x ≈ 144.93 m
The straight-line distance from where the projectile was launched to where it hits its target is approximately 144.93 m.
for more questions on projectile
https://brainly.com/question/4275218
#SPJ8
A spacecraft is in a circular orbit around the planet Mars at a height of 140km.
A small part of the spacecraft falls off and eventually lands on the surface of the Mars
The small part has a mass of 1.8kg
During its fall, the small part loses 0.932 MJ of gravitational potential energy.
Calculate the gravitational field strength of Mars
Answer:
3.79 m/s^2
Explanation:
We know the small part loses 0.932 MJ of gravitational potential energy during its fall.
Potential energy = mass x gravitational field strength x height
Re-arranging to solve for gravitational field strength:
g = Potential energy/(mass x height)
Plugging in the given values:
g = 0.932 MJ / (1.8kg x 140km)
= 0.932 x 10^6 J / (1.8 x 1000kg x 140 x 1000m)
= 3.79 m/s^2
Therefore, the gravitational field strength of Mars is calculated to be 3.79 m/s^2.
One strategy in a snowball fight is to throw a snowball at a high angle over level ground. Then, while your opponent is watching that snowball, you throw a second one at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown with a speed of 26.5 m/s. The first one is thrown at an angle of 58.0° with respect to the horizontal. Find a - At what angle should the second snowball be thrown to arrive at the same point as the first?, find b - How many seconds later should the second snowball be thrown after the first in order for both to arrive at the same time?
The second snowball should be thrown at an angle of approximately 48.196° with respect to the horizontal to arrive at the same point as the first snowball.
the second snowball should be thrown 4.582 seconds later in order for both to arrive at the same time.
To find the angle at which the second snowball should be thrown, we can use the fact that the horizontal displacement of both snowballs must be the same.
Let's first find the horizontal and vertical components of the velocity for the first snowball. The initial speed is 26.5 m/s, and the angle is 58.0° with respect to the horizontal.
The horizontal component of the velocity for the first snowball is given by:
V1x = V1 * cos(angle1)
= 26.5 m/s * cos(58.0°)
= 26.5 m/s * 0.530
= 14.045 m/s
Now, let's find the vertical component of the velocity for the first snowball:
V1y = V1 * sin(angle1)
= 26.5 m/s * sin(58.0°)
= 26.5 m/s * 0.848
= 22.472 m/s
Since the vertical acceleration is the same for both snowballs (gravity), the time it takes for both to arrive at the same point is the same. Therefore, we can use the time of flight of the first snowball to calculate the vertical displacement for the second snowball.
The time of flight for the first snowball can be calculated using the vertical component of velocity and the acceleration due to gravity:
t = (2 * V1y) / g
= (2 * 22.472 m/s) / 9.8 m/s²
≈ 4.582 s
Now, let's find the vertical displacement for the second snowball:
Δy = V1y * t - (0.5 * g * t²)
= 22.472 m/s * 4.582 s - (0.5 * 9.8 m/s² * (4.582 s)²)
≈ 103.049 m
To find the angle at which the second snowball should be thrown, we can use the horizontal displacement and the vertical displacement:
tan(angle2) = Δy / Δx
= 103.049 m / (2 * 14.045 m/s * t)
= 103.049 m / (2 * 14.045 m/s * 4.582 s)
≈ 1.085
Now, we can find the angle2 by taking the arctan of both sides:
angle2 ≈ arctan(1.085)
angle2 ≈ 48.196°
Therefore,
To find how many seconds later the second snowball should be thrown, we can simply use the time of flight of the first snowball, which is approximately 4.582 seconds.
for more such questions on horizontal
https://brainly.com/question/25825784
#SPJ8