Answer:
the answer is D .................
20. What intermolecular forces would affect the interactions of water molecules? Explain why.
Answer:
Water has strong hydrogen bond dipole-dipole intermolecular forces that give water a high surface tension and a high heat of vaporization and that make it a strong solvent
i.What are organic fertilizers?
ii.State three advantages of organic fertilizers over inorganic fertilizers.
Answer:
Organic fertilizers are those fertilizers that are not artificially produced but are natural and has carbon in them.
Fertilizers in the broad term are used to provide nutrient to the soil and boost growth of crops.
Some of the advantages of organic fertilizers to inorganic fertilizers are:
They do not make crusts on the soil, unlike inorganic fertilizers.
They help add structure to the soil because of the good water movement into the soil
They are easier on the soil because they feed good microbes.
What type of a liquid will have a pH value equal to 12? (1 point)
Basic
Neutral
Strong acid
Weak aci
Answer: it will be basic
pH that ranges from 0-6 are acid
pH of EXACTLY 7 is neutral
pH greater than 7 are strongly basic or base
Que es la actividad física y en qué mejora
in a breaker of water ,the water -water bonds can properly be called
Answer:
LICK
Explanation:
8.7 Two products are formed in the following reaction in a 50:50 mixture. Would the resulting solution be optically active
Answer:
Yes. The solution would be optically active.
Explanation:
Diastereomer are defined as the image that is non mirror and non -identical. It is made up of two stereoisomers. They are formed when the two stereoisomers or more than two stereoisomers of the compound have the same configuration at the equivalent stereocenters.
In the given context, as the product given is a diastereomeric mixture, the product would have an optical activity in total.
So the answer is Yes.
All of the orbitals in the 3d subshell have a principal quantum number value of 3, an angular momentum quantum number of:_____.
Answer:
According to the four quantum numbers; magnetic quantum number is the same as angular momentum quantum number. so the answer is 5
Explanation:
for d subshell angular momentum "d" is assigned a value of : m= 2(range from negative to positive i.e, -2 to 2) so we have [ -2, -1 ,0, 1 , 2] which concludes to 5.
Which observation provided Albert Einstein the clue that he needed to explain the photoelectric effect?
Answer:
Einstein realized that the energy in electrons was caused by the frequency of light and not the intensity of light. This made him realize that he needed to explain the photoelectric effect.
Explanation:
Einstein realized that the photoelectric effect was a system that should be studied and explained in more depth, when he saw how the energy of electrons behaved in the presence of light. He saw that this energy depends entirely on the frequency of light and not on the intensity of light. From this observation, he realized that the photoelectric effect was essential for the production of an electric energy system, through light energy, such as solar energy.
It is important to note that the photoelectric effect refers to the ejection of electrons on a light surface that comes into contact with a light source.
What is the sum of the coefficients of the balanced equation for the following reaction: FeCl2(aq) K2Cr2O7(aq) HCl(aq) ---> CrCl3(aq) FeCl3(aq) KCl(aq) H2O(l)
Answer:
The unbalanced chemical equation is
K
2
Cr
2
O
7
+HCl→KCl+CrCl
3
+H
2
O+Cl
2
Balance all atoms except H and O.
K
2
Cr
2
O
7
+10HCl→2KCl+2CrCl
3
+H
2
O+Cl
2
Assign oxidation numbers.
K
2
+6
Cr
2
O
7
+10H
−1
Cl
→2KCl+2
+3
Cr
Cl
3
+H
2
O+
0
Cl
2
The oxidation number of Cr decreases from +6 to +3. Total decrease in the oxidation number of two Cr atoms is 6. The oxidation number of Cl increases from -1 to 0. Total increase in the oxidation number of 2 Cl atoms is 2.
Balance increase in oxidation number with decrease in oxidation number by using appropriate coefficients.
K
2
Cr
2
O
7
+14HCl→2KCl+2CrCl
3
+H
2
O+3Cl
2
Balance O atoms by adding six water molecules on products side.
K
2
Cr
2
O
7
+14HCl→2KCl+2CrCl
3
+7H
2
O+3Cl
2
H atoms are balanced.
K
2
Cr
2
O
7
+14HCl→2KCl+2CrCl
3
+7H
2
O+3Cl
2
This is balanced chemical equation.
The sum of the coefficients of the products is 2+2+7+3=14
Draw bond-line formulas of all monochloro derivatives that might be formed when 1,1-dimethylcyclobutane is allowed to react with Cl2 under UV irradiation. For each structure, indicate, with an asterisk, any stereocenters that might be present.
Answer:
Attached below
Explanation:
Diagram of Bond-line formulas of all monochloro derivatives formed when 1,1-dimethylcyclobutane is allowed to react with c12 under UV
attached below
How many moles of hydrogen are in the sample?
Round your answer to 4 significant digits.
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol. With that in mind we can calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample, using the given number of silicon moles:
3.120 mol Si * [tex]\frac{1molMg_3(Si_2O_5)_2(OH)_2}{4molSi}[/tex] = 0.78 mol Mg₃(Si₂O₅)₂(OH)₂Then we can convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles, keeping in mind that there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol:
0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂One of the students in lab decided to use two fractionating columns (one on top of the other) instead of just one. How would this:_________.
a) affect the separation between hexane and heptane?
b) affect the yield of recovered pure hexane?
c) affect the yield of recovered pure heptane.
Explain your reasoning.
Answer:
See detailed explanation.
Explanation:
Hello there!
In this case, according to the given description, it turns out possible for us to infer that the second fractionating column on top of the first one will favor the light product, in this case hexane as it has the lowest boiling point and molar mass; in such a way, we can tell the following:
a) The separation between hexane and heptane will be increased as a purer hexane-rich product will be obtained on the top of the second column.
b) Will be increased as well, because the second column will remove more heptane.
c) Also, more pure heptane will be obtained on the bottom of the two columns, yet the most favored yield will be that of hexane.
All of the aforementioned is possible due to the fact that the second column will remove the amount of heptane that could not be removed on the top of the first column by taking the vapor-liquid equilibrium further from the first column's maximum separation, which is known as distillation sequences.
Regards!
1. Calculate the number of moles of aluminum, sulfur, and oxygen atoms in 8.00 moles of aluminum sulfate, Al2(SO4)3. 2. Calculate the number of moles of magnesium, chlorine, and oxygen atoms in 6.10 moles of magnesium perchlorate, (Mg(CIO4)2.3. A sample of propane, C3H8, contains 13.8 moles of carbon atoms. How many total moles of atoms does the sample contain?4. A rare gold coin (24 karat, or 100% gold) has a mass of 25.54 g. How many atoms of gold are present in this coin?
Answer:
1) 16.0 moles Al
24.0 moles S
96.0 moles O
2)In 6.10 moles magnesium perchlorate, (Mg(CIO4)2 we have:
6.10 moles Mg
12.2 moles Cl
48.8 moles O
3)4.6 moles of propane (total) contains 13.8 moles of carbon and 36.8 moles of hydrogen atoms
4)The gold coin contains 7.8 *10^22 atoms
Explanation:
Step 1: Data given
Number of moles of aluminum sulfate, Al2(SO4)3 = 8.00 moles
Step 2: Calculate the number of moles
In 1 mol of aluminum sulfate, Al2(SO4)3 we have:
2 moles of Al
3 moles of S
12 moles of O
This means that in 8.00 moles of aluminum sulfate, Al2(SO4)3 we have:
2*8.00 = 16.0 moles Al
3*8.00 = 24.0 moles S
12*8 = 96.0 moles O
2. Calculate the number of moles of magnesium, chlorine, and oxygen atoms in 6.10 moles of magnesium perchlorate, (Mg(CIO4)2
1 mol of magnesium perchlorate, (Mg(CIO4)2 has:
1 Mol of Mg
2 moles of Cl
8 moles of O
In 6.10 moles magnesium perchlorate, (Mg(CIO4)2 we have:
1 * 6.10 moles = 6.10 moles Mg
2*6.10 = 12.2 moles Cl
8*6.10 = 48.8 moles O
3. A sample of propane, C3H8, contains 13.8 moles of carbon atoms. How many total moles of atoms does the sample contain?
In 1 mol of propane, C3H8 we have:
3 moles of C and 8 moles of H
This means if we have 13.8 moles of carbon, we have 13.8/3 = 4.6 moles of propane, C3H8 and 4.6 *8 = 36.8 moles of H
So 4.6 moles of propane contains 13.8 moles of carbon and 36.8 moles of hydrogen atoms
4. A rare gold coin (24 karat, or 100% gold) has a mass of 25.54 g. How many atoms of gold are present in this coin?
Calculate moles of gold:
Moles = mass of gold / molar mass gold
Moles = 25.54 grams / 196.97 g/mol
Moles = 0.1297 moles
Calculate atoms:
Number of atoms = moles * number of Avogadro
0.1297 * 6.022 *10^23 = 7.8 *10^22 atoms
The gold coin contains 7.8 *10^22 atoms
Di- n- pentyl ether can be converted to 1- bromopentane by treatment with HBr through essentially a(n) ________ mechanism.
Answer:
SN1 mechanism
Explanation:
The mechanism of this reaction is shown in the image attached.
The Di- n- pentyl ether is first protonated. The CH3(CH2)4OH is now a good leaving group as shown.
The attack of the bromide ion on the cation formed completes the mechanism to yield 1- bromopentane as shown in the mechanism.
Assign oxidation state to each atom in each element ion or compound.
a. Ag
b. Ag+
c. CaF2
d. H2S
e.CO3
f. CrO4
g. Cl2
h. Fe
i. CuCl2
j. CH4
Answer:
a. [tex]Ag^0[/tex]
b. [tex]Ag^{+}[/tex]
c. [tex]Ca^{2+}F_2^-[/tex]
d. [tex]H_2^+S^{2-}[/tex]
e. [tex](C^{4+}O_3^{2-})^{-}[/tex]
f. [tex](Cr^{6+}O_4^{2-})^{2-}[/tex]
g. [tex]Cl_2^0[/tex]
h. [tex]Fe^0[/tex]
i. [tex]Cu^{2+}Cl_2^-[/tex]
j. [tex]C^{4-}H_4^+[/tex]
Explanation:
Hello there!
In this case, according to the concept of charge balance, which tell us that the overall charge is zero for any compound, except ions, it turns out possible to proceed as follows:
a. [tex]Ag^0[/tex]
b. [tex]Ag^{+}[/tex]
c. [tex]Ca^{2+}F_2^-[/tex]
d. [tex]H_2^+S^{2-}[/tex]
e. [tex](C^{4+}O_3^{2-})^{-}[/tex]
f. [tex](Cr^{6+}O_4^{2-})^{2-}[/tex]
g. [tex]Cl_2^0[/tex]
h. [tex]Fe^0[/tex]
i. [tex]Cu^{2+}Cl_2^-[/tex]
j. [tex]C^{4-}H_4^+[/tex]
Keep in mind lonely elements have 0 as their oxidation state.
Regards!
A frozen TV dinner contains 21 g of protein, 59 g of carbohydrate, and 18 g of fat. What is the total number of kilojoules (kJ) of potential energy within this TV
dinner? The accepted values for potential energy are 17 kJ per gram of protein, 17 kJ per gramof carbohydrate, and 38 kJ per gram of fat.
Round your answer to the nearest tens place and with the appropriate units.
Answer:
2040 kJ
Explanation:
Step 1: Calculate the energy provided by 21 g of protein
17 kJ are provided per gram of protein.
21 g × 17 kJ/g = 357 kJ
Step 2: Calculate the energy provided by 59 g of carbohydrate
17 kJ are provided per gram of carbohydrate.
59 g × 17 kJ/g = 1003 kJ
Step 3: Calculate the energy provided by 18 g of fat
38 kJ are provided per gram of fat.
18 g × 38 kJ/g = 684 kJ
Step 4: Calculate the total energy provided by the dinner
357 kJ + 1003 kJ + 684 kJ = 2044 kJ ≈ 2040 kJ
Tartaric acid is the white, powdery substance that coats sour candies such as Sour Patch Kids. Combustion analysis of a 12.01-gg sample of tartaric acid, which contains only carbon, hydrogen, and oxygen, produced 14.08 gg CO2CO2 and 4.32 gg H2OH2O. Part A Find the empirical formula for tartaric acid. Express your answer as a chemical formula. Enter the elements in the order C, H, and
Answer:
C2H3O3
Explanation:
Empirical formula is the simplest whole number ratio of moles of atoms that you can find in a molecule.
In combustion analysis all Carbon reacts producing CO2 and all hydrogen reacts producing H2O. With the differences in masses we can find the mass of oxygen and their moles:
Moles CO2 = Moles C:
14.08g * (1mol/44.01g) = 0.3199 moles C * (12.01g/mol) = 3.8423g C
Moles H2O:
4.32g H2O * (1mol/18.01g) = 0.2399 moles H2O * (2mol H / 1molH2O) = 0.4797moles H = 0.4797g H
Mass O:
12.01g = Mass O + 3.8423g C + 0.4797g H
Mass O = 7.688g O
Moles O:
7.688g O * (1mol/16g) = 0.48 moles O
The ratio of atoms (Dividing in the moles of C that are the lower number of moles):
O: 0.48moles O / 0.3199 moles C = 1.50
C: 0.3199 moles C / 0.3199 moles C = 1
H: 0.4797 moles H / 0.3199 moles C = 1.50
As empirical formula requires whole numbers:
O: 1.50* 2 = 3
C: 1*2 = 2
H: 1.50*2 = 3
The empirical formula is:
C2H3O3The position of the equilibrium for a system where K = 6.4 × 10 9 can be described as being favoring ________________
Answer:
to the right (products side)
Explanation:
The equilibrium constant K describes the ratio between the concentration of products and reactants at equilibrium. For a general reaction:
a A + b B → c C + d D
The equilibrium constant expression is:
[tex]K = \frac{[C]^{c} [D]^{d} }{[A]^{a} [B]^{b} }[/tex]
A low value of K indicates that the concentration of products (C and D) is low in relation with the concentration of reactants (A and B).
Conversely, a high value of K indicated that the concentration of products is high compared with the concentration of reactants.
Since K = 6.4 × 10⁹ is a high value, the concentration of products is higher than the concentration of reactants at equilibrium. Thus, the position of the equilibrium is favored to the right.
A chemist makes of nickel(II) chloride working solution by adding distilled water to of a stock solution of nickel(II) chloride in water.Calculate the concentration of the chemist's working solution. Round your answer to significant digits.
Answer:
0.0900 mol/L
Explanation:
A chemist makes 330. mL of nickel(II) chloride working solution by adding distilled water to 220. mL of a 0.135 mol/L stock solution of nickel(II) chloride in water. Calculate the concentration of the chemist's working solution. Round your answer to significant digits.
Step 1: Given data
Initial concentration (C₁): 0.135 mol/LInitial volume (V₁): 220. mLFinal concentration (C₂): ?Final volume (V₂): 330. mLStep 2: Calculate the concentration of the final solution
We prepare a dilute solution from a concentrated one. We can calculate the concentration of the working solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂
C₂ = 0.135 mol/L × 220. mL/330. mL = 0.0900 mol/L
What is the empirical formula of a compound that has a pseudoformula of C3.5H8?
Answer:
The ratio of carbon and hydrogen atoms = 3.5 : 8
= 7 : 16
Then,the empirical formula is C7H16
C3H8 is ________
A. unsaturated
B. saturated
I want to create water out of 45.4 Liters of Oxygen at STP. How much water will I produce?
STP: Standard Temperature and Pressure
72g H2O
36g H20
9g H20
18g H20
Answer:
72.96 of water produce by 45.4 L of oxygen at STP.
Explanation:
[tex]H_2+\frac{1}{2}O_2\rightarrow H_2O[/tex]
1 mole of oxygen=22.4 L at STP
[tex]\frac{1}{2}[/tex]\mole of oxygen=22.4/2=11.2 L
11.2 L of oxygen required to produce water=1 mole
1 L of oxygen required to produce water=1/11.2 mole
45.4 L of oxygen required to produce water=[tex]\frac{1}{11.2}\times 45.4[/tex]
45.4 L of oxygen required to produce water=[tex]\frac{45.4}{11.2}[/tex]moles
1 mole of water=18 g
[tex]\frac{45.4}{11.2}[/tex]moles of water=[tex]18\times \frac{45.4}{11.2}[/tex]
[tex]\frac{45.4}{11.2}[/tex]moles of water=72.96 g
Hence, 72.96 of water produce by 45.4 L of oxygen at STP.
11th grade chemistry question will mark brainliest
2.50 g of CO2 gas is confined in a rigid cylinder at a pressure
of 4.65 atm. If 0.42 g of gas is released from the cylinder,
what is the new pressure?
Answer:
3.88 atm
Explanation:
We'll begin by calculating the number of mole of CO₂ in each case. This can be obtained as follow:
For 2.50 g of CO₂:
Mass of CO₂ = 2.5 g
Molar mass of CO₂ = 12 + (2×16) = 44 g/mol
Mole of CO₂ =?
Mole = mass / molar mass
Mole of CO₂ = 2.5 / 44
Mole of CO₂ = 0.06 mole
For 0.42 g of CO₂:
Mass of CO₂ = 2.5 g
Molar mass of CO₂ = 44 g/mol
Mole of CO₂ =?
Mole = mass / molar mass
Mole of CO₂ = 0.42 / 44
Mole of CO₂ = 0.010 mole
Finally, we shall determine the new pressure. This can be obtained as follow:
Initial mole (n₁) = 0.06 mole
Initial pressure (P₁) = 4.65 atm
Final mole (n₂) = 0.06 – 0.010 = 0.05 mole
Final pressure (P₂) =?
NOTE: Temperature and volume is constant.
P₁ / n₁ = P₂ / n₂
4.65 / 0.06 = P₂ / 0.05
Cross multiply
0.06 × P₂ = 4.65 × 0.05
0.06 × P₂ = 0.2325
Divide both side by 0.06
P₂ = 0.2325 / 0.06
P₂ = 3.88 atm
Thus, the new pressure is 3.88 atm.
If 0.21J of heat cause a 0.308 degree C temperature change, what mass of water is present?
a 0.0702 g
b 0.00540 g
c 0.163 g
d 18.4 g
Answer:
The correct answer is Option c (0.163 g).
Explanation:
Given:
Heat energy,
Q = 0.21 J
Specific heat,
c = 4.184 J/g°c
Change in temperature,
ΔT = 0.308°C
As we know,
⇒ [tex]Q=mc \Delta T[/tex]
By substituting the values, we get
[tex]0.21=m\times 4.184\times 0.308[/tex]
[tex]m=\frac{0.21}{0.308\times 4.184}[/tex]
[tex]=\frac{0.21}{1.28867}[/tex]
[tex]=0.163 \ g[/tex]
Please help help please
Answer: The correct answer is B.
Explanation: Segregate most organic acids from oxidizing mineral acids. Keep oxidizers away from other chemicals, especially flammables.
Answer:
Segregate most organic acids from oxidizing mineral acids. Keep oxidizers away from other chemicals, especially flammables, combustibles, and toxic materials. Keep corrosives away from substances that they may react with and release corrosive, toxic, or flammable vapors.
How many g of Al are required to produce 2.8 mol of Al2O3
Answer:
290 g Al₂O₃
General Formulas and Concepts:
Atomic Structure
Reading a Periodic TableMolesStoichiometry
Using Dimensional AnalysisExplanation:
Step 1: Define
[Given] 2.8 mol Al₂O₃
[Solve] g Al₂O₃
Step 2: Identify Conversions
[PT] Molar Mass of Al: 26.98 g/mol
[PT] Molar Mass of O: 16.00 g/mol
Molar Mass of Al₂O₃: 2(26.98) + 3(16.00) = 101.96 g/mol
Step 3: Convert
[DA] Set up: [tex]\displaystyle 2.8 \ mol \ Al_2O_3(\frac{101.96 \ g \ Al_2O_3}{1 \ mol \ Al_2O_3})[/tex][DA] Multiply [Cancel out units]: [tex]\displaystyle 285.488 \ g \ Al_2O_3[/tex]Step 4: Check
Follow sig fig rules and round. We are given 2 sig figs.
285.488 g Al₂O₃ ≈ 290 g Al₂O₃
Topic: AP Chemistry
Unit: Atomic Structure
Many home barbeques are fueled with propane gas (C3H8)(C3H8). Part A What mass of carbon dioxide is produced upon the complete combustion of 27.9 LL of propane (the approximate contents of one 5-gallon tank)
Answer:
41264 g of CO₂
Explanation:
Combustion reaction is:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
1 mol of propane react to 5 moles of oxygen in order to proudce 3 moles of carbon dioxide and 4 moles of water.
In a combustion reaction, our reactant reacts to oxygen and the products are always CO₂ and water.
We have the volume of propane but we need moles of it, so we need to apply density.
Density = mass / volume so mass = density . volume.
Density of propane is: 493 g/L
Mass of propane is 493 g/L . 27.9L = 13754.7 g
We convert mass to moles: 13754.7 g . 1 mol/ 44g = 312.6 moles
According to reaction, 1 mol of propane can produce 3 moles of CO₂
Our 312.6 moles will produce 312.6 . 3 = 937.8 moles
We convert moles to mass: 937.8 mol . 44 g/mol = 41264 g
g The theoretical yield of a certain reaction is 123 g of Al2O3. If the actual yield when the experiment is performed is 0.209 mol Al2O3, what is the percent yield
Answer:
Percent yield = 17.3%
Explanation:
The percent yield is defined as 100 times the ratio between actual yield in grams and theoretical yield in grams (123g).
Percent Yield = Actual Yield / Theoretical yield (123g) * 100
To find actual yield we need to convert the 0.209moles to grams:
Actual yield -Molar mass Al2O3: 101.96g/mol-
0.209mol * (101.96g/mol) = 21.3g
Percent yield = 21.3g / 123g * 100
Percent yield = 17.3%
Question 6: Energy Use (8 points)
A. The electricity supply of a certain U.S. state needs to be increased. The state is very cloudy and rainy from October to April. There are several large rivers, and there are almost no areas with high winds due to heavy forest cover. Several sources of underground heat are available. The state also has a surplus of organic waste.
i. Name two renewable energy sources, and state and explain whether or not the state should use them based on the description above. (6 points)
ii. If the state wants to minimize environmental damage, what energy sources should it consider using? Explain your position. (2 points)
Answer:
somebody small boy is not w e a r d
z0 0m = 257 473 5835 p c:- 12 34
Rank each of the following gases in order of increasing urms assuming equivalent amounts and all gases are at the same temperature and pressure where 1 has the lowest urms and 4 has the highest urms.
a. Gas 1 : H2S
b. Gas: He
c. Gas 3: NF3
d. Gas 4: H2O
The Urms refers to the root mean square speed of the gas. The order of increasing Urms for the gases shown in the question; NF3 < H2S < H2O < He.
What is the Urms?The Urms refers to the root mean square speed of the gas. This is ultimately dependent on the relative molecular mass of the gases when they are maintained at the same temperature.
Now, let us look at the order of increasing Urms for the gases shown in the question; NF3 < H2S < H2O < He.
Learnmore about Urms: https://brainly.com/question/365923