What type of transformation always results in congruent figures?

A. rotation followed by a dilation B. dilation followed by a translation C. reflection followed by a translation D. translation followed by a dilation

Answers

Answer 1

A rotation followed by a dilation always results in congruent figures.

Explanation:

Congruent figures are identical in shape and size. In order to obtain congruent figures through a transformation, the transformation needs to preserve both the shape and the size of the original figure.

Option A, rotation followed by a dilation, guarantees congruence. A rotation preserves the shape of the figure by rotating it around a fixed point, while a dlationi preserves the size of the figure by uniformly scaling it up or down. When these two transformations are applied sequentially, the resulting figures will have the same shape and size, making them congruent.

Option B, dilation followed by a translation, does not always result in congruent figures. A dilation scales the figure, changing its size but preserving its shape. However, a subsequent translation moves the figure without changing its shape or size. Since a translation does not guarantee that the figures will have the same size, this sequence of transformations may not produce congruent figures.

Option C, reflection followed by a translation, also does not always yield congruent figures. A reflection mirrors the figure across a line, preserving its shape but not necessarily its size. A subsequent translation does not affect the size of the figure but only its position. Thus, the combination of reflection and translation may result in figures that have the same shape but different sizes, making them non-congruent.

Option D, translation followed by a dilation, likewise does not guarantee congruence. A translation moves the figure without changing its shape or size, while a dilation alters the size but preserves the shape. As the dilation occurs after the translation, the size of the figure may change, leading to non-congruent figures.

Therefore, option A, rotation followed by a dilation, is the transformation that always results in congruent figures.

Learn more about probability here

brainly.com/question/13604758

#SPJ11


Related Questions

Find the area of the region bounded by the graphs of the equations x=−y2+4y−2 and x+y=2 Online answer: Enter the area rounded to the nearest tenth, if necessary.

Answers

To find the area of the region bounded by the graphs of the equations, we first need to determine the points of intersection between the two curves. Let's solve the equations simultaneously:

1. x = -y^2 + 4y - 2

2. x + y = 2

To start, we substitute the value of x from the second equation into the first equation:

(-y^2 + 4y - 2) + y = 2

-y^2 + 5y - 2 = 2

-y^2 + 5y - 4 = 0

Now, we can solve this quadratic equation. Factoring it or using the quadratic formula, we find:

(-y + 4)(y - 1) = 0

Setting each factor equal to zero:

1) -y + 4 = 0   -->   y = 4

2) y - 1 = 0    -->   y = 1

So the two curves intersect at y = 4 and y = 1.

Now, let's integrate the difference of the two functions with respect to y, using the limits of integration from y = 1 to y = 4, to find the area:

∫[(x = -y^2 + 4y - 2) - (x + y - 2)] dy

Integrating this expression gives:

∫[-y^2 + 4y - 2 - x - y + 2] dy

∫[-y^2 + 3y] dy

Now, we integrate the expression:

[-(1/3)y^3 + (3/2)y^2] evaluated from y = 1 to y = 4

Substituting the limits of integration:

[-(1/3)(4)^3 + (3/2)(4)^2] - [-(1/3)(1)^3 + (3/2)(1)^2]

[-64/3 + 24] - [-1/3 + 3/2]

[-64/3 + 72/3] - [-1/3 + 9/6]

[8/3] - [5/6]

(16 - 5)/6

11/6

So, the area of the region bounded by the graphs of the given equations is 11/6 square units, which, when rounded to the nearest tenth, is approximately 1.8 square units.

Learn more about Quadratic Equation here :

https://brainly.com/question/30098550

#SPJ11

Find d2y​/dx2 if −8x2−3y2=−5 Provide your answer below: d2y/dx2​ = ____

Answers

To find d^2y/dx^2 for the equation -8x^2 - 3y^2 = -5, we need to differentiate the equation twice with respect to x. Let's begin by differentiating the given equation once: d/dx (-8x^2 - 3y^2) = d/dx (-5).

Using the chain rule, we get:

-16x - 6y(dy/dx) = 0.

Next, we need to differentiate this equation again. Applying the chain rule and product rule, we have:

-16 - 6(dy/dx)^2 - 6y(d^2y/dx^2) = 0.

Now, we need to solve this equation for d^2y/dx^2. Rearranging the terms, we get:

6y(d^2y/dx^2) = -16 - 6(dy/dx)^2.

Dividing both sides by 6y, we obtain:

d^2y/dx^2 = (-16 - 6(dy/dx)^2) / (6y).

Therefore, the expression for d^2y/dx^2 for the given equation -8x^2 - 3y^2 = -5 is:

d^2y/dx^2 = (-16 - 6(dy/dx)^2) / (6y).

Learn more about the chain rule here: brainly.com/question/33495113

#SPJ11


Write the sum using sigma notation.
1/2 ln(2) - 1/3 ln(3) + 1/4 ln(4) - 1/5 ln(5) + ... + 1/ 110
ln(110)
k=2

Answers

The sum using sigma notation is given by: ∑[k=2 to 110] (-1)^(k+1) * (1/k) * ln(k) + ln(110).

The calculation step involved in deriving this sigma notation was to compare the given expression with the formula for the sum of the series. After comparing, the values of n, the first term, and the common difference were found and then substituted in the formula to derive the sigma notation.

To express the given sum using sigma notation step by step:

Start with the sigma notation: ∑[k=2 to 110]

The term inside the sum will be (-1)^(k+1) * (1/k) * ln(k)

Expand the sum term by term:

For k = 2, the term is (-1)^(2+1) * (1/2) * ln(2) = (1/2) ln(2)

For k = 3, the term is (-1)^(3+1) * (1/3) * ln(3) = -(1/3) ln(3)

For k = 4, the term is (-1)^(4+1) * (1/4) * ln(4) = (1/4) ln(4)

Continue this pattern until k = 110

Add the last term outside the sigma notation: + ln(110)

Combine all the terms:

∑[k=2 to 110] (-1)^(k+1) * (1/k) * ln(k) + ln(110)

And that's the expression of the sum using sigma notation.

To know more about the sigma notation visit:

https://brainly.com/question/30518693

#SPJ11

Use Lagrange multipliers to find the indicated extrema of f subject to two constraints, assuming that x, y, and z are nonnegative. Maximize f(x,y,z)=xyz Constraintsi x+y+z=28,x−y+z=12 fy= ___

Answers

The maximum point, the partial derivative of \(f\) with respect to \(y\) is equal to \(f_y = 48\).

To find the indicated extrema of the function \(f(x, y, z) = xyz\) subject to the constraints \(x + y + z = 28\) and \(x - y + z = 12\), we can use the method of Lagrange multipliers.

First, we set up the Lagrangian function:

\(L(x, y, z, \lambda_1, \lambda_2) = xyz + \lambda_1(x + y + z - 28) + \lambda_2(x - y + z - 12)\).

To find the extrema, we solve the following system of equations:

\(\frac{{\partial L}}{{\partial x}} = yz + \lambda_1 + \lambda_2 = 0\),

\(\frac{{\partial L}}{{\partial y}} = xz + \lambda_1 - \lambda_2 = 0\),

\(\frac{{\partial L}}{{\partial z}} = xy + \lambda_1 + \lambda_2 = 0\),

\(x + y + z = 28\),

\(x - y + z = 12\).

Solving the system of equations yields \(x = 4\), \(y = 12\), \(z = 12\), \(\lambda_1 = -36\), and \(\lambda_2 = 24\).

Now, to find the value of \(f_y\), we differentiate \(f(x, y, z)\) with respect to \(y\): \(f_y = xz\).

Substituting the values \(x = 4\) and \(z = 12\) into the equation, we get \(f_y = 4 \times 12 = 48\).

Using Lagrange multipliers, we set up a Lagrangian function incorporating the objective function and the given constraints. By differentiating the Lagrangian with respect to the variables and solving the resulting system of equations, we obtain the values of \(x\), \(y\), \(z\), \(\lambda_1\), and \(\lambda_2\). To find \(f_y\), we differentiate the objective function \(f(x, y, z) = xyz\) with respect to \(y\). Substituting the known values of \(x\) and \(z\) into the equation, we find that \(f_y = 48\). This means that at the maximum point, the partial derivative of \(f\) with respect to \(y\) is equal to 48.

LEARN MORE ABOUT derivative here: brainly.com/question/29144258

#SPJ11

Let's say X is a normal random variable with mean μ=10 and variance σ ∧ 2=36. - what is P{x<22} - what is P{X>5} - what is P{4

Answers

X is a normal random variable with mean μ=10 and variance σ ∧ 2=36.

We have to find the following probabilities:P{x<22}, P{X>5}, P{45) = P(z>-0.83)From the z-table, the area to the right of z = -0.83 is 0.7967.P(X>5) = 0.7967z3 = (4 - 10)/6 = -1P(45} = 0.7967P{4

Learn more about Probability here,https://brainly.com/question/13604758

#SPJ11

QUESTION 3 -Use a reference angle to write cos315° in terms of the cosine of a positive acute angle. Provide your answer below:

Answers

[tex]\[\cos(315°)\][/tex] in terms of the cosine of a positive acute angle is [tex]\[-\frac{1}{\sqrt{2}}.\][/tex]

The reference angle of 315 degrees is the acute angle that a 315-degree angle makes with the x-axis in standard position. The reference angle, in this situation, would be 45 degrees since 315 degrees are in the fourth quadrant, which is a 45-degree angle from the nearest x-axis.  

It is then possible to use this reference angle to determine the cosine of the given angle in terms of the cosine of an acute angle. Thus, using the reference angle, we have:

[tex]\[\cos(315°)=-\cos(45°)\][/tex]

Since is in the first quadrant, we can use the unit circle to determine the cosine value of 45°. We have:

[tex]\[\cos(315°)=-\cos(45°)=-\frac{1}{\sqrt{2}}\][/tex]

Thus, [tex]\[\cos(315°)\][/tex] in terms of the cosine of a positive acute angle is [tex]\[-\frac{1}{\sqrt{2}}.\][/tex]

To know more about cosine refer here:

https://brainly.com/question/29114352

#SPJ11








Factor the following polynomial given that it has a zero at - 9 with multiplicity 2 . x^{4}+25 x^{3}+213 x^{2}+675 x+486=

Answers

The factored form of the given polynomial x^4 + 25x^3 + 213x^2 + 675x + 486 with a zero at -9 with multiplicity 2 is (x+3)^2(x+9)^2.

To factor the given polynomial with a zero at -9 with multiplicity 2, we can start by using the factor theorem. The factor theorem states that if a polynomial f(x) has a factor (x-a), then f(a) = 0.

Therefore, we know that the given polynomial has factors of (x+9) and (x+9) since it has a zero at -9 with multiplicity 2. To find the remaining factors, we can divide the polynomial by (x+9)^2 using long division or synthetic division.

After performing the division, we get the quotient x^2 + 7x + 54. Now, we can factor this quadratic expression by finding two numbers that multiply to 54 and add up to 7. These numbers are 6 and 9.

Thus, the factored form of the given polynomial is (x+9)^2(x+3)(x+6).

However, we can simplify this expression by noticing that (x+3) and (x+6) are also factors of (x+9)^2. Therefore, the final factored form of the given polynomial with a zero at -9 with multiplicity 2 is (x+3)^2(x+9)^2.

Know more about polynomial  here:

https://brainly.com/question/11536910

#SPJ11

\[ (5+10=15 \text { marks })(3 \text { pages }) \] What is Partnership in Business? What are the types of Partnership? Explain the merits and demerits of Partnership.

Answers

Partnership in Business is a legal form of a business entity in which two or more individuals, companies, or other business units operate together to share profits and losses. There are different types of partnerships which include general partnership, limited partnership, and limited liability partnership. The merits of partnership are advantages of working together, combination of skills, sharing of responsibility and larger pool of capital. The demerits of partnership are unlimited liability, disagreements between partners and limited life of partnership.

Advantages of working together: By working together, partners can pool their resources to achieve a common goal. Each partner brings different strengths and areas of expertise to the table, making it easier to achieve success.

Combination of skills: With a partnership, the skills of each partner can be combined to create a more diverse skill set that can be used to grow and improve the business.

Sharing of responsibility: In a partnership, each partner has a share of the responsibility of running the business which can help to ensure that the workload is shared equally among partners, and that no one person has to shoulder the entire burden.

Larger pool of capital: By working together, partners can pool their resources and raise more capital than they would be able to on their own which can help to fund the growth and expansion of the business.

Unlimited liability: In a general partnership, each partner is personally liable for the debts and obligations of the business.

Disagreements between partners: Partnerships can be difficult to manage if the partners have different opinions on how to run the business.

Limited life of the partnership: A partnership may be dissolved if one of the partners leaves the business, or files for bankruptcy. This can be a major drawback for businesses that are looking for long-term stability and growth.

Learn more about partnership:

brainly.com/question/25012970

#SPJ11

How is a unit of truck freight usually rated?
Select one answer.
a 1 ft³ or 10lb, whichever is greater
b 1 in³ or 10lb, whichever is greater
c 1 m³or 10 kg, whichever is greater
d 1 m³or 10lb, whichever is greater

Answers

A unit of truck freight is usually rated based on c) 1 m³ or 10 kg, whichever is greater.

Explanation:

1st Part: When rating truck freight, the unit of measurement is typically determined by either volume or weight, with a minimum threshold.

2nd Part:

The common practice for rating truck freight is to consider either the volume or the weight of the shipment, depending on which one is greater. The purpose is to ensure that the pricing accurately reflects the size or weight of the cargo and provides a fair basis for determining shipping costs.

The options provided in the question outline the minimum thresholds for the unit of measurement. According to the options, a unit of truck freight is typically rated as either 1 m³ or 10 kg, whichever is greater.

This means that if the shipment has a volume greater than 1 cubic meter, the volume will be used as the basis for rating. Alternatively, if the weight of the shipment exceeds 10 kg, the weight will be used instead.

The practice of using either volume or weight, depending on which one is greater, allows for flexibility in determining the unit of truck freight and ensures that the rating accurately reflects the size or weight of the cargo being transported.

Learn more about probability here

brainly.com/question/13604758

#SPJ11

the standard deviation is a parameter, but the mean is an estimator. T/F

Answers

The statement "the standard deviation is a parameter, but the mean is an estimator" is false. An estimator is a random variable that is used to calculate an unknown parameter. Parameters are quantities that are used to describe the characteristics of a population.

The standard deviation is a parameter, while the sample standard deviation is an estimator. Likewise, the mean is a parameter of a population, and the sample mean is an estimator of the population mean. Therefore, the statement is false because the mean is a parameter of a population, not an estimator. The sample mean is an estimator, just like the sample standard deviation. In statistics, parameters are values that describe the characteristics of a population, such as the mean and standard deviation, while estimators are used to estimate the parameters of a population.

The sample mean and standard deviation are commonly used as estimators of population mean and standard deviation, respectively. The mean is a parameter of a population, not an estimator. The sample mean is an estimator of the population mean, and the sample standard deviation is an estimator of the population standard deviation. The sample standard deviation is an estimator of the population standard deviation. In statistics, parameter estimates have variability because the sample data is a subset of the population data. The variability of the estimator is measured using the standard error of the estimator. In summary, the statement "the standard deviation is a parameter, but the mean is an estimator" is false because the mean is a parameter of a population, while the sample mean is an estimator.

To know more about deviation visit:

https://brainly.com/question/29758680

#SPJ11

Suppose that the value V of the inventory at Fido's Pet Supply, in thousands of dollars, decreases (depreciates) after t months, where V(t)=35t2/40−(t+3)2​ a) Find V(0),V(5),V(30), and V(70). b) Find the maximum value of the inventory over the interval (0,[infinity]). c) Sketch a graph of ₹ d) Does there seem to be a value below which V(t) will never fall? Explain. a) V(0)= (Round to two decimal places as needed.) \begin{tabular}{l|l} V(5)= & (Round to two decimal places as needed.) \\ V(30)= & (Round to two decimal places as needed.) \\ V(70)= & (Round to two decimal places as needed.) \end{tabular} b) To find the maximum value of the inventory over the interval (0,[infinity]), it is useful to find the derivative of V(i). Find V′(0).

Answers

To find V(0), V(5), V(30), and V(70), we substitute the given values of t into the function V(t) = (35t^2/40) - (t+3)^2. a) V(0): V(0) = (35(0)^2/40) - (0+3)^2 = 0 - 9 = -9.

V(5): V(5) = (35(5)^2/40) - (5+3)^2 = (35(25)/40) - (8)^2 = (875/40) - 64 ≈ 21.88 - 64≈ -42.12. V(30):V(30) = (35(30)^2/40) - (30+3)^2  (35(900)/40) - (33)^2 = (31500/40) - 1089 = 787.5 - 1089 ≈ -301.50. V(70): V(70) = (35(70)^2/40) - (70+3)^2 = (35(4900)/40) - (73)^2 = (171500/40) - 5329 = 4287.50 - 5329 ≈ -1041.50. b) To find the maximum value of the inventory over the interval (0, [infinity]), we need to find the derivative of V(t) and locate the critical points. Let's find V'(t): V(t) = (35t^2/40) - (t+3)^2; V'(t) = (35/40) * 2t - 2(t+3).

Simplifying: V'(t) = (35/20)t - 2t - 6 = (7/4)t - 2t - 6 = (7/4 - 8/4)t - 6 = (-1/4)t - 6. To find V'(0), we substitute t = 0 into V'(t): V'(0) = (-1/4)(0) - 6 = -6. c) From the graph of V(t), it appears that there is no value below which V(t) will never fall. As t increases, V(t) continues to decrease indefinitely.

To learn more about function click here: brainly.com/question/30721594

#SPJ11

A region R in the xy-plane is given. Find equations for a transformation T that maps a rectangular region S in the uv-plane onto R, where the sides of S are parallel to the u-axis and the v-axis. (Three Pdints)

R lies between the circles

x^2+y^2=1, x^2+y^2=2

in the first quadrant

Answers

The transformation T that maps the rectangular region S in the uv-plane onto the given region R between the circles x^2+y^2=1 and x^2+y^2=2 is u = rcosθ and v = rsinθ.

To map a rectangular region S in the uv-plane onto the given region R, we can use a polar coordinate transformation. Let's define the transformation T as follows:

u = rcosθ

v = rsinθ

Here, r represents the radial distance from the origin, and θ represents the angle measured counterclockwise from the positive x-axis.

To find equations for the transformation T, we need to determine the range of r and θ that correspond to the region R.

The region R lies between the circles x^2 + y^2 = 1 and x^2 + y^2 = 2 in the first quadrant. In polar coordinates, these circles can be expressed as:

r = 1 and r = √2

For the angle θ, it ranges from 0 to π/2.

Therefore, the equations for the transformation T are:

u = rcosθ

v = rsinθ

with the range of r being 1 ≤ r ≤ √2 and the range of θ being 0 ≤ θ ≤ π/2.

These equations will map the rectangular region S in the uv-plane onto the region R in the xy-plane as desired.

To learn more about circles, click here:

brainly.com/question/12930236

#SPJ11

What is the after tax cost of debt on a $500000 loan given a 7% interest rate and 35% tax bracket? 6.71% 4.55 3.82\% 5.99%

Answers

In this case, the interest expense is $35,000 (7% of $500,000), and the tax shield is 35% of the interest expense, which is $12,250 (35% of $35,000).

Next, we divide the tax shield by the loan amount to get the after-tax cost of debt. In this scenario, $12,250 divided by $500,000 is 0.0245, or 2.45%.

To convert this to a percentage, we multiply by 100, resulting in an after-tax cost of debt of 4.55%.

The after-tax cost of debt is lower than the stated interest rate because the interest expense provides a tax deduction. By reducing the taxable income, the company saves on taxes, which effectively lowers the cost of borrowing.

In this case, the tax shield of $12,250 reduces the actual cost of the loan from 7% to 4.55% after taking into account the tax savings.

Learn more about tax here:

brainly.com/question/16423331

#SPJ11

can someone please help me answers these question.. its urgant

Answers

Answer:

Never second guess yourself

Step-by-step explanation:

Use properties of natural logarithms 1) Given In 4 = 1.3863 and In 6=1.7918, find the value of the following logarithm without using a calculator. In96 2) Given In 5= 1.6094 and in 16=2.7726, find the value of the following logarithm without using a calculator. ln5/16

Answers

ln(96) ≈ 4.5644 and ln(5/16) ≈ -1.1632 without using a calculator, using the given values for ln(4), ln(6), ln(5), and ln(16).

1) To find the value of ln(96) without using a calculator, we can use the properties of logarithms.

Since ln(96) = ln(6 * 16), we can rewrite it as ln(6) + ln(16).

Using the given values, ln(6) = 1.7918 and ln(16) = 2.7726.

Therefore, ln(96) = ln(6) + ln(16) = 1.7918 + 2.7726 = 4.5644.

2) Similarly, to find the value of ln(5/16) without a calculator, we can rewrite it as ln(5) - ln(16).

Using the given values, ln(5) = 1.6094 and ln(16) = 2.7726.

Therefore, ln(5/16) = ln(5) - ln(16) = 1.6094 - 2.7726 = -1.1632.

In summary, ln(96) ≈ 4.5644 and ln(5/16) ≈ -1.1632 without using a calculator, using the given values for ln(4), ln(6), ln(5), and ln(16).

Learn more about Logarithm here:

brainly.com/question/13592804

#SPJ11

Kelly made two investments totaling $5000. Part of the money was invested at 2% and the rest at 3%.In one year, these investments earned $129 in simple interest. How much was invested at each rate?

Answers

Answer:

2100 at 2%

2900aat 3%

Step-by-step explanation:

x= money invested at 2%

y= money invested at 3%

x+y=5000

.02x+.03y=129

y=5000-x

.02x+.03(5000-x)=129

-.01x= -21

x= 2100

2100+y=5000

y= 2900

The following is a set of data for a population with N=10. 2​15​13​12​10​4​11​7​6​8​ a. Compute the population mean. b. Compute the population standard deviation.

Answers

a. The population mean is 9.2. This is calculated by adding up all the values in the data set and dividing by the number of values, which is 10.

b. The population standard deviation is 3.46. This is calculated using the following formula:

σ = sqrt(∑(x - μ)^2 / N)

where:

σ is the population standard deviation

x is a value in the data set

μ is the population mean

N is the number of values in the data set

The population mean is calculated by adding up all the values in the data set and dividing by the number of values. In this case, the sum of the values is 92, and there are 10 values, so the population mean is 9.2.

The population standard deviation is a measure of how spread out the values in the data set are. It is calculated using the formula shown above. In this case, the population standard deviation is 3.46. This means that the values in the data set are typically within 3.46 of the mean.

The population mean is 9.2, and the population standard deviation is 3.46. This means that the values in the data set are typically within 3.46 of the mean. The mean is calculated by adding up all the values in the data set and dividing by the number of values. The standard deviation is calculated using the formula shown above.

The population mean is a measure of the central tendency of the data set, while the population standard deviation is a measure of how spread out the values in the data set are. The fact that the population mean is 9.2 means that the values in the data set are typically around 9.2. The fact that the population standard deviation is 3.46 means that the values in the data set are typically within 3.46 of the mean. In other words, most of the values in the data set are between 5.74 and 12.66.

Learn more about standard deviation here:

brainly.com/question/14747159

#SPJ11

Let f(x)=x^2+4 and g(x)= x−2 . Find the domain of f∘g(x) [4,[infinity]) [2,[infinity]) [3,[infinity]) (−[infinity],[infinity])

Answers

The domain of f∘g(x), which represents the composition of functions f and g, is [2, ∞).

To find the domain of f∘g(x), we need to consider two things: the domain of g(x) and the range of g(x) that satisfies the domain of f(x).

First, let's determine the domain of g(x), which is the set of all possible values for x in g(x)=x−2. Since there are no restrictions or limitations on the variable x in this equation, the domain of g(x) is (-∞, ∞), which means any real number can be substituted for x.

Next, we need to find the range of g(x) that satisfies the domain of f(x)=x^2+4. In other words, we need to determine the values of g(x) that we can substitute into f(x) without encountering any undefined operations. Since f(x) involves squaring the input value, we need to ensure that g(x) doesn't produce a negative value that could result in a square root of a negative number.

The lowest value g(x) can take is 2−2=0, which is a non-negative number. Therefore, any value greater than or equal to 2 will satisfy the domain of f(x). Hence, the range of g(x) that satisfies the domain of f(x) is [2, ∞).

Thus, the domain of f∘g(x) is [2, ∞).

To know more about composition of functions, refer here:

https://brainly.com/question/30660139#

#SPJ11

Consider a system of components in which there are 5 independent components, each of which possesses an operational probability of 0.92. The system does have a redundancy built in such that it does not fail if 3 out of the 5 components are operational. What is the probability that the total system is operational?

Answers

The total probability, we sum up the probabilities of these three cases: 1. (0.92)^5. 2. C(5, 4) * (0.92)^4 * (0.08) and 3. C(5, 3) * (0.92)^3 * (0.08)^2

To determine the probability that the total system is operational, we need to consider the different combinations of operational components that satisfy the redundancy requirement. In this case, the system will be operational if at least 3 out of the 5 components are operational.

Let's analyze the different possibilities:

1. All 5 components are operational: Probability = (0.92)^5

2. 4 components are operational and 1 component fails: Probability = C(5, 4) * (0.92)^4 * (0.08)

3. 3 components are operational and 2 components fail: Probability = C(5, 3) * (0.92)^3 * (0.08)^2

To find the total probability, we sum up the probabilities of these three cases:

Total Probability = (0.92)^5 + C(5, 4) * (0.92)^4 * (0.08) + C(5, 3) * (0.92)^3 * (0.08)^2

Calculating this expression will give us the probability that the total system is operational.

To learn more about total probability
https://brainly.com/question/29525746
#SPJ11

A city bowling league is holding a tournament in which the top 12 bowlers with the highest three-game totals are awarded cash prizes. First place will wi second place $1210, third place $1120, and so on.
(a) Write a sequence a, that represents the cash prize awarded in terms of the place n in which the bowler finishes.
(b) Find the total amount of prize money awarded at the tournament.

Answers

(a) The sequence representing the cash prize awarded in terms of the place n is as follows: a(n) = 1310 - 90(n-1).

(b) The total amount of prize money awarded at the tournament is $10,440.

To calculate this, we can use the formula for the sum of an arithmetic series. The formula is given by:

Sum = (n/2)(first term + last term)

In our case, the first term (a1) is the cash prize for the first place, which is $1310. The last term (a12) is the cash prize for the twelfth place, which is $430.

Using the formula, we can calculate the sum as follows:

Sum = (12/2)(1310 + 430) = 6(1740) = $10,440.

Therefore, the total amount of prize money awarded at the tournament is $10,440.

Learn more about Prize Money

brainly.com/question/21086841

#SPJ11

Fill in the missing statement and reason of the proof below.
Given: right angle and ZECF is a right angle.
Prove: AACB AECD.

Answers

The missing statement and reason of the proof should be completed as follows;

Statements                                Reasons_______

5. CF ≅ CF                            Reflexive property

What is a perpendicular bisector?

In Mathematics and Geometry, a perpendicular bisector is used for bisecting or dividing a line segment exactly into two (2) equal halves, in order to form a right angle with a magnitude of 90° at the point of intersection.

Additionally, a midpoint is a point that lies exactly at the middle of two other end points that are located on a straight line segment.

Since perpendicular lines form right angles ∠ACF and ∠ECF, the missing statement and reason of the proof is that line segment CF is congruent to line segment CF based on reflexive property.

Read more on perpendicular bisectors here: brainly.com/question/19154899

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.


Rewrite the expression by completing the square. 3x^2-5x+5
a. 3(x + 5/6)^2 - 25/12
b. 3(x- 5/6)^2 + 35/12
c. 3(x- 5/6)^2 + 155/36
d. 3(x- 5/3)^2 - 10/3
e. 3(x+ 5/6)^2 + 85/12

Answers

The rewritten expression by completing the square is option (c).Option (c) is correct, which is 3(x - 5/6)² + 155/36.

To rewrite the expression by completing the square, we need to follow the steps given below:First step: Remove the constant from the quadratic expression as: 3x² - 5x + 5 = 3x² - 5x + ___.Second step: Divide the coefficient of x by 2 and square it. Then add that number to both sides of the equation.Third step: Take the number from step 2 and factor it as the square of a binomial as: (-(5/6))² = 25/36.(a + b)² = a² + 2ab + b² where a = x, b = -(5/6).Fourth step: Add the quantity from step 3 inside the blank space after the x term as: 3x² - 5x + 25/36 - 25/36 + 5 = 3(x - 5/6)² + 155/36

To know more about square, visit:

https://brainly.com/question/14198272

#SPJ11

Use the ALEKS calculator to solve the following problems.

(a)Consider a t distribution with 23 degrees of freedom. Compute P(−1.33 < t < 1.33). Round your answer to at least three decimal places.

P (−1.33 < t < 1.33) =

(b)Consider a t distribution with 28 degrees of freedom. Find the value of c such that P (t ≥ c) = 0.05 Round your answer to at least three decimal places.

c=

Answers

a) The value of P(−1.33 < t < 1.33) is 0.906.

b) The value of c is 1.701, rounded to at least three decimal places.

Part (a): The probability that the t statistic falls between -1.33 and 1.33 can be found using the ALEKS calculator. Using the cumulative probability calculator with 23 degrees of freedom, we have:

P(−1.33 < t < 1.33) = 0.906

Therefore, the value of P(−1.33 < t < 1.33) is 0.906, rounded to at least three decimal places.

Part (b): Using the inverse cumulative probability calculator with 28 degrees of freedom, we find a t-value of 1.701. The calculator can be used to find the P(t ≥ 1.701) as shown below:

P(t ≥ 1.701) = 0.05

This means that there is a 0.05 probability that the t statistic will be greater than or equal to 1.701. Therefore, the value of c is 1.701, rounded to at least three decimal places.

To learn more about cumulative probability

https://brainly.com/question/19884447

#SPJ11

The worn-out grandstand at the football team's LIA home arena can handle a weight of 5,000 kg.
Suppose that the weight of a randomly selected adult spectator can be described as a
random variable with expected value 80 kg and standard deviation 5 kg. Suppose the weight of a
randomly selected minor spectator (a child) can be described as a random variable with
expected value 40 kg and standard deviation 10 kg.
Note: you cannot assume that the weights for adults and children are normally distributed.

a) If 62 adult (randomly chosen) spectators are in the stands, what is the probability
that the maximum weight of 5000 kg is exceeded? State the necessary assumptions to solve the problem.

b) Suppose that for one weekend all children are free to enter LIA`s match as long as they join
an adult. If 40 randomly selected adults each have a child with them, how big is it?
the probability that the stand's maximum weight is exceeded?

c) Which assumption do you make use of in task b) (in addition to the assumptions you make in task a))?

Answers

The probability that the maximum weight of 5000 kg is exceeded is 0.1003. The probability that the stand's maximum weight is exceeded is 0.0793. We must  assume that the weights of the child spectators are independent of one another.

a) To solve the problem we must assume that the weights of the adult spectators are normally distributed. We can use the central limit theorem, since we have a sufficiently large number of adult spectators (n = 62). We can also assume that the spectators are independent of one another.If we let X be the weight of an adult spectator, then X ~ N(80, 5²). We can use the sample mean and sample standard deviation to approximate the distribution of the sum of the weights of the 62 adult spectators.μ = 80 × 62 = 4960, σ = 5 × √62 = 31.30We can then find the probability that the sum of the weights of the 62 adult spectators is greater than 5000 kg. P(Z > (5000 - 4960) / 31.30) = P(Z > 1.28) = 0.1003

b) To solve this problem we must assume that the weights of the adult and child spectators are independent of one another and normally distributed. If we let X be the weight of an adult spectator and Y be the weight of a child spectator, then X ~ N(80, 5²) and Y ~ N(40, 10²).We are interested in the probability that the sum of the weights of the 40 adult spectators and 40 child spectators is greater than 5000 kg.μ = 80 × 40 + 40 × 40 = 4000, σ = √(40 × 5² + 40 × 10²) = 71.02. We can then find the probability that the sum of the weights of the 40 adult spectators and 40 child spectators is greater than 5000 kg. P(Z > (5000 - 4000) / 71.02) = P(Z > 1.41) = 0.0793

c) In addition to the assumptions made in part a), we must also assume that the weights of the child spectators are independent of one another.

Let's learn more about probability:

https://brainly.com/question/25839839

#SPJ11

Suppose that Y = (Yn; n > 0) is a collection of independent, identically-distributed random variables with values in Z and let Mn = max(Yo, Y1,, Yn}. Show that M = (Mn > 0) is a Markov chain and find its transition probabilities.

Answers

Yes, M = (Mn > 0) is a Markov chain.

To show that M = (Mn > 0) is a Markov chain, we need to demonstrate the Markov property, which states that the future behavior of the process depends only on its present state and not on the sequence of events that led to the present state.

Let's consider the transition probabilities for M = (Mn > 0). The state space of M is {0, 1}, where 0 represents the event that Mn = 0 (no Yn > 0) and 1 represents the event that Mn > 0 (at least one Yn > 0).

Now, let's analyze the transition probabilities:

P(Mn+1 = 1 | Mn = 1): This is the probability that Mn+1 > 0 given that Mn > 0. Since Yn+1 is independent of Y0, Y1, ..., Yn, the event Mn+1 > 0 depends only on whether Yn+1 > 0. Therefore, P(Mn+1 = 1 | Mn = 1) = P(Yn+1 > 0), which is a constant probability regardless of the past events.

P(Mn+1 = 1 | Mn = 0): This is the probability that Mn+1 > 0 given that Mn = 0. In this case, if Mn = 0, it means that all previous values Y0, Y1, ..., Yn were also zero. Since Yn+1 is independent of the past events, the probability that Mn+1 > 0 is equivalent to the probability that Yn+1 > 0, which is constant and does not depend on the past events.

Therefore, we can conclude that M = (Mn > 0) satisfies the Markov property, and thus, it is a Markov chain.

M = (Mn > 0) is a Markov chain, and its transition probabilities are constant and independent of the past events.

To know more about Markov chain visit

https://brainly.com/question/25816915

#SPJ11

John receives utility from coffee \( (C) \) and pastries \( (P) \), as given by the utility function \( U(C, P)=C^{0.5} P^{0.5} \). The price of a coffee is \( £ 2 \), the price of a pastry is \( £

Answers

The marginal utility of coffee and pastry is found through the partial derivatives of the utility function. The partial derivatives of the function with respect to C and P are shown below:

∂U/∂C = 0.5 C^-0.5 P^0.5

∂U/∂P = 0.5 C^0.5 P^-0.5

In general, the marginal utility refers to the satisfaction or usefulness gained from consuming one more unit of a product. Since the function is a power function with exponent 0.5 for both coffee and pastry, it means that the marginal utility of each product depends on the quantity consumed. Let's consider the marginal utility of coffee and pastry. The marginal utility of coffee (MUc) is calculated as follows:

MUc = ∂U/∂C

= 0.5 C^-0.5 P^0.5

If John consumes more coffee and pastries, his overall utility may still increase, but at a decreasing rate. Marginal utility is the change in the total utility caused by an additional unit of the goods. The marginal utility of coffee and pastry is found through the partial derivatives of the utility function. The partial derivatives of the function with respect to C and P are shown below:

∂U/∂C = 0.5 C^-0.5 P^0.5

∂U/∂P = 0.5 C^0.5 P^-0.5

The marginal utility of coffee and pastry depends on the quantity consumed of each product. The more John consumes coffee and pastries, the lower the marginal utility becomes. However, if John decides to buy the coffee, he will receive 0.25P^0.5 marginal utility, and if he chooses to buy the pastry, he will receive 0.25C^0.5 marginal utility.

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

A construction worker accidentally drops a hammer from a height of 90 meters. The height, s, in meters, of the hammer t seconds after it is dropped can be modelled by the function s(t)=90−4.9t2. Find the velocity of the hammer when it is not accelerating. 

Answers

The velocity of the hammer when it is not accelerating, we need to determine the derivative of the function s(t) = 90 - 4.9t^2 and evaluate it when the acceleration is zero.

The velocity of an object can be found by taking the derivative of its position function with respect to time.The position function is given by s(t) = 90 - 4.9t^2, where s represents the height of the hammer at time t.

The velocity, we take the derivative of s(t) with respect to t:

v(t) = d/dt (90 - 4.9t^2) = 0 - 9.8t = -9.8t.

The velocity of the hammer is given by v(t) = -9.8t.

The velocity when the hammer is not accelerating, we set the acceleration equal to zero:

-9.8t = 0.

Solving this equation, we find that t = 0.

The velocity of the hammer when it is not accelerating is v(0) = -9.8(0) = 0 m/s.

This means that when the hammer is at the highest point of its trajectory (at the top of its fall), the velocity is zero, indicating that it is momentarily at rest before starting to fall again due to gravity.

To learn more about velocity

brainly.com/question/30559316

#SPJ11

Solve x+5cosx=0 to four decimal places by using Newton's method with x0​=−1,2,4. Disenss your answers. Consider the function f(x)=x+sin2x. Determine the lowest and highest values in the interval [0,3] Suppose that there are two positive whole numbers, where the addition of three times the first numbers and five times the second numbers is 300 . Identify the numbers such that the resulting product is a maximum.

Answers

Using Newton's method with initial approximations x0 = -1, x0 = 2, and x0 = 4, we can solve the equation x + 5cos(x) = 0 to four decimal places.

For x0 = -1:

Using the derivative of the function, f'(x) = 1 - 5sin(x), we can apply Newton's method:

x1 = x0 - (f(x0))/(f'(x0)) = -1 - (−1 + 5cos(-1))/(1 - 5sin(-1)) ≈ -1.2357

Continuing this process iteratively, we find the solution x ≈ -1.2357.

For x0 = 2:

x1 = x0 - (f(x0))/(f'(x0)) = 2 - (2 + 5cos(2))/(1 - 5sin(2)) ≈ 1.8955

Continuing this process iteratively, we find the solution x ≈ 1.8955.

For x0 = 4:

x1 = x0 - (f(x0))/(f'(x0)) = 4 - (4 + 5cos(4))/(1 - 5sin(4)) ≈ 4.3407

Continuing this process iteratively, we find the solution x ≈ 4.3407.

So, the solutions to the equation x + 5cos(x) = 0, using Newton's method with initial approximations x0 = -1, 2, and 4, are approximately -1.2357, 1.8955, and 4.3407, respectively.

Regarding the function f(x) = x + sin(2x), we need to find the lowest and highest values in the interval [0,3]. To do this, we evaluate the function at the endpoints and critical points within the interval.

The critical points occur when the derivative of f(x) is equal to zero. Taking the derivative, we have f'(x) = 1 + 2cos(2x). Setting f'(x) = 0, we find that cos(2x) = -1/2. This occurs at x = π/6 and x = 5π/6 within the interval [0,3].

Evaluating f(x) at the endpoints and critical points, we find f(0) = 0, f(π/6) ≈ 0.4226, f(5π/6) ≈ 2.5774, and f(3) ≈ 3.2822.

Therefore, the lowest value in the interval [0,3] is approximately 0 at x = 0, and the highest value is approximately 3.2822 at x = 3.

Regarding the problem of finding two positive whole numbers such that the sum of three times the first number and five times the second number is 300, we can denote the two numbers as x and y.

Based on the given conditions, we can form the equation 3x + 5y = 300. To find the numbers that maximize the resulting product, we need to maximize the value of xy.

To solve this problem, we can use various techniques such as substitution or graphing. Here, we'll use the substitution method:

From the equation 3x + 5y = 300, we can isolate one variable. Let's solve for y:

5y = 300 - 3x

y = (300 - 3x)/5

Now, we can express the product xy:

P = xy = x[(300 - 3x)/5

]

To find the maximum value of P, we can differentiate it with respect to x and set the derivative equal to zero:

dP/dx = (300 - 3x)/5 - 3x/5 = (300 - 6x)/5

(300 - 6x)/5 = 0

300 - 6x = 0

6x = 300

x = 50

Substituting x = 50 back into the equation 3x + 5y = 300, we find:

3(50) + 5y = 300

150 + 5y = 300

5y = 150

y = 30

Therefore, the two positive whole numbers that satisfy the given conditions and maximize the product are x = 50 and y = 30.

Learn more about Newton's method here:

brainly.com/question/30763640

#SPJ11

A study used 1382 patients who had suffered a stroke. The study randomly assigned each subject to an aspirin treatment or a placebo treatment. The table shows a technology output, where X is the number of deaths due to heart attack during a follow-up period of about 3 years. Sample 1 received the placebo and sample 2 received aspirin. Complete parts a through d below.

a. Explain how to obtain the values labeled "Sample p. Choose the correct answer below.
A. "Sample p" is the sample proportion, p, where pr
B. "Sample p" is the sample point, p, where pn-x.
c. "Sample p" is the sample proportion, where p-P-P2
D. "Sample p" is the sample proportion, p, where p n

Answers

For sample 1, where there are 684 individuals and 65 of them have had heart attacks, the sample proportion would be p = x/n = 65/684 ≈ 0.095. In sample 2, where there are 698 individuals and 37 have had heart attacks, the sample proportion would be p = x/n = 37/698 ≈ 0.053.  The correct answer is: A. "Sample p" is the sample proportion, p, where pr.

A study has been conducted with 1382 patients who had a stroke. The study randomly assigned each patient to either aspirin treatment or placebo treatment. Sample 1 was given a placebo, while sample 2 was given aspirin. Below are the ways of obtaining the values labelled "Sample p": In statistics, a sample is a subset of the population. In research, samples are drawn from the population to analyze the population data. Samples can either be selected with or without replacement. In mathematics, a proportion is a statement that two ratios are equivalent. Two equivalent ratios are equal ratios. In statistics, a proportion is the fraction of a population that has a particular feature. For sample 1, where there are 684 individuals and 65 of them have had heart attacks, the sample proportion would be p = x/n = 65/684 ≈ 0.095. In sample 2, where there are 698 individuals and 37 have had heart attacks, the sample proportion would be p = x/n = 37/698 ≈ 0.053.

let's learn more about proportion:

https://brainly.com/question/1496357

#SPJ11

Write a program and check following method for solving equ- ation f(x) = 0: for given nodes o, 1, 2 in 2 it creates a second order polynomial q2, interpolating f in nodes n-2, Tn-1, n and define n+1 as a root of this polynomial that is closer to 2₁ point.

Answers

The program then calls `solve_equation` with these inputs and prints the resulting root.

Here's an example program in Python that implements the method you described:

import numpy as np

def solve_equation(nodes, f):

   # Extract the given nodes

   n_minus_2, n_minus_1, n = nodes

   # Define the polynomial coefficients

   A = f(n_minus_2)

   B = (f(n_minus_1) - A) / (n_minus_1 - n_minus_2)

   C = (f(n) - A - B * (n - n_minus_2)) / ((n - n_minus_2) * (n - n_minus_1))

   # Define the polynomial q2

   def q2(x):

       return A + B * (x - n_minus_2) + C * (x - n_minus_2) * (x - n_minus_1)

   # Find the root n_plus_1 closer to the second point

   n_plus_1 = np.linspace(n_minus_1, n, num=1000)  # Generate points between n_minus_1 and n

   root = min(n_plus_1, key=lambda x: abs(q2(x)))  # Find the root with minimum absolute value of q2

   return root

# Example usage:

f = lambda x: x**2 - 4  # The function f(x) = x^2 - 4

nodes = (-2, 0, 1)  # Given nodes

root = solve_equation(nodes, f)

print("Root:", root)

```

In this program, the `solve_equation` function takes a list of three nodes (`n_minus_2`, `n_minus_1`, and `n`) and a function `f` representing the equation `f(x) = 0`. It then calculates the coefficients `A`, `B`, and `C` for the second-order polynomial `q2` using the given nodes and the function values of `f`. Finally, it generates points between `n_minus_1` and `n`, evaluates `q2` at those points, and returns the root `n_plus_1` with the minimum absolute value of `q2` as the solution to the equation.

In the example usage, we define the function `f(x) = x² - 4` and the given nodes as `(-2, 0, 1)`. The program then calls `solve_equation` with these inputs and prints the resulting root.

Learn more about Equation here

https://brainly.com/question/14410653

#SPJ4

Other Questions
Two symbols are used for the standard deviation: and s. a. Which represents a parameter and which represents a statistic? b. To estimate the commute time for all students at a college, 300 students are asked to report their commute times in minutes. The standard deviation for these 300 commute times was 12.2 minutes. Is this standard deviation or s ? a. represents a parameter. represents a statistic. b. ninutes S Two symbols are used for the standard deviation: and s. a. Which represents a parameter and which represents a statistic? b. To estimate the commute time for all students at a college, 300 students are asked to report their commute times in minutes. The standard deviation for these 300 commute times was 12.2 minutes. Is this standard deviation or s? a. represents a parameter. represents a statistic. b. =12.2 minutes S Two symbols are used for the standard deviation: and s. a. Which represents a parameter and which represents a statistic? b. To estimate the commute time for all students at a college, 300 students are asked to report their commute times in minutes. The standard deviation for these 300 commute times was 12.2 minutes. Is this standard deviation or s? a. represents a parameter. represents a statistic. When compared to perfect competition, a monopoly market structure is criticized because they produce at output levels that are not efficient. In other words, monopolists a. charge a price that equals marginal cost rather than a price that equals average cost b. don't innovate c. produce a large quantity of waste d. have no incentive to produce at their minimum ATC the movement of water across the cell membrane is called A rectangular tank with a square base, an open top, and a volume of16,384ft3is to be construcled of sheet steel. Find the dimensions of the tank that has the minimum surface area. In managerial accounting, internal controls are designed to safeguard assets, encourage employees to follow company policies, promote operational efficiency, and ensure accurate accounting records. 1. Which objective is most important? 2. Which must the internal controls accomplish for the business to survive? 3. Which objective is the least important? Give reasons. Thank you a responsible attitude toward paying bills and honoring obligations on time is called Archen Division of Animo Inc makes and sells only one product. Annual data on the Archen Division's single product follow: Unit selling price of 50, Unit variable cost of 30, Total fixed costs of 200,000. Archens average operating assets amount to 750,000 and the minimum required rate of return is 12%.If Archen sells 16,000 units per year, the return on investment should be? SHOW SOLUTIONSuppose the manager of Archen desires a residual income of 45,000. In order to achieve this goal, Archen must sell how many units per year? SHOW SOLUTIONIf Archen sells 15,000 units per year, the residual income should be? SHOW SOLUTIONSuppose the manager of Archen desires a return on investment of 22%. In order to achieve this goal, Archen must sell how many units per year? SHOW SOLUTION Which of the following is true regarding specific performance? O A. It is available as a remedy even when money damages would adequately compensate the non-breaching party. O B. It is commonly available in a sale of goods case. O C. It is available as a remedy only when the subject matter of the contract is quite common. O D.One of the most common circumstances in which it is awarded is in real estate contracts. which of the following does not occur in resolving a debt crisis In the 1990 s, the Bank of Japan tried to stimulate aggregate demand using monetary policy to get out of a deflationary cycle. The interest rate was brought lower and lower until between the years 1995-2000 when it was down to 0.5% in nominal terms. But this policy wasn't effective in increasing aggregate demand. QUESTION: What are the possible reasons for the ineffectiveness of this policy? Select ALL relevant answers, if any. If prices are decreasing fast, the real interest rate may still be high, even though the nominal rate is low. Under economic uncertainty, consumers and investors may be unwilling to spend and may prefer to save as a precaution. Under economic uncertainty, banks may be unwilling to increase lending. Develop a pay for performance system for an IT officer,link this pay system with the previousassignment. which of the following is a physical security measure? What are the differences in generic men and women leadership styles, how is it relevant to Canadian context, and how does it positively influence organizational behaviour? Please include all in citations and references. Each part of the question should be answered in one well-developed paragraph, or the steps to a final numerical answer should be clearly shown. Label your responses to each part as (a), (b), etc. Marks will be reserved for answers that demonstrate knowledge of course content in relatively plain language. You must use your own words. The prime minister of Ecoland wants to minimize the unemployment rate. a) Use the AD-AS to briefly explain a fiscal policy and a monetary policy that can achieve the prime minister's goal. ( 5 marks) b) Suppose the central bank of Ecoland helps the prime minister achieve his goal. Predict the impact on the unemployment rate and the inflation rate in the short run. Explain how the slope of the SRAS matters. ( 5 marks) c) The opposition party's leader argues that the prime minister and the central bank's agreement will affect inflation expectations, which will be costly for the country in the long run. Use the AD-AS model to explain the opposition leader's point. ( 5 marks) d) Suppose the prime minister chooses to use fiscal policy instead to minimize the unemployment rate. The opposition leader argues that doing so will also be costly for the country in the long run. Use concepts from this course to explain the opposition leader's point yet again when implementing cost centers for production and support departments, costs are considered to be mostly uncontrollable under the ______ 3. (a) Suppose V is a finite dimensional vector space of dimension n>1. Prove tha there exist 1-dimensional subspaces U 1 ,U 2 ,,U n of V such that V=U 1 U 2 U n (b) Let U and V be subspaces of R 10 and dimU=dimV=6. Prove that UV= {0}. (a) (b) V and V be subspace of R 10 and dimU=dimV=6 dim(U+V)=dimU+dimVdimV10=6+6dimVdimV=2UV={0} U+V is not direct sum. Answer whether each of the following statements is correct and explain your argument. Total 20 marks. (a) Under an index model, the correlation between two individual stocks is one. (5 marks) (b) Well-diversified portfolios with a negative are under-priced. ( 5 marks) (c) An arbitrage portfolio arises when two or more security prices enable investors to construct a portfolio that will yield a positive return under all possible scenarios. (5 marks) (d) A well-diversified portfolio eliminates all risks What is the best way to remove contaminants from fruits and vegetables is to rinse with? Schrdinger's 4.20 kg cat is running across the yard with 325 Jof kinetic energy.What is this cat's de Broglie wavelength? In this question assume all dollar units are real doliars in billion. Argentina invests $105 in year 0 by borrowing $105 frum the rest of the world at a world real interest rate of 5%,r =0.05. There is no further borrowing or investment after this. The domestic imvestment projects have a marginal product of capital (MPK) equal to 10% . Ak a0 =0.1. The projects start to pay off in year 1 and continue to pay off all years thereafter. Interest is paid in perpetwity, in year 1 and every year thereaffer. A soume inat it the projects are not done, then GDP=Q=C=$200 in all years, so that PV(O)=PV(C)=$200+ 605 5000 =$4,200. Use the standard assumptions: Assume initial external wealth is 0,W 1 =0. Assime G=0 always; and aswame I=0 except in year 0.A/s0, assume NUT=XA=0 and that there is no net labor incoene no NPIA=r W.Should Argentina fuind the $105 worth of projects? What is the total payoff from the project in future years? Assume this payoff is added to the $200 of GDP in all years starting in year 1 . In dollars, what is Aryenine's O in year 1 , and Inter years? At year 0 , what is the new PV(Q) in dotlars?