whats the median, range, mode, IQR, minimum and maximum for 7, 8, 9, 9, 11, 11, 12, 15, 19

Answers

Answer 1

The mean, median, mode and IQR of the data are 11.2, 11, (9, 11) and 5 respectively.

What is measures of central tendencies

A measure of central tendency is a single value that attempts to describe a set of data by identifying the central position within that set of data. As such, measures of central tendency are sometimes called measures of central location. They are also classed as summary statistics. The mean (often called the average) is most likely the measure of central tendency that you are most familiar with, but there are others, such as the median and the mode.

1. The mean of the data;

mean = 7 + 8 + 9 + 9 + 11 + 11 + 12 + 15 + 19 / 9 = 42/10 = 11.2

2. The median of the data = 11

3. The mode of the data is = 9, 11

4. The range of the data = 12

5. The minimum of the data = 7

6. The maximum of the data - 19

7. The IQR = 5

Learn more on measures of central tendency here;

https://brainly.com/question/28180169

#SPJ1


Related Questions

help! geometry ty

ff

f
fff
f

f
ff

Answers

The distance between rope 1 and rope 2 is 15.37 feet.

Given that, the hot air balloon is 21 feet off the ground.

We know that, tanθ=Opposite/Adjacent

tan45°=21/a

1=21/a

a=21 feet

tan30°=21/x

0.57735=21/x

x=21/0.57735

x=36.37 feet

The distance between rope 1 and rope 2 = 36.37-21

= 15.37 feet

Therefore, the distance between rope 1 and rope 2 is 15.37 feet.

Learn more about the trigonometric ratios here:

brainly.com/question/25122825.

#SPJ1

6 Marius and his dad build a lamp in the shape of a triangular prism,

open on the top and bottom. How many square inches of canvas

did Marius and his dad use to make the lamp?

Write your answer in the space provided.

in. ²

22 in.

18 in.

18 in.

18 in.

1. 75 in.

20. 1 in.


PLS HELP

Answers

Rafe and Ashley used approximately 5353.2 square inches of canvas to make the lamp.

Let's call the length of the base rectangle "L" and the width "W." From the picture, we can see that the base rectangle measures 18 inches by 18 inches. Therefore, the area of one base rectangle is given by:

Area of a rectangle = Length × Width

Area of one base rectangle = L × W = 18 in × 18 in = 324 square inches

Since there are two identical base rectangles, the combined area of both rectangles is:

Total area of base rectangles = 2 × Area of one base rectangle = 2 × 324 square inches = 648 square inches

Let's calculate the perimeter of the base rectangle first:

Perimeter of a rectangle = 2 × (Length + Width)

Perimeter of the base rectangle = 2 × (18 in + 18 in) = 2 × 36 in = 72 inches

Now, the height of the triangular prism is given as 20.1 inches. Therefore, the area of each lateral face rectangle is given by:

Area of a rectangle = Length × Width

Area of one lateral face rectangle = Perimeter of base rectangle × Height = 72 in × 20.1 in = 1447.2 square inches

Since there are three identical lateral face rectangles, the combined area of all three rectangles is:

Total area of lateral face rectangles = 3 × Area of one lateral face rectangle = 3 × 1447.2 square inches = 4341.6 square inches

The height of the triangular face is the same as the height of the prism, given as 20.1 inches. Therefore, the area of each triangular face is given by:

Area of a triangle = (Base × Height) / 2

Area of one triangular face = (18 in × 20.1 in) / 2 = 181.8 square inches

Since there are two identical triangular faces, the combined area of both triangles is:

Total area of triangular faces = 2 × Area of one triangular face = 2 × 181.8 square inches = 363.6 square inches

Now, to find the total surface area of the lamp, we sum up the areas of all the faces:

Total surface area = Total area of base rectangles + Total area of lateral face rectangles + Total area of triangular faces

Total surface area = 648 square inches + 4341.6 square inches + 363.6 square inches

Total surface area = 5353.2 square inches

To know more about area here

https://brainly.com/question/14994710

#SPJ4

Complete Question:

Marius and his dad build a lamp in the shape of a triangular prism, open on the top and bottom. How many square inches of canvas did Marius and his dad use to make the lamp?

Factor
4x^2+100x+255=0

Answers

The factored form of the quadratic equation 4x²+ 100x + 255 = 0 is (2x + 17)(2x + 15) = 0.

We have the equation:

4x² + 100x + 255 = 0

Now, factorizing

4x² + 34x + 30x + 255 = 0

Now, we group the terms and factor by grouping:

(4x² + 34x) + (30x + 255) = 0

2x(2x + 17) + 15(2x + 17) = 0

(2x + 17)(2x + 15) = 0

Now, we set each factor equal to zero and solve for x:

2x + 17 = 0 --> 2x = -17 --> x = -17/2

2x + 15 = 0 --> 2x = -15 --> x = -15/2

The factored form of the quadratic equation 4x²+ 100x + 255 = 0 is (2x + 17)(2x + 15) = 0 and the solutions for x are x = -17/2 and x = -15/2.

Learn more about Equation here:

https://brainly.com/question/29657983

#SPJ1

Which of the following sets of parametric equations represent the curve y=x3, where x∈R?
Choose all correct choicesa)x=sin(t),y=cos(t),t∈R
b)x=t3,y=t9,t∈R
c)x=−t,y=−t3,t∈R
d)x=t9,y=t3,t∈R
e)x=t,y=t3,t∈R
f)x=t+1,y=(t+1)3,t∈R
g)x=(t+1)3,y=t+1,t∈R
h)x=sin(t),y=cos(t),0≤t≤2π

Answers

The correct choices that represent the curve y = x^3, where x ∈ R, are: b) x = t^3, y = t^9, t ∈ R, c) x = -t, y = -t^3, t ∈ R, e) x = t, y = t^3, t ∈ R. These choices satisfy the parametric equation y = x^3, where x is any real number.

Let's examine each choice to see if they satisfy the equation y = x^3:

b) x = t^3, y = t^9, t ∈ R:

Substituting x = t^3 and y = t^9 into the equation y = x^3:

t^9 = (t^3)^3 = t^9

This choice satisfies the equation, as y is equal to x^3.

c) x = -t, y = -t^3, t ∈ R:

Substituting x = -t and y = -t^3 into the equation y = x^3:

-(t^3) = (-t)^3 = -t^3

This choice satisfies the equation, as y is equal to x^3.

e) x = t, y = t^3, t ∈ R:

Substituting x = t and y = t^3 into the equation y = x^3:

t^3 = (t)^3 = t^3

This choice satisfies the equation, as y is equal to x^3.

In all three choices, when we substitute the given values of x and y into the equation y = x^3, we obtain an equivalent equation, demonstrating that these parametric equations satisfy the curve y = x^3 for any real value of x. Therefore, choices b), c), and e) are correct representations of the curve.

To know more about parametric equation,

https://brainly.com/question/31982873

#SPJ11

determine the total and lateral surface area of the square pyramid
the lengths=12.8 cm 12 cm and 9 cm

Answers

The total surface area of the square pyramid is 394.24 cm², and the lateral surface area is 230.4 cm².

To determine the total and lateral surface area of a square pyramid, we need to use the given measurements: the lengths of the base and the height of the pyramid.

In this case, the base of the square pyramid has sides of length 12.8 cm, and the height is 9 cm.

To calculate the lateral surface area of a square pyramid, we need to find the area of the four triangular faces that surround the pyramid.

Each triangular face is an isosceles triangle with two equal sides and a height equal to the height of the pyramid.

The area of an isosceles triangle can be calculated using the formula: area = 0.5 [tex]\times[/tex]  base [tex]\times[/tex] height.

Since the base of each triangular face is equal to the length of the square base (12.8 cm), and the height is equal to the height of the pyramid (9 cm), we can calculate the area of one triangular face as follows:

Area of one triangular face [tex]= 0.5 \times 12.8 cm \times 9 cm = 57.6 cm ^{2} .[/tex]

Since there are four triangular faces in total, the lateral surface area of the square pyramid is 4 times the area of one triangular face:

Lateral surface area = 4 * 57.6 cm² = 230.4 cm².

To calculate the total surface area of the square pyramid, we also need to consider the area of the square base.

The area of a square can be calculated by squaring one side length.

Area of the square base = (12.8 cm)² = 163.84 cm².

The total surface area is the sum of the lateral surface area and the area of the square base:

Total surface area = Lateral surface area + Area of the square base

= 230.4 cm² + 163.84 cm²

= 394.24 cm².

For similar question on surface area.

https://brainly.com/question/27812847

#SPJ11

Problem determine whether the three given position vectors (that is, one end point at the origin) are coplanar. If they are coplanar, find the equation of the plane containing them. u = 2i -j-k; v = 4i + 3j + 2k; w = 6i + 7j + 5k

Answers

The given position vectors u, v, and w are coplanar. The equation of the plane containing them is -5x - 10y + 5z = 0.



To determine coplanarity, we need to check if the three vectors u, v, and w lie on the same plane. We can do this by computing the scalar triple product. If it equals zero, the vectors are coplanar.

[u, v, w] = u · (v x w) = (2i - j - k) · ((4i + 3j + 2k) x (6i + 7j + 5k)) = 0.

Since the scalar triple product is zero, the vectors u, v, and w are coplanar. To find the equation of the plane, we use two of the vectors (let's use u and v) as direction vectors, and their cross product as the normal vector.

Normal vector n = u x v = (2i - j - k) x (4i + 3j + 2k) = -5i - 10j + 5k.

Therefore, the equation of the plane containing the vectors is -5x - 10y + 5z + d = 0. To find d, we substitute a point on the plane (such as the origin) and solve for d. The equation of the plane is -5x - 10y + 5z + 0 = 0, which simplifies to -5x - 10y + 5z = 0.

To learn more about vectors click here

brainly.com/question/24256726

#SPJ11

1. 2x+ 16x + 32x² = 0 2. X4-37x+36=0
3. 4x7-28x=-48x5
4. 3x4+11x2=4x2
5. X4+100=29x2

Answers

The given equations are solved by factoring or simplifying them to obtain the respective solutions, except for one equation which may require numerical methods.

1.   The equation 2x + 16x + 32x² = 0 can be factored as 2x(1 + 8x + 16x) = 0. Applying the zero-product property, we set each factor equal to zero: 2x = 0 gives x = 0, and 1 + 8x + 16x = 0 can be solved as a quadratic equation, yielding x = -1/8.

2.    The equation x^4 - 37x + 36 = 0 can be factored using the rational root theorem or by trial and error. The factored form is (x - 4)(x + 1)(x - 9)(x - 1) = 0, which gives solutions x = 4, x = -1, x = 9, and x = 1.

 3.   The equation 4x^7 - 28x = -48x^5 can be simplified by dividing both sides by 4x, resulting in x(x^6 - 7) = -12x^4. Rearranging the equation, we have x(x^6 - 7) + 12x^5 = 0.

4.   The equation 3x^4 + 11x^2 = 4x^2 can be simplified by subtracting 4x^2 from both sides, giving 3x^4 + 7x^2 = 0. Factoring out x^2, we have x^2(3x^2 + 7) = 0. This equation has solutions x = 0 and x = ±√(-7/3).

  5.  The equation x^4 + 100 = 29x^2 can be rearranged as x^4 - 29x^2 + 100 = 0. This quartic equation does not have simple factorization, so it may require the use of numerical methods or the quadratic formula to find the solutions.

To learn more about equations - brainly.com/question/30939447

#SPJ11

4. Find a unitary diagonalizing matrix for the following matrix: i B =[²₁2]

Answers

The unitary diagonalizing matrix for the given matrix B is not possible as the matrix is not Hermitian.

   To find the unitary diagonalizing matrix, we first need to check if the given matrix B is Hermitian. A matrix is Hermitian if it is equal to its conjugate transpose. In this case, the matrix B is [²₁2]. Taking the conjugate transpose of B, we get [²₁2]ᴴ = [²₁2]. Since B is equal to its conjugate transpose, it is Hermitian.

Next, we need to find the eigenvalues and eigenvectors of the matrix B. The eigenvalues are the solutions to the equation Bx = λx, where x is the eigenvector and λ is the eigenvalue. In this case, we have the equation [²₁2]x = λx.

Solving this equation, we get the characteristic equation λ² - 3λ - 2 = 0. Factoring the equation, we have (λ - 2)(λ + 1) = 0. Therefore, the eigenvalues are λ₁ = 2 and λ₂ = -1.

To find the eigenvectors, we substitute each eigenvalue back into the equation Bx = λx. For λ₁ = 2, we have [²₁2]x₁ = 2x₁, which gives us the equation ²x₁ + x₂ + 2x₃ = 2x₁. Simplifying this equation, we get x₂ + 2x₃ = 0. Letting x₃ = t (a parameter), we can express the eigenvector as x₁ = t, x₂ = -2t, and x₃ = t, where t is a parameter.

For λ₂ = -1, we have [²₁2]x₂ = -x₂, which gives us the equation ²x₁ + x₂ + 2x₃ = -x₂. Simplifying this equation, we get x₁ + 3x₂ + 2x₃ = 0. Letting x₃ = s (a parameter), we can express the eigenvector as x₁ = -3s, x₂ = s, and x₃ = s, where s is a parameter.

The next step is to normalize the eigenvectors. We divide each eigenvector by its norm to obtain unit eigenvectors.

To learn more about diagonalizing -  brainly.com/question/32597539

#SPJ11

A sample containing 30 observations is taken from a normally distributed population and a 98% confidence estimate for μ is needed, the appropriate t-score is ____

Answers

The required t-score with a sample size of 30 is 2.756.

Here we want to calculate a confidence interval for the population mean (μ) when the population is normally distributed and the sample size is small (less than 30). We would typically use the t-distribution instead of the standard normal distribution.

Since here mentioned that the sample contains 30 observations which is considered a moderately large sample, we can use either the t-distribution or the standard normal distribution to calculate the confidence interval. However, for consistency, let's use the t-distribution.

For a 98% confidence level, we need to find the critical value (t-score) that corresponds to a 2% tail on both ends of the distribution.

Since the confidence interval is two-tailed, we need to find the t-score that leaves 1% in each tail.

The degrees of freedom for a sample size of 30 are equal to the sample size minus 1, so in this case, the degrees of freedom would be 30 - 1 = 29.

Using a t-table or a statistical calculator, the t-score for a 1% tail with 29 degrees of freedom is approximately 2.756.

Therefore, the appropriate t-score for a 98% confidence estimate with a sample size of 30 is 2.756.

Learn more about t-score here,

https://brainly.com/question/13667727

#SPJ4

1. An artist is painting a mural on a wall with the dimensions 6.2 inches by 12.8 inches. The scale the artist uses is 4 inch =14 feet. What is the area of the actual wall?

Answers

The area of the actual wall is 972.16 square feet.

To determine the area of the actual wall, we need to convert the dimensions of the mural to the corresponding dimensions of the wall using the given scale.

The scale provided is 4 inches = 14 feet.

Let's find the conversion factor:

Conversion factor = Actual measurement / Mural measurement

In this case, we are converting from mural inches to actual feet. So, the conversion factor is:

Conversion factor = 14 feet / 4 inches

= 3.5 feet / inch

To find the dimensions of the actual wall, we multiply the dimensions of the mural by the conversion factor:

Actual width = 6.2 inches × 3.5 feet / inch

= 21.7 feet

Actual height = 12.8 inches × 3.5 feet / inch

= 44.8 feet

The area of the actual wall is the product of the actual width and actual height:

Area = Actual width × Actual height

= 21.7 feet × 44.8 feet

Calculating the area:

Area = 972.16 square feet

Therefore, the area of the actual wall is 972.16 square feet.

Learn more about Conversion factor click

https://brainly.com/question/30567263

#SPJ1

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Answers

Answer:

A. 5

Step-by-step explanation:

x=5

Answer:

A

Step-by-step explanation:

Thier equal so 78-18=60

60/12=5

Assume that yy is the solution of the initial-value problem
y′+y={2sinxx2x≠0x=0,y(0)=1.y′+y={2sin⁡xxx≠02x=0,y(0)=1.
If yy is written as a power series
y=∑n=0[infinity]cnxn,y=∑n=0[infinity]cnxn,
then
y=y= + xx + x2x2 + x3x3 + x4+⋯x4+⋯ .
Note: You do not have to find a general expression for cncn. Just find the coefficients one by one.

Answers

For an initial value problem, [tex]y' + y = \begin{cases} \frac{ 2sin x } {x}\quad &x ≠0 \\ 0 \quad & x = 0 \\ \end{cases}[/tex]

with initial conditions, y(0) = 1, the value of first four coefficients, c₀,c₁, c₂, c₃, ...... are 1,1, [tex] \frac{-1}{2}, \frac{1}{18}, \frac{-1}{72}, ...[/tex] or y = 1 + x [tex] - \frac{1}{2} [/tex] x² + [tex] \frac{1}{18} [/tex]x³+....

A initial value problem is a second-order linear homogeneous differential equation with constant coefficients. We have y is the solution of intital value problem, [tex]y' + y = \begin{cases} \frac{ 2sin x } {x}\quad &x ≠0 \\ 0 \quad & x = 0 \\ \end{cases}[/tex]

with initial conditions, y(0) = 1 . Also y is written as power series that is y = c₀ + c₁ x + c₂x² + c₃x³ + .......

y(0) = 1 => c₀ = 1

so, y = 1 + c₁ x + c₂x² + c₃x³ + .......

differentiating the above equation,

y'(x) = 0 + c₁ + 2c₂x+ 3c₃x² + .......

Substitute the value of y and y' in expression of intital value problem, y + y' = 1 + c₁ + ( c₁ + 2c₂) x+ ( c₂ + 3c₃ )x² + ....... ---(1)

Using the expansion series of sine function, [tex]\frac{ 2 sinx}{x} = \frac {2( x - \frac{x³}{3!} + \frac{x⁵}{5!} - ......) }{x}[/tex]

[tex]= 2(1 - \frac{x²}{3!} + \frac{x⁴}{5!} - ......) [/tex] --(2)

Comparing the coefficients of x ,x², ... from equation (1) and (2),

c₀ + c₁ = 2 => c₁ = 1

cofficient of x = 0

c₁ + 2c₂ = 0 => 2c₂ = - 1 => c₂ = - 1/2

Cofficient of x² = [tex] - \frac{2}{6} [/tex]

[tex]c₂ + 3c₃ = - \frac{2}{6} [/tex]

=> c₃ = 1/18

cofficient of x³ = 0

[tex] c₃ + 3c_4 = 0 => c_4 = \frac{-1}{72} [/tex]. Hence, required values are 1,1, [tex] - \frac{-1}{2}, \frac{1}{18}, \frac{-1}{72} [/tex].

For more information about initial value problem, visit:

https://brainly.com/question/31041139

#SPJ4

Complete question:

Assume that y is the solution of the initial-value problem

[tex]y' + y = \begin{cases} \frac{ 2sin x } {x}\quad &x ≠0 \\ 0 \quad & x = 0 \\ \end{cases}[/tex]

If yis written as a power series, y= [tex] ∑_{ n = 0}^{\infty} [/tex] then

y= __+ ___ x + ___x² + __ x³ +....

Note: You do not have to find a general expression for cn. Just find the coefficients one by one

Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.) f(θ)=9sin(θ)−5sec(θ)tan(θ) on the interval (− π/2, π/2 ) F(θ)=

Answers

The differentiation confirms that the antiderivative -4cos(θ) + C is correct.

To find the most general antiderivative of the function f(θ) = 9sin(θ) - 5sec(θ)tan(θ), we integrate each term separately.

∫(9sin(θ) - 5sec(θ)tan(θ)) dθ

The antiderivative of 9sin(θ) is -9cos(θ), and the antiderivative of -5sec(θ)tan(θ) can be simplified using the identity sec(θ)tan(θ) = sin(θ):

∫(-5sec(θ)tan(θ)) dθ = -5∫sin(θ) dθ = -5(-cos(θ)) = 5cos(θ)

Combining the results, the most general antiderivative of f(θ) is:

F(θ) = -9cos(θ) + 5cos(θ) + C

Simplifying further:

F(θ) = -4cos(θ) + C

To check the answer, we can differentiate F(θ) with respect to θ and confirm that it equals f(θ).

d/dθ (-4cos(θ) + C) = 4sin(θ) = 9sin(θ) - 5sec(θ)tan(θ) = f(θ)

The differentiation confirms that the antiderivative -4cos(θ) + C is correct.

Learn more about antiderivative here:

https://brainly.com/question/31966404

#SPJ11

The O'Neill Shoe Manufacturing Company will produce a special-style shoe if the order size is large enough to provide a reasonable profit. For each special-style order, the company incurs a fixed cost of $2,200 for the production setup. The variable cost is $65 per pair, and each pair sells for $85.
(a) Let x indicate the number of pairs of shoes produced. Develop a mathematical model for the total cost (C) of producing x pairs of shoes.
C =
(b) Let P indicate the total profit. Develop a mathematical model for the total profit realized from an order for x pairs of shoes.
P =
(c) How large must the shoe order be before O'Neill will break even?
X =

Answers

We know that O'Neill will break even when the shoe order size is 110 pairs.

(a) The total cost (C) of producing x pairs of shoes can be calculated by adding the fixed cost and the variable cost.

Fixed cost: $2,200 (This is the cost incurred for the production setup)

Variable cost per pair: $65

The variable cost depends on the number of pairs produced, so the total variable cost is given by:

Total variable cost = Variable cost per pair * Number of pairs produced = $65 * x

Therefore, the mathematical model for the total cost (C) is:

C = Fixed cost + Total variable cost

C = $2,200 + ($65 * x)

(b) The total profit (P) from an order for x pairs of shoes can be calculated by subtracting the total cost from the total revenue.

Revenue per pair: $85

The total revenue is given by:

Total revenue = Revenue per pair * Number of pairs produced = $85 * x

Therefore, the mathematical model for the total profit (P) is:

P = Total revenue - Total cost

P = ($85 * x) - ($2,200 + ($65 * x))

(c) To find the order size at which O'Neill will break even, we set the total profit (P) to zero.

P = 0

($85 * x) - ($2,200 + ($65 * x)) = 0

Simplifying the equation:

$85 * x - $2,200 - $65 * x = 0

$20 * x - $2,200 = 0

$20 * x = $2,200

Dividing both sides by $20:

x = $2,200 / $20

x = 110

Therefore, O'Neill will break even when the shoe order size is 110 pairs.

To know more about pairs refer here

https://brainly.com/question/31875891#

#SPJ11

Katie and Jill currently share a dresser ,and each would like to have one of her own. As a valued member at the local furniture store, you receive an additional discount off each purchase. Calculate the amount of discount off each item. There is another part. PART TWO Which is the better price -17% off $35 or 12% off $32 Explain

Answers

The 12% discount off $32 provides a lower final price compared to the 17% discount of $35, making it the better option in terms of cost savings.

To calculate the amount of discount of each item  where Katie and Jill want to purchase their own dressers,

we need to know the original price of the dresser and the percentage discount offered.

Let us assume the original price of each dresser is $X, and the discount percentage is Y%.

The amount of discount of each item can be calculated as,

Discount amount = X × (Y/100)

For example,

If the original price of each dresser is $200 and the discount percentage is 20%, then the amount of discount of each item would be,

Discount amount

= $200 × (20/100)

= $40

So, in this case, there would be a $40 discount of each dresser.

Now, Part Two of the question.

To determine which is the better price between a 17% discount of $35 and a 12% discount of $32,

Calculate the final price after applying each discount.

17% of $35,

Discount amount

= $35 × (17/100)

= $5.95 (rounded to two decimal places)

Final price

= $35 - $5.95

= $29.05

12% of $32,

Discount amount

= $32 × (12/100)

= $3.84 (rounded to two decimal places)

Final price

= $32 - $3.84

= $28.16

Comparing the final prices,

Here $28.16 is a better price than $29.05.

Therefore, the better price is the one with a 12% discount of $32, resulting in a final price of $28.16.

learn more about discount  here

brainly.com/question/30958634

#SPJ4

f(x) = x^2 - 8x + 12.

What is the axis of symmetry?
Axis of symmetry: x = -b/2a

Answers

The solution is: The axis of symmetry for f(x) = 2x^2 − 8x + 8 is x=2

Here, we have,

given that,

f(x)=2x^2-8x+8

This is a quadratic equation, and its graph is a vertical parabola

f(x)=ax^2+bx+c

a=2>0 (positive), then the parabola opens upward

b=-8

c=8

The Vertex is the minimum point of the parabola: V=(h,k)

The abscissa of the Vertex is:

h=-b/(2a)=-(-8)/[2(2)]=8/4→h=2

The axis of symmetry is the vertical line:

x=h→x=2

Answer: The axis of symmetry for f(x) = 2x^2 − 8x + 8 is x=2.

To learn more on equation click:

brainly.com/question/24169758

#SPJ1

complete question:

What is the axis of symmetry for f(x) = 2x2 − 8x + 8?

Is this equal?
4 parts of a square.

Answers

4 parts of the given square are not equal.

We have,

A square has all four sides equal.

Now,

The square is in four parts.

We see that,

Each part of the square is not equal.

Two parts on the edge are more like a triangle.

The middle two parts are more like a trapezium.

To say that 4 parts of the square are equal we need to have similar shapes for all the four parts of the given square.

Thus,

4 parts of the given square are not equal.

Learn more about squares here:

https://brainly.com/question/22964077

#SPJ1

find the area of the region shared by the cardioids 7(1 cos and .

Answers

The area of the region shared by the two cardioids 7(1 cos and is -14π.

The area of the region shared by the two cardioids 7(1 cos and can be calculated using the integral of the two equations. The equation of the cardioid 7(1 cos is given by r=7(1-cosθ). The equation of the second cardioid is given by r=7(1+cosθ). The area of the combined region can be found by taking the integral of the two equations over the region they share.

To calculate the area, the integral will be taken over the range of θ from 0 to π. The integral of the first equation is given by 7π (1- cos(θ)). The integral of the second equation is given by 7π (1+ cos (θ)).

The area of the region shared by the two cardioids can be calculated by taking the difference of the two integrals.

Area = 7π (1- cos (θ)) - 7π (1+ cos (θ))

Area = -14π

Therefore, the area of the region shared by the two cardioids 7(1 cos and is -14π.

To know more about area click-
http://brainly.com/question/16519513
#SPJ11

Consider the curve x2 + y + 2xy = 1 (a) [6 marks] Use implicit differentiation to determine in at the point (x, y) = (1,0). (b) [6 marks ]Use implicit differentiation to determine at the point (x,y) = (1,0). (c) [3 marks]Determine the degree 2 Taylor polynomial of y(x) at the point (x,y) = (1,0).

Answers

(a) To determine dy/dx at the point (x, y) = (1, 0), we can use implicit differentiation.

Differentiating both sides of the equation x^2 + y + 2xy = 1 with respect to x:

2x + dy/dx + 2y + 2xdy/dx = 0

Simplifying the equation:

2x + 2y + dy/dx(1 + 2x) = 0

Now we substitute the values (x, y) = (1, 0) into the equation:

2(1) + 2(0) + dy/dx(1 + 2(1)) = 0

2 + dy/dx(1 + 2) = 0

2 + 3dy/dx = 0

Solving for dy/dx:

3dy/dx = -2

dy/dx = -2/3

Therefore, dy/dx at the point (x, y) = (1, 0) is -2/3.

(b) To determine d^2y/dx^2 at the point (x, y) = (1, 0), we can differentiate the equation obtained in part (a) with respect to x:

d/dx(2x + 2y + dy/dx(1 + 2x)) = d/dx(0)

2 + 2dy/dx + dy/dx(2) + d^2y/dx^2(1 + 2x) + dy/dx(2x) = 0

Simplifying the equation:

2 + 2dy/dx + 2dy/dx + d^2y/dx^2(1 + 2x) = 0

4dy/dx + d^2y/dx^2(1 + 2x) = -2

Now substitute the values (x, y) = (1, 0) into the equation:

4(dy/dx) + d^2y/dx^2(1 + 2(1)) = -2

4(dy/dx) + 3d^2y/dx^2 = -2

Substituting dy/dx = -2/3 from part (a):

4(-2/3) + 3d^2y/dx^2 = -2

-8/3 + 3d^2y/dx^2 = -2

3d^2y/dx^2 = -2 + 8/3

3d^2y/dx^2 = -6/3 + 8/3

3d^2y/dx^2 = 2/3

d^2y/dx^2 = 2/9

Therefore, d^2y/dx^2 at the point (x, y) = (1, 0) is 2/9.

(c) To determine the degree 2 Taylor polynomial of y(x) at the point (x, y) = (1, 0), we need the values of y, dy/dx, and d^2y/dx^2 at that point.

At (x, y) = (1, 0):

y = 0 (given)

dy/dx = -2/3 (from part (a))

d^2y/dx^2 = 2/9 (from part (b))

Using the Taylor polynomial formula:

P2(x) = y + dy/dx(x - 1) + (d^2y/dx^2/2!)(x - 1)^2

For similar question on differentiation.

brainly.com/question/30567791

#SPJ11

Find the constant "c" which produces a solution which also satisfies the initial condition y(8)=2 c=? The functions y=x^2+(c/x^2) are all solutions of equation: ...

Answers

The value of the constant c is -3968.

How to find the value of c?

The given differential equation is[tex]y = x^2 + (c/x^2)[/tex], and we need to find the value of the constant "c" such that the solution satisfies the initial condition y(8) = 2.

Substituting x = 8 into the equation, we have:

y(8) = [tex]8^2[/tex] + (c/[tex]8^2[/tex])

     = 64 + (c/64)

To satisfy the initial condition y(8) = 2, we equate the expression above to 2:

64 + (c/64) = 2

Subtracting 64 from both sides:

c/64 = 2 - 64

c/64 = -62

To isolate "c," we multiply both sides by 64:

c = -62 * 64

c = -3968

Therefore, the value of the constant "c" that produces a solution satisfying the initial condition y(8) = 2 is c = -3968.

Learn more about differential equation

brainly.com/question/31492438

#SPJ11

1. In a circle with radius 6. 5, an angle measuring 5. 5 radians intercepts an arc. Find the length of the arc to the nearest 10th.


2. Two tangents that intersect at P intercept a major arc of 240 degrees on the circle. What is the measure of




3. What are the coordinates of the point on the directed line segment from (−10,10) to (-5,5) that partitions the segment into a ratio of 2 to 3?

Answers

The answers are

1. The length of the arc is approximately 35.8 units.

2. The measure of the angle is 120°  

3. The coordinates of the point (-8, 11)

1. To find the length of an arc intercepted by an angle in a circle, you need to know the radius of the circle and the measure of the angle in radians.

The formula for the length of an arc is given by:

length of arc = radius × angle in radians

Plugging in the given values, we get:

length of arc = 6.5 × 5.5 = 35.75

Rounding to the nearest tenth,

The length of the arc is approximately 35.8 units.

2. The measure of the angle formed by two tangents intersecting at a point on a circle is equal to half the measure of the intercepted arc.

So, the intercepted arc, in this case, is 240 degrees, which means the angle formed by the two tangents is:

Angle = 240/2 = 120°

3. The coordinates of the point that partitions a directed line segment into a ratio of 2:3 can be found using the following formula:

=> (x,y) = ((3a + b)/5, (3c + d)/5)

Where (a,c) and (b,d) are the coordinates of the endpoints of the segment.

Plugging in the given values, we get:

(x,y) = ((3×(-10) + (-5)2)/5, (3 (10) + 5(5)/5)

Simplifying, we get:

=> (x,y) = (-8, 11)

Therefore,

The answers are

1. The length of the arc is approximately 35.8 units.

2. The measure of the angle is 120°  

3. The coordinates of the point (-8, 11)

Learn more about Circle at

https://brainly.com/question/15424530

#SPJ4

who can help ITS URGENT

Answers

Answer:

2/7

Step-by-step explanation:

travelled 2/7 of the distance on saturday.

that leaves 5/7 of the journey still to go.

they travelled 2/5 of the remaining distance on sunday.

that is, they travelled 2/5 of 5/7 on sunday.

2/5 X 5/7 = 2/7.

7/7 is the whole journey. so they travelled (2/7) / (7/7) = 2/7 of the total distance on sunday.

see attachment

Consider a plane boundary in a (an x-z plane with y = 0) between air (material 1, with Mri = 1) and iron (material 2, with Ir1 = 5000). a) Assuming B2 = 2ax – 10a, (mT), find Ē, and the angle B, makes with the interface. (the units mt are milli-Tesla). b) Assuming Z2 = 10ax + zay (MT), find Ē, and the angle Ēmakes with the normal to the interface.

Answers

a), Ē is calculated as (2ax - 10a) / (2 * μ₀ * μr₂), and the angle B makes with the interface is 5 radians. b), Ē is (zay) / (μ₀ * μr₂), and the angle Ē makes with the normal is given by tan(Ē) = 10a / z.

a) To find Ē, we need to calculate the average of the electric field vectors in both material 1 (air) and material 2 (iron). Since the electric field is perpendicular to the interface, we can ignore the y-component.

For material 1 (air)

Ē₁ = 0 (since there is no electric field)

For material 2 (iron)

Ē₂ = (B₂ / μ₂) = (2ax - 10a) / (μ₀ * μr₂)

where μ₀ is the permeability of free space and μr₂ is the relative permeability of iron.

The angle B makes with the interface can be calculated using the tangent of the angle

tan(B) = |B₂y / B₂x| = |-10a / 2a| = 5

Therefore, Ē = (Ē₁ + Ē₂) / 2 = Ē₂ / 2 = [(2ax - 10a) / (2 * μ₀ * μr₂)]

b) To find Ē and the angle Ē makes with the normal to the interface, we need to determine the component of Z₂ perpendicular to the interface.

The normal to the interface is in the y-direction, so we can ignore the x-component of Z₂.

For material 2 (iron)

Ē₂ = (Z₂ / μ₂) = (zay) / (μ₀ * μr₂)

The angle Ē makes with the normal can be calculated using the tangent of the angle

tan(Ē) = |Z₂x / Z₂y| = |10a / z| = 10a / z

Therefore, Ē = Ē₂ = (zay) / (μ₀ * μr₂)

And the angle Ē makes with the normal to the interface is given by tan(Ē) = 10a / z.

To know more about electric field vectors:

https://brainly.com/question/30464611

#SPJ4

from a random sample of 40 commute times of uwt students, a 95% confidence interval for the mean commute time was constructed to be (29.5, 41.5). based on this information, could the mean commute time of all uwt students be 27 minutes?

Answers

Based on the information, we do not have sufficient evidence to support thie claim that mean commute time of all uwt students be 27 minutes

Based on the given information, we have a 95% confidence interval for the mean commute time of UWT students as (29.5, 41.5). This means that we are 95% confident that the true mean commute time of all UWT students falls within this interval.

Since the confidence interval does not include the value of 27 minutes, we cannot conclude with 95% confidence that the mean commute time of all UWT students is 27 minutes.

It is possible that the true mean is 27 minutes, but based on the sample data and the constructed confidence interval, we do not have sufficient evidence to support this claim at a 95% confidence level.

Learn more about confidence interval at https://brainly.com/question/29995151

#SPJ11

June was thinking of a number. June doubles it, then adds 18 to get an answer of 90. 7. What was the original number?

Answers

The required original number that June was thinking of is 36.

Let's assume the original number June was thinking of is represented by "x". According to the problem, June doubles the original number (2x) and adds 18 to get an answer of 90. We can write this as the equation:

[tex]2x + 18 = 90[/tex]

To find the value of x, we need to isolate it on one side of the equation. Let's subtract 18 from both sides:

[tex]2x = 90 - 18 \\ 2x = 72[/tex]

Now, we divide both sides of the equation by 2 to solve for x:

[tex]x = 72 / 2 \\ x = 36[/tex]

Therefore, the original number that June was thinking of is 36.

Learn more about equation here,

http://brainly.com/question/2972832

#SPJ4

on a standardized test, one particular class decided to answer randomly, meaning that their answers were uniformly distributed between 0 and 100 percent. how could you find the probability that a student's score is above 40 percent?

Answers

The probability that a student's score is above 40 percent is 60%.

To find the probability that a student's score is above 40 percent when answers are uniformly distributed between 0 and 100 percent, you can use the following method:
Since the distribution is uniform, the probability density is constant for all values between 0 and 100 percent. The range of interest is from 40 to 100 percent. Calculate the length of this range by subtracting the lower limit from the upper limit:
Range = 100 - 40 = 60 percent
Now, divide the range of interest by the total possible range (0 to 100 percent):
Probability = (Range of interest) / (Total range) = 60 / 100 = 0.6 or 60%
So, the probability that a student's score is above 40 percent is 60%.

To know more about probability visit:

https://brainly.com/question/30034780

#SPJ11

The two-way table shown above gives data on school
lunch preferences by students at a local high school
separated by grade. What is the marginal distribution
of students that are in the 10th Grade? in a %

Answers

The marginal distribution of students that are in the 10th Grade is 28%

How to determine the marginal distribution?

In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset.

The P(10th grade) is determined by

∈P(A)= P( A and B₁) + P(A and B₂) + .....+ P(A and Bₓ) whereas B₁, B₂ and Bₓ are mutually exclusive and collective exhaustive events.

⇒100/870 + 32/870 + 108/870

= 240/870

reducing to lowest terms we have

8/29

≈28%

Learn more about marginal distribution on https://brainly.com/question/14310262

#SPJ1

Kinda need this urgently Solve for X


Answers

The answer to the provided problem of angles is the interior angle of a regular polygon with six edges is measured at 120 degrees.

In Euclidean geometry, an angle is indeed a structure composed of two rays, referred to as the sides of the circles, that separate at the angle's apex and also the apex, which is situated in the centre.

When two beams combine, an angle may be produced within the plane in where they're positioned. Two surfaces combined also result in an angle. Dihedral angles are what these are known as.

Here,

Given:

Each external angle is 6 degrees in length.

Using this calculation

=> (n-2)*180°/n

where n is 6

Thus ,

=> (6-2)* 180° /6

=> 4 * 180° /6

=> 4 * 30°

=> 120°

As a result, the answer to the provided problem of angles is the interior angle of a regular polygon with six edges is measured at 120 degrees.

To know more about angles visit:

brainly.com/question/14569348

#SPJ1

does there exist a million consecutive positive integers such that none of them is a perfect square?

Answers

Yes, there are a million consecutive positive integers, so none of them is a perfect square.

What is a Perfect Square?

A perfect square is a number that can be expressed as the square of a whole number. In other words, when you multiply an integer by itself, you get a perfect square.

To prove this, we can use the Chinese remainder theorem. Consider the system of congruences:

x ≡ 2 (mod 3)

x ≡ 3 (mod 4)

x ≡ 2 (mod 5)

x ≡ 7 (mod 8)

x ≡ 3 (mod 7)

x ≡ 2 (mod 9)

According to the Chinese remainder theorem, this system of congruences has a unique solution modulo the product of modulo (3 * 4 * 5 * 8 * 7 * 9 = 30,240). Let's call this solution x.

Now consider the numbers x, x+1, x+2, ..., x+999,999. Since each of the congruences in the above system holds, none of these numbers can be a perfect square.

Therefore, there is a sequence of one million consecutive positive integers such that none of them is a perfect square.

To learn more about Integers from the given link

https://brainly.in/question/16370133

#SPJ4

f: (R, τcuf → (R, τu). f(x) = x. Is f continuous? open? closed? Explain

Answers

The function f(x) = x is continuous, open, and closed when considering the topologies τcuf and τu. It preserves intervals, maps open sets to open sets, and maps closed sets to closed sets in the respective topologies.

To determine if the function f(x) = x is continuous, open, or closed when considering the topologies τcuf and τu, we need to analyze the properties of the function and the topologies.

For a function to be continuous, the pre-image of every open set in the target space should be an open set in the source space. Let's consider an open set U in (R, τu). Any open interval (a, b) in U will have a pre-image of (a, b) in (R, τcuf) since the identity function f(x) = x preserves the intervals. Therefore, the function f(x) = x is continuous.

For a function to be open, the image of every open set in the source space should be an open set in the target space. In this case, the image of any open set in (R, τcuf) under the function f(x) = x will be the same open set in (R, τu). Thus, the function f(x) = x is open.

For a function to be closed, the image of every closed set in the source space should be a closed set in the target space. In (R, τcuf), closed sets are sets of the form [a, b]. The image of [a, b] under the function f(x) = x will be [a, b] in (R, τu). Therefore, the function f(x) = x is closed.

So, the function is continuous, open, and closed when considering the topologies τcuf and τu.

To know more about continuous function:

https://brainly.com/question/28228313

#SPJ4

Other Questions
40 PTS AND BRAINLIEST plsss helpppp ASAP four key demographic factors in the collection of crime data Simplify to a single trig function with no denominator If a neutron star has a radius of 10 km and rotates 716 times a second, what is the speed of the surface at the neutron stars equator as a fraction of the speed of light? three resources available to new england textile manufacturers were: what must the width of the box be for the ground-level energy to be 5.0 mev , a typical value for the energy with which the particles in a nucleus are bound? who is the largest third party payer in the nation Use the standard deviation to identify any outliers in the given data set.{3, 6, 30, 9, 10, 8, 5, 4} Which statement about icon sets in conditional formatting is true?(A) You can create up to five custom icon sets for a cell's value.(B) lcon sets display icons directly in the cells.(C) lcon sets can be displayed only in a separate cell from the cell's value.(D) You cannot change the rules for icon sets. write a method that accepts a scanner for keyboard input and returns the area of a triangle from user provided side lengths using heron's formula. which of the following is a representative component of biohazard risk management?environmental stabilityimmunizationroute of exposurework practices Stopping Distances of Automobiles. A research hypothesis is that the variance of stopping distances of automobiles on wet pavement is substantially greater than the variance of stopping distances of automobiles on dry pavement. In the research study, 16 automobiles traveling at the same speeds are tested for stopping distances on wet pavement and then tested for stopping distances on dry pavement. On wet pavement, the standard deviation of stopping distances is 9.76 meters. On dry pavement, the standard deviation is 4.88 meters. a. At a .05 level of significance, do the sample data justify the conclusion that the variance in stopping distances on wet pavement is greater than the variance in stopping distances on dry pavement? What is the p-value? b. What are the implications of your statistical conclusions in terms of driving safety recommendations? how does rock within earth change as s waves pass? cmp, ump, and tmp all have ________________ as a common precursor. the primary function served by the middle ear is to: describe the inheritance patterns and symptoms of color blindness Part II . if f(x)= x-2 and g (x)=-2x+7, what value of x makes f(x)=g(x)? Part III. Use the substitution method to solve the system of equations. Write your answer as an ordered pair. y=x-2 and y=-2x+7 The production of healthy erythrocytes depends upon the availability of _______ a. copper b. zinc C. vitamin B 12 d. copper, zinc, and vitamin B 12 how did the church respond to new opportunities for conversion Help please will Mark brainliest