When taking the subgroup samples from product produced over a period of time rather than at an instant of time, which of the following occurs?
a.all of the above
b.maximum variation within a subgroup
c.maximum variation from subgroup to subgroup
e. easier to determine assignable causes

Answers

Answer 1

The correct option is b. When taking the subgroup samples from product produced over a period of time rather than at an instant of time, maximum variation within a subgroup occurs.

Variation refers to a change that occurs in the production process of an item or a product. A process that is consistent is one where variation has been reduced to the lowest possible level.

Subgroups are smaller parts of a whole. They are important when taking samples for statistical analysis. A subgroup will make it easier to identify if a process is consistent or inconsistent.

Each subgroup can be studied to determine the variation and how the process is functioning. Variation within a subgroup is a measure of how the samples within the subgroup differ from each other.

To know more about variation visit:

https://brainly.com/question/17287798

#SPJ11


Related Questions

The additional growth of plants in one week are recorded for 11 plants with a sample standard deviation of 2 inches and sample mean of 10 inches. t at the 0.10 significance level = Ex 1,234 Margin of error = Ex: 1.234 Confidence interval = [ Ex: 12.345 1 Ex: 12345 [smaller value, larger value]

Answers

Answer :  The confidence interval is [9.18, 10.82].

Explanation :

Given:Sample mean, x = 10

Sample standard deviation, s = 2

Sample size, n = 11

Significance level = 0.10

We can find the standard error of the mean, SE using the below formula:

SE = s/√n where, s is the sample standard deviation, and n is the sample size.

Substituting the values,SE = 2/√11 SE ≈ 0.6

Using the t-distribution table, with 10 degrees of freedom at a 0.10 significance level, we can find the t-value.

t = 1.372 Margin of error (ME) can be calculated using the formula,ME = t × SE

Substituting the values,ME = 1.372 × 0.6 ME ≈ 0.82

Confidence interval (CI) can be calculated using the formula,CI = (x - ME, x + ME)

Substituting the values,CI = (10 - 0.82, 10 + 0.82)CI ≈ (9.18, 10.82)

Therefore, the confidence interval is [9.18, 10.82].

Learn more about standard deviation here https://brainly.com/question/13498201

#SPJ11

distribute 6 balls into 3 boxes, one box can have at most one ball. The probability of putting balls in the boxes in equal number is?

Answers

To distribute 6 balls into 3 boxes such that each box can have at most one ball, we can consider the following possibilities:

Case 1: Each box contains one ball.

In this case, we have only one possible arrangement: putting one ball in each box. The probability of this case is 1.

Case 2: Two boxes contain one ball each, and one box remains empty.

To calculate the probability of this case, we need to determine the number of ways we can select two boxes to contain one ball each. There are three ways to choose two boxes out of three. Once the boxes are selected, we can distribute the balls in 2! (2 factorial) ways (since the order of the balls within the selected boxes matters). The remaining box remains empty. Therefore, the probability of this case is (3 * 2!) / 3^6.

Case 3: One box contains two balls, and two boxes remain empty.

Similar to Case 2, we need to determine the number of ways to select one box to contain two balls. There are three ways to choose one box out of three. Once the box is selected, we can distribute the balls in 6!/2! (6 factorial divided by 2 factorial) ways (since the order of the balls within the selected box matters). The remaining two boxes remain empty. Therefore, the probability of this case is (3 * 6!/2!) / 3^6.

Now, we can calculate the total probability by adding the probabilities of each case:

Total Probability = Probability of Case 1 + Probability of Case 2 + Probability of Case 3

                = 1 + (3 * 2!) / 3^6 + (3 * 6!/2!) / 3^6

To know more about probabilities visit-

brainly.com/question/20308508

#SPJ11

What type of proofs did they use? Bobby used __________. Elaine used __________.
a) Deductive reasoning; inductive reasoning
b) Mathematical proofs; logical proofs
c) Experimental evidence; statistical analysis
d) Because; because

Answers

Bobby used deductive reasoning while Elaine used inductive reasoning. Deductive reasoning is a process of reasoning that starts with an assumption or general principle, and deduces a specific result or conclusion based on that assumption or principle.

This type of reasoning uses syllogisms to move from general statements to specific conclusions. Deductive reasoning is commonly used in mathematics and logic. This type of reasoning is commonly used to develop scientific theories or to draw logical conclusions from observations of natural phenomena.Inductive reasoning, on the other hand, is a process of reasoning that starts with specific observations or data, and uses those observations to develop a general conclusion or principle. This type of reasoning moves from specific observations to more general conclusions. Inductive reasoning is commonly used in scientific research, where it is used to develop hypotheses based on observations of natural phenomena. Inductive reasoning is also used in the development of theories in the social sciences, such as economics and political science.

To know more about Deductive reasoning, visit:

https://brainly.com/question/7284582

#SPJ11

3) Find the root of f(x)= -1 in the interval [0,2] using the Newton-Raphson method f(zo) Co=Zo Xn+1 = An f(xn) f'(xn) f'(zo) or the iteration equation -

Answers

The root of f(x) = -1 in the interval [0,2] using the Newton-Raphson method is approximately 1.

To find the root using the Newton-Raphson method, we start with an initial guess, denoted as xo, which lies within the given interval [0,2]. We then iteratively refine this guess to get closer to the actual root. The iteration equation for the Newton-Raphson method is given by:

xn+1 = xn - f(xn) / f'(xn)

Here, f(x) represents the given function and f'(x) is its derivative. In this case, f(x) = -1. To find the derivative, we differentiate f(x) with respect to x. Since f(x) is a constant, its derivative is zero. Therefore, f'(x) = 0.

Now, let's proceed with the calculations. We choose an initial guess, say xo = 1, which lies within the interval [0,2]. Plugging this value into the iteration equation, we have:

x1 = xo - f(xo) / f'(xo)

  = 1 - (-1) / 0

  = 1

Since the denominator of the equation is zero, we cannot proceed with the iteration. However, we observe that f(1) = -1, which is the root we are looking for. Therefore, the root of f(x) = -1 in the interval [0,2] is approximately 1.

To know more about the Newton-Raphson, refer here:

https://brainly.com/question/31618240#

#SPJ11

a table of data is given. x f(x) −2 128 −1 27 0 5 1 1 2 0.1 which exponential model best represents the data? f(x) = 5(1.2)x f(x) = 5(0.2)x f(x) = 2(5)x f(x) = 2(0.5)x

Answers

An exponential model which best represents the data is,

f (x) = 5 (0.2)ˣ

We have to give that,

A table of data is shown in the attached image.

Let us assume that,

An exponential model which best represents the data is,

f (x) = abˣ

Put x = - 2, f (x) = 128 in above formula,

128 = a × b⁻²  .. (i)

Put x = - 1, f (x) = 27,

27 = ab⁻¹  .. (ii)

Divide (i) by (i);

128/27 = 1/b

b = 27/128

b = 0.2

From (ii);

27 = a/0.2

a = 27 x 0.2

a = 5

Hence, An exponential model which best represents the data is,

f (x) = abˣ

Substitute a = 5, b = 0.2,

f (x) = 5 (0.2)ˣ

To learn more about the function visit:

https://brainly.com/question/11624077

#SPJ12

14. (a) Use the substitution -4-√h to show that dh --8 In 4-√|-2√h + k where k is a constant (6) A team of scientists is studying a species of slow growing tree The rate of change in height of a

Answers

Let's begin by changing dh in the equation dh/dt = -2h + k, where k is a constant, to -4-h.-4-√h = -2√h + kWe can isolate the h terms on one side and the constants on the other side to simplify:

-√h = k + 2√h - 4

By combining similar phrases, we get:

-3√h = k - 4

Let's try to solve for h now:

√h = (k - 4) / -3

When we square both sides, we obtain:

h = ((k - 4) / -3)^2

Increasing the scope of the equation:

h = (k^2 - 8k + 16) / 9

Consequently, the formula for dh/dt = -4-h can be stated as follows:

dh/dt is equal to -8 |(-2h + k)|, or -8.

learn more about changing here :

https://brainly.com/question/16971318

#SPJ11

find a particular solution to the nonhomogeneous differential equation y′′ 4y′ 5y=−5x 3e−x.

Answers

A particular solution to the nonhomogeneous differential equation is [tex]y_p = (1/17)x - (2/17)e^{(-x).}[/tex]

To find a particular solution to the nonhomogeneous differential equation [tex]y'' + 4y' + 5y = -5x + 3e^{(-x)[/tex], we can use the method of undetermined coefficients.

First, let's find a particular solution for the complementary equation y'' + 4y' + 5y = 0. The characteristic equation for this homogeneous equation is [tex]r^2 + 4r + 5 = 0[/tex], which has complex roots: r = -2 + i and r = -2 - i. Therefore, the complementary solution is of the form [tex]y_c = e^(-2x)[/tex](Acos(x) + Bsin(x)).

Now, let's find a particular solution for the nonhomogeneous equation by assuming a particular solution of the form [tex]y_p = Ax + Be^{(-x)[/tex]. We choose this form because the right-hand side of the equation contains a linear term and an exponential term.

Taking the first and second derivatives of y_p, we have:

[tex]y_p' = A - Be^{(-x)[/tex]

[tex]y_p'' = -Be^{(-x)[/tex]

Substituting these derivatives into the original equation, we get:

[tex]-Be^{(-x)} + 4(A - Be^{(-x))} + 5(Ax + Be^{(-x))} = -5x + 3e^{(-x)}[/tex]

Simplifying this equation, we obtain:

(-A + 4A + 5B)x + (-B + 4B + 5A)e^(-x) = -5x + 3e^(-x)

Comparing the coefficients on both sides, we have:

-4A + 5B = -5 (coefficients of x)

4B + 5A = 3 (coefficients of e^(-x))

Solving these equations simultaneously, we find A = 1/17 and B = -2/17.

Therefore, a particular solution to the nonhomogeneous differential equation is:

[tex]y_p = (1/17)x - (2/17)e^{(-x)[/tex]

The general solution to the nonhomogeneous equation is the sum of the complementary solution and the particular solution:

[tex]y = y_c + y_p = e^{(-2x)}(Acos(x) + Bsin(x)) + (1/17)x - (2/17)e^{(-x)[/tex]

where A and B are arbitrary constants.

To know more about particular solution,

https://brainly.com/question/31383914

#SPJ11

The regression equation NetIncome = 2,277 + .0307 Revenue was estimated from a sample of 100 leading world companies (variables are in millions of dollars).
a) if Revenue =1, then NetIncome = _____ million
b) if Revenue =20,000, then NetIncome = _____ million

Answers

.a) if Revenue =1, then NetIncome = ____ million. Substituting the value of Revenue in the regression equation,NetIncome = 2,277 + .0307 * 1NetIncome = 2,277 + 0.0307NetIncome = 2,277.0307 millionb)

if Revenue = 20,000, then NetIncome = ____ millionSubstituting the value of Revenue in the regression equation,NetIncome = 2,277 + .0307 * 20,000NetIncome = 2,277 + 614NetIncome = 2,891 million.

Hence, if Revenue is 1, then NetIncome is 2,277.0307 million. If the revenue is 20,000, then the Net Income is 2,891 million.

To Know more about Substituting visit:

brainly.com/question/29383142

#SPJ11

A fair die is rolled 2 times. What is the probability of getting a 1 followed by a 4? Give your answer to 4 decimal places.

Answers

Answer: P(1 and 4) = .0278

Step-by-step explanation:

A die has 6 sides so it has 6 possible outcomes

Probability of getting a 1:

There is only one 1 on the die of 6 sides

P(1) = 1/6

Probability of getting a 4:

P(4) = 1/6

Probability of getting a 1 and then a 4:

Because it is a dependent event.  you need to get a 1 and then a 4, so you multiply

P(1 and 4) = 1/6 * 1/6

P(1 and 4) = 1/36

P(1 and 4) = .0278

The probability of getting a 1 followed by a 4 when rolling a fair die twice is approximately 0.0278

To calculate the probability of getting a 1 followed by a 4 when rolling a fair die twice, we need to consider the outcomes of each roll.

The probability of getting a 1 on the first roll is 1/6 since there is only one favorable outcome (rolling a 1) out of six possible outcomes (rolling numbers 1 to 6).

The probability of getting a 4 on the second roll is also 1/6, following the same reasoning.

Since the two rolls are independent events, we can multiply the probabilities:

P(1 followed by 4) = P(1st roll = 1) * P(2nd roll = 4) = (1/6) * (1/6) = 1/36 ≈ 0.0278

To know more about probability refer here:

https://brainly.com/question/14434990#

#SPJ11

describe all numbers x that are at a distance of 2 from the number 6 . express this using absolute value notation.

Answers

The  numbers x that are at a distance of 2 from the number 6 is found as: -4 and -8.

To find all the numbers x that are at a distance of 2 from the number 6, we will use the absolute value notation. Absolute value is denoted as |-| which refers to the distance of a number from zero on the number line. We use the same notation to find the distance between two numbers on the number line.The distance between the two numbers x and y is |-x-y|.

Given,Number 6: x = 6.

Distance: 2

We need to find all the numbers x that are at a distance of 2 from the number 6.

Absolute value is denoted as |-| which refers to the distance of a number from zero on the number line. We use the same notation to find the distance between two numbers on the number line.

The distance between the two numbers x and y is |-x-y|.

Therefore, we can express the absolute value of the difference between x and 6 as |-x-6|.

In order to find all numbers x that are 2 units away from 6, we solve the equation by setting |-x-6| equal to 2.2 = |-x-6|

The absolute value of |-x-6| is x+6 or -(x+6).Thus, we have the following equations:

x+6 = 2 or -(x+6) = 2x+6 = 2 or x+6 = -2x = -4 or x = -8 or -4

So, the numbers that are at a distance of 2 from the number 6 are -4 and -8.

Therefore, |x-6| = 2 for x = -4 and -8.

Know more about the absolute value

https://brainly.com/question/12928519

#SPJ11

find the surface area of the portion of the surface z = y 2 √ 3x lying above the triangular region t in the xy-plane with vertices (0, 0),(0, 2) and (2, 2).

Answers

The surface area of the portion of the surface z = y 2 √ 3x lying above the triangular region t in the xy-plane with vertices (0, 0), (0, 2), and (2, 2) is approximately 1.41451 square units.

The surface is given by[tex]`z = y^2/sqrt(3x)[/tex]`. The triangle is `t` with vertices at `(0,0), (0,2), and (2,2)`.We first calculate the partial derivatives with respect to [tex]`x` and `y`:`∂z/∂x = -y^2/2x^(3/2)√3` and `∂z/∂y = 2y/√3x[/tex]`.The surface area is given by the surface integral:[tex]∫∫dS = ∫∫√[1 + (∂z/∂x)^2 + (∂z/∂y)^2] dA.Over the triangle `t`, we have `0≤x≤2` and `0≤y≤2-x`.[/tex]

This is a difficult integral to evaluate, so we use Wolfram Alpha to obtain:`[tex]∫(2-x)√(3x^3+3(2-x)^4+4x^3)/3x^3dx ≈ 1.41451[/tex]`.Therefore, the surface area of the portion of the surface[tex]`z=y^2/sqrt(3x)[/tex]`lying above the triangular region `t` in the `xy`-plane with vertices `(0,0), (0,2) and (2,2)` is approximately `1.41451` square units.

To know more about vertices visit :-

https://brainly.com/question/29154919

#SPJ11

find the volume of the solid that lies under the plane 4x + 6y - 2z + 15 − 0 and above the rectangle

Answers

The problem involves finding the volume of the solid that lies under the plane 4x + 6y - 2z + 15 = 0 and above a given rectangle.  

The equation of the plane suggests a linear equation in three variables, and the rectangle defines the boundaries of the solid. We need to determine the volume of the region enclosed by the plane and the rectangle.

To find the volume of the solid, we first need to determine the limits of integration in the x, y, and z directions. The rectangle defines the boundaries in the x and y directions, while the equation of the plane determines the upper and lower limits in the z direction.

By setting up appropriate integral bounds and evaluating the triple integral over the region defined by the rectangle and the plane, we can calculate the volume of the solid.

It is important to note that the specific dimensions and coordinates of the rectangle are not provided in the question, so those details would need to be given in order to perform the calculations.

To know more about solid volumes click here: brainly.com/question/23705404

 #SPJ11

the table shows values for variable a and variable b. variable a 1 5 2 7 8 1 3 7 6 6 2 9 7 5 2 variable b 12 8 10 5 4 10 8 10 5 6 11 4 4 5 12 use the data from the table to create a scatter plot.

Answers

Title and scale the graph Finally, give the graph a title that describes what the graph represents. Also, give each axis a title and a scale that makes it easy to read and interpret the data.

To create a scatter plot from the data given in the table with variables `a` and `b`, you can follow the following steps:

Step 1: Organize the dataThe first step in creating a scatter plot is to organize the data in a table. The table given in the question has the data organized already, but it is in a vertical format. We will need to convert it to a horizontal format where each variable has a column. The organized data will be as follows:````| Variable a | Variable b | |------------|------------| | 1 | 12 | | 5 | 8 | | 2 | 10 | | 7 | 5 | | 8 | 4 | | 1 | 10 | | 3 | 8 | | 7 | 10 | | 6 | 5 | | 6 | 6 | | 2 | 11 | | 9 | 4 | | 7 | 4 | | 5 | 5 | | 2 | 12 |```

Step 2: Create a horizontal and vertical axisThe second step is to create two axes, a horizontal x-axis and a vertical y-axis. The x-axis represents the variable a while the y-axis represents variable b. Label each axis to show the variable it represents.

Step 3: Plot the pointsThe third step is to plot each point on the graph. To plot the points, take the value of variable a and mark it on the x-axis. Then take the corresponding value of variable b and mark it on the y-axis. Draw a dot at the point where the two marks intersect. Repeat this process for all the points.

Step 4: Title and scale the graph Finally, give the graph a title that describes what the graph represents. Also, give each axis a title and a scale that makes it easy to read and interpret the data.

To Know more about scatter plot visit:

https://brainly.com/question/29231735

#SPJ11

(Group A: S = 8.17 n = 10) (Group B: S = 2.25 n = 16). Calculate
the F stat for testing the ratio of two variances
12.6
13.18
10.25
12

Answers

The F-statistic for testing the ratio of the variances between Group A and Group B is approximately 0.85.

The F-statistic for testing the ratio of two variances can be calculated using the formula:

F = (S1^2 / S2^2)

Where S1^2 is the variance of Group A and S2^2 is the variance of Group B.

From the given information, we have:

Group A: S = 8.17, n = 10

Group B: S = 2.25, n = 16

To calculate the F-statistic, we need to first compute the variances:

Var(A) = S1^2 = (S^2 * (n - 1))

= (8.17^2 * (10 - 1))

= 66.7889

Var(B) = S2^2 = (S^2 * (n - 1))

= (2.25^2 * (16 - 1))

= 78.1875

Now, we can calculate the F-statistic:

F = (S1^2 / S2^2)

= (66.7889 / 78.1875)

≈ 0.8539

Rounded to two decimal places, the F-statistic for testing the ratio of the two variances is approximately 0.85.

It's important to note that the F-statistic is used to compare variances between groups. To determine the significance of the difference in variances, we need to compare the calculated F-statistic with the critical F-value for a given significance level and degrees of freedom.

In this case, the F-statistic of approximately 0.85 can be used to compare the variances of Group A and Group B. By comparing it to the critical F-value from the F-distribution table, we can assess whether the ratio of the variances is statistically significant or not.

In conclusion, the F-statistic for testing the ratio of the variances between Group A and Group B is approximately 0.85.

Learn more about variances here

https://brainly.com/question/25639778

#SPJ11

he following results come from two independent random samples taken of two populations.
Sample 1 n1 = 60, x1 = 13.6, σ1 = 2.4
Sample 2 n2 = 25, x2 = 11.6,σ2 = 3
(a) What is the point estimate of the difference between the two population means? (Use x1 − x2.)
(b) Provide a 90% confidence interval for the difference between the two population means. (Use x1 − x2. Round your answers to two decimal places.)
(BLANK) to (BLANK)
(c) Provide a 95% confidence interval for the difference between the two population means. (Use x1 − x2. Round your answers to two decimal places.)

Answers

a) Point estimate of the difference between the two population means (x1−x2)=13.6−11.6=2

b)  The 90% confidence interval for the difference between the two population means is

[0.91, 3.09].

c) The 95% confidence interval for the difference between the two population means is [0.67, 3.33].

(a) The point estimate of the difference between the two population means is given as;

x1 − x2=13.6−11.6=2

(b) Given a 90% confidence interval, we can find the value of z90% that encloses 90% of the distribution.

Hence, the corresponding values from the z table at the end of this question give us z

0.05=1.645.

The 90% confidence interval for the difference between the two population means using the given data is given as follows:

x1 − x2±zα/2(σ21/n1 + σ22/n2)^(1/2)

=2±1.645(2.4^2/60 + 3^2/25)^(1/2)

=2±1.645(0.683)

=2±1.123

The 90% confidence interval for the difference between the two population means is from 0.88 to 3.12.

(c) The 95% confidence interval is determined using z

0.025 = 1.96.

The 95% confidence interval for the difference between the two population means using the given data is given as follows:

x1 − x2±zα/2(σ21/n1 + σ22/n2)^(1/2)

=2±1.96(2.4^2/60 + 3^2/25)^(1/2)

=2±1.96(0.739)

=2±1.446

The 95% confidence interval for the difference between the two population means is from 0.55 to 3.45.

To know more about Point estimate visit:

https://brainly.com/question/30888009

#SPJ11

X₂ = A Cos 2πt + B Sin 2πt ANN (0,1)> independent B ~ N (0,1) ~ a) Find the distribution of 24₁, H₂ ? b) Find E (2)

Answers

The distribution of 24₁, H₂ is a normal distribution with mean 0 and standard deviation 1 and E(2) = 2

a) To find the distribution of 24₁, H₂, we need to determine the distribution of the random variable H₂.

The random variable H₂ is given as B ~ N(0,1), which means it follows a standard normal distribution.

The random variable 24₁ represents 24 independent and identically distributed standard normal random variables.

Since each variable follows a standard normal distribution, their sum (H₂) will also follow a normal distribution.

Therefore, the distribution of 24₁, H₂ is a normal distribution with mean 0 and standard deviation 1.

b) To find E(2), we need to determine the expected value of the random variable 2.

The random variable 2 is a constant and does not depend on any random variables.

Therefore, the expected value of 2 is simply the value of 2 itself.

E(2) = 2

To know more about distribution refer here:

https://brainly.com/question/29664127#

#SPJ11

How many polynomials are there of degree ≤2 in Z5​[x] ?

Answers

A polynomial is a mathematical expression that contains one or more variables that are raised to different powers and multiplied by coefficients.

Z5 is known as a finite field, which is a set of numbers with a limited number of elements. So, to answer the question, we have to count the number of polynomials with a degree of 2 or less in the Z5 field. The degree of a polynomial is the highest exponent of the variable in the polynomial.The total number of polynomials with a degree of 2 or less in Z5 is 76. Here's how we got that result:When x is raised to the power of 2, there are 5 possible coefficients. (0, 1, 2, 3, 4)When x is raised to the power of 1, there are also 5 possible coefficients.

(0, 1, 2, 3, 4)When x is raised to the power of 0, there are only 5 possible coefficients, which are the elements of the Z5 field. (0, 1, 2, 3, 4)Thus, there are 5 possible coefficients for x², 5 possible coefficients for x, and 5 possible constant terms. Therefore, there are 5 × 5 × 5 = 125 possible polynomials of degree ≤2 in Z5. However, we must subtract the polynomials of degree 0 (i.e., constant polynomials) and degree 1 (i.e., linear polynomials) to get the total number of polynomials of degree ≤2. There are 5 constant polynomials (i.e., polynomials of degree 0) and 5 linear polynomials.

Thus, the total number of polynomials of degree ≤2 is 125 - 5 - 5 = 115. Therefore, there are 115 polynomials of degree ≤2 in Z5[x].

To Know more about variables visit:

brainly.com/question/15078630

#SPJ11

Let X be a random variable with the following probability function fx(x) = p(1-p)*, x = 0, 1, 2,..., 0

Answers

Var(X) = E(X2) - [E(X)]2, Var(X) = [π2 / 6 * p(1-p)2] - [(1-p)2], Var(X) = [π2 / 6 - 1] * p(1-p)2 is the variance of X.

Mean of a random variable X is given by the formula:

Mean of X, E(X) = ∑[x * P(X=x)], where the summation is over all possible values of X.Using the given probability function:

P(X=0) = p(1-p)0 = 1
P(X=1) = p(1-p)1 = p(1-p)
P(X=2) = p(1-p)2
P(X=3) = p(1-p)3
And so on.
Now, we can find E(X) as follows:

E(X) = ∑[x * P(X=x)]
E(X) = (0 * P(X=0)) + (1 * P(X=1)) + (2 * P(X=2)) + (3 * P(X=3)) + ...

E(X) = 0 + (1 * p(1-p)) + (2 * p(1-p)2) + (3 * p(1-p)3) + ...
E(X) = (1 * p(1-p)) + (2 * p(1-p)2) + (3 * p(1-p)3) + ... ...(1)

Now, we can simplify the above expression to get a closed-form expression for E(X).

(1-p) * E(X) = (1-p)* (1 * p(1-p)) + (1-p)2 * (2 * p(1-p)2) + (1-p)3 * (3 * p(1-p)3) + ...

(1-p) * E(X) = (1-p)p(1-p) + (1-p)2p(1-p)2 + (1-p)3p(1-p)3 + ...

(1-p) * E(X) = p(1-p) * [1 + (1-p) + (1-p)2 + (1-p)3 + ...]

Note that the term in the square bracket above is the sum of an infinite geometric series with first term 1 and common ratio (1-p).

Using the formula for the sum of an infinite geometric series, we can simplify the above expression further:

(1-p) * E(X) = p(1-p) * [1 / (1 - (1-p))]

(1-p) * E(X) = p(1-p) / p

E(X) = (1-p)
Therefore, the mean of X is E(X) = (1-p).

Variance of a random variable X is given by the formula:

Var(X) = E(X2) - [E(X)]2

We already found the value of E(X) above. To find E(X2), we need to use the formula:

E(X2) = ∑[x2 * P(X=x)], where the summation is over all possible values of X.

Using the given probability function, we can find E(X2) as follows:

E(X2) = ∑[x2 * P(X=x)]
E(X2) = (02 * P(X=0)) + (12 * P(X=1)) + (22 * P(X=2)) + (32 * P(X=3)) + ...

E(X2) = (0 * p(1-p)0) + (1 * p(1-p)1) + (4 * p(1-p)2) + (9 * p(1-p)3) + ...
E(X2) = (p(1-p)) + (4p(1-p)2) + (9p(1-p)3) + ...
E(X2) = p(1-p) * [1 + 4(1-p) + 9(1-p)2 + ...]

Note that the term in the square bracket above is the sum of the squares of an infinite series with first term 1 and common ratio (1-p). This is called the sum of the squares of natural numbers.

Using the formula for the sum of squares of natural numbers, we can simplify the above expression further:

E(X2) = p(1-p) * [π2 / 6] * (1-p)

E(X2) = π2 / 6 * p(1-p)2

Therefore, the variance of X is:

Var(X) = E(X2) - [E(X)]2
Var(X) = [π2 / 6 * p(1-p)2] - [(1-p)2]
Var(X) = [π2 / 6 - 1] * p(1-p)2.

To learn more about variance, refer below:

https://brainly.com/question/31432390

#SPJ11

ind the circulation of F = 3xi + 4zj + 2yk around the closed path consisting of the following three curves traversed in the direction of increasing t. (0, 1,3 Cy: ry(t) = (cos t)i + (sin t)j + tk, Ostsa/2 Cz: r2(t) = j+ (1/2)(1 – t)k, Osts1 Cz: 13(t)= ti + (1 – t)j, Osts 1 (1, 0, 0) (0, 1, 0) ca X

Answers

The circulation of the vector field F = 3xi + 4zj + 2yk around the closed path formed by three curves is equal to 10π.

To find the circulation of F around the closed path, we need to calculate the line integral of F along each curve and sum them up.

The first curve, C1, is given by ry(t) = cos(t)i + sin(t)j + tk, where t ranges from 0 to π/2. To calculate the line integral along C1, we substitute the parametric equations into the vector field F:

∫F · dr = ∫(3x, 4z, 2y) · (dx, dy, dz)

= ∫(3cos(t), 4t, 2sin(t)) · (-sin(t)dt, cos(t)dt, dt)

= ∫(-3cos(t)sin(t)dt + 4tdt + 2sin(t)dt)

= ∫(-3/2sin(2t)dt + 4tdt + 2sin(t)dt)

Evaluating this integral from t = 0 to π/2, we get the contribution from C1.

The second and third curves, C2 and C3, can be similarly evaluated using their respective parameterizations and integrating along the paths.

After calculating the line integrals along each curve, we sum them up to obtain the circulation of F around the closed path.

The final result is 10π, which represents the circulation of F around the given closed path.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

find the least common denominator of the fractions: 1/7 and 2/3

Answers

The least common denominator of the fractions 1/7 and 2/3 is 21.

To find the least common denominator (LCD) of the fractions 1/7 and 2/3, follow the steps below:

Step 1: List the multiples of the denominators of the given fractions.7: 7, 14, 21, 28, 35, 42, 51, 63, 70, 77, 84, ...3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, ...

Step 2: Identify the least common multiple (LCM) of the denominators.7: 7, 14, 21, 28, 35, 42, 51, 63, 70, 77, 84, ...3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, ...LCM = 21

Step 3: Write the fractions with equivalent denominators.1/7 = (1 x 3) / (7 x 3) = 3/212/3 = (2 x 7) / (3 x 7) = 14/21

Step 4: The least common denominator of the given fractions is LCM = 21.

To know more about fractions:

https://brainly.com/question/10354322

#SPJ11

determine by the rational method the peak flow at the outfall of the watershed shown infig. p16.15. the 5-year intensity relation is 190/(tc 25.0), tc in minutes, i in in./hr.

Answers

The given relation is190/(tc 25.0), tc in minutes, i in in./hr. To determine the peak flow by the rational method, the following equation will be used :Q = CiA Where, Q = peak flow (ft3/s)C = runoff coefficienti = rainfall intensity (in/hr)A = drainage area (acres)Given, 5-year intensity relation is190/(tc 25.0), tc in minutes, i in in./hr.

Converting inches/hour to feet/second:190/(tc 25) × (1/12) = i Where i is the rainfall intensity (ft/s).Given, tc = 25 minutes. The rainfall intensity (i) can be calculated as: i = 190 / (25 × 60) × (1/12) = 0.132 ft/s Now, the runoff coefficient (C) can be calculated as follows: For the type of land use as given in the figure, the runoff coefficient (C) = 0.2Therefore,C = 0.2Now, the drainage area (A) can be calculated from the figure. As per the figure, A = 2.6 acres Therefore, A = 2.6 acres Putting the values in the equation, Q = CiA= 0.2 × 0.132 × 2.6= 0.068 ft3/sTherefore, the peak flow at the outfall of the watershed is 0.068 ft3/s.

To know more about minutes visit:

brainly.com/question/32674197

#SPJ11

0 Question 14 6 pts x = 2(0) + H WAIS scores have a mean of 75 and a standard deviation of 12 If someone has a WAIS score that falls at the 20th percentile, what is their actual score? What is the are

Answers

The area under the standard normal distribution curve to the left of the z-score -0.84 is 0.20.

Mean of WAIS scores = 75Standard deviation of WAIS scores = 12

We are required to find the actual score of someone who has a WAIS score that falls at the 20th percentile.

Using the standard normal distribution table:

Probability value of 20th percentile = 0.20

Cumulative distribution function, F(z) = P(Z ≤ z), where Z is the standard normal random variable.

At 20th percentile, z score can be calculated as follows:

F(z) = P(Z ≤ z) = 0.20z = -0.84

The actual score can be calculated as:

z = (x - μ) / σ, where x is the actual score, μ is the mean, and σ is the standard deviation.

x = z * σ + μx = -0.84 * 12 + 75x = 64.08

So, the actual score of someone who has a WAIS score that falls at the 20th percentile is 64.08.

The area under the standard normal distribution curve to the left of the z-score -0.84 is 0.20.

Know more about standard normal distribution curve here:

https://brainly.com/question/4079902

#SPJ11

find the coordinates of the circumcenter of the triangle with vertices j(5, 0) , k(5, −8) , and l(0, 0) . explain.

Answers

Therefore, the circumcenter of the triangle with vertices J(5, 0), K(5, -8), and L(0, 0) is (5, 0).

To find the circumcenter of a triangle, we need to find the point where the perpendicular bisectors of the triangle's sides intersect. The perpendicular bisector of a line segment is a line that is perpendicular to the segment and passes through its midpoint.

Let's find the midpoint and equation of the perpendicular bisector for each pair of points:

For points J(5, 0) and K(5, -8):

The midpoint of JK is (5+5)/2, (0+(-8))/2 = (5, -4).

The slope of JK is (0-(-8))/(5-5) = 8/0, which is undefined since the denominator is 0.

The perpendicular bisector of JK is a vertical line passing through the midpoint (5, -4), which can be represented by the equation x = 5.

For points K(5, -8) and L(0, 0):

The midpoint of KL is (5+0)/2, (-8+0)/2 = (2.5, -4).

The slope of KL is (-8-0)/(5-0) = -8/5.

The negative reciprocal of -8/5 is 5/8, which is the slope of the perpendicular bisector.

Using the midpoint (2.5, -4) and slope 5/8, we can find the equation of the perpendicular bisector using the point-slope form:

y - (-4) = (5/8)(x - 2.5)

y + 4 = (5/8)x - (5/8)(2.5)

y + 4 = (5/8)x - 5/4

y = (5/8)x - 5/4 - 16/4

y = (5/8)x - 21/4

4y = 5x - 21

For points L(0, 0) and J(5, 0):

The midpoint of LJ is (0+5)/2, (0+0)/2 = (2.5, 0).

The slope of LJ is (0-0)/(5-0) = 0/5, which is 0.

The perpendicular bisector of LJ is a horizontal line passing through the midpoint (2.5, 0), which can be represented by the equation y = 0.

Now, we have the equations of the perpendicular bisectors for each pair of points. To find the circumcenter, we need to find the point where these bisectors intersect.

Since the equation x = 5 represents a vertical line and y = 0 represents a horizontal line, their intersection point is (5, 0).

To know more about circumcenter,

https://brainly.com/question/31441375

#SPJ11

The coordinates of the circumcenter of the triangle with vertices J(5, 0), K(5, -8), and L(0, 0) are (2.5, -4).

To find the coordinates of the circumcenter of a triangle, we can use the properties of perpendicular bisectors. The circumcenter is the point of intersection of the perpendicular bisectors of the triangle's sides.

Let's start by finding the equations of the perpendicular bisectors for two sides of the triangle:

Side JK:

The midpoint of side JK can be found by averaging the coordinates of J(5, 0) and K(5, -8):

Midpoint(JK) = ((5+5)/2, (0+(-8))/2) = (5, -4)

The slope of side JK is undefined (vertical line).

The equation of the perpendicular bisector passing through the midpoint (5, -4) can be found by taking the negative reciprocal of the slope of JK:

Slope of perpendicular bisector = 0

Since the perpendicular bisector is a horizontal line passing through (5, -4), its equation is y = -4.

Side JL:

The midpoint of side JL can be found by averaging the coordinates of J(5, 0) and L(0, 0):

Midpoint(JL) = ((5+0)/2, (0+0)/2) = (2.5, 0)

The slope of side JL is 0 (horizontal line).

The equation of the perpendicular bisector passing through the midpoint (2.5, 0) can be found by taking the negative reciprocal of the slope of JL:

Slope of perpendicular bisector = undefined (vertical line)

Since the perpendicular bisector is a vertical line passing through (2.5, 0), its equation is x = 2.5.

Now, we have two equations for the perpendicular bisectors: y = -4 and x = 2.5.

The circumcenter is the point of intersection of these two lines. Solving the system of equations, we find:

x = 2.5

y = -4

Therefore, the coordinates of the circumcenter of the triangle with vertices J(5, 0), K(5, -8), and L(0, 0) are (2.5, -4).

Learn more about circumcenter at https://brainly.com/question/31441375

#SPJ11

the first term of an arithmetic sequence is −12. the common difference of the sequence is 7. what is the sum of the first 30 terms of the sequence? enter your answer in the box.

Answers

Therefore, the sum of the first 30 terms of the arithmetic sequence is 2685.

To find the sum of the first 30 terms of an arithmetic sequence, we can use the formula for the sum of an arithmetic series:

Sn = (n/2)(2a + (n-1)d)

Where Sn represents the sum of the first n terms, a is the first term, d is the common difference, and n is the number of terms.

In this case, the first term a is -12, the common difference d is 7, and we want to find the sum of the first 30 terms, so n is 30.

Plugging the values into the formula, we get:

S30 = (30/2)(2(-12) + (30-1)(7))

= 15(-24 + 29(7))

= 15(-24 + 203)

= 15(179)

= 2685

To know more about arithmetic sequence,

https://brainly.com/question/11613005

#SPJ11

HELP ASAP ~ WILL GIVE BRAINLIEST ASAP
NEED REAL ANSWERS PLEASE!!!
SEE PICTURES ATTACHED
What are the domain and range of the function?
f(x)=12x+5−−−−√
Domain: [−5, [infinity])
Range: (−[infinity], [infinity])
Domain: [0, [infinity])
Range: (−5, [infinity])
Domain: (−5, [infinity])
Range: (0, [infinity])
Domain: [−5, [infinity])
Range: [0, [infinity])

Answers

Domain: [−5/12, [infinity]) Range: [0, [infinity]) Therefore, the correct option is: d.

The given function is f(x) = 12x + 5 −√.

We are to determine the domain and range of this function.

Domain of f(x):The domain of a function is the set of all values of x for which the function f(x) is defined.

Here, we have a square root of (12x + 5), so for f(x) to be defined, 12x + 5 must be greater than or equal to 0. Therefore,12x + 5 ≥ 0 ⇒ 12x ≥ −5 ⇒ x ≥ −5/12

Thus, the domain of f(x) is [−5/12, ∞).

Range of f(x):The range of a function is the set of all values of y (outputs) that the function can produce. Since we have a square root, the smallest value that f(x) can attain is 0.

So, the minimum of f(x) is 0, and it can attain all values greater than or equal to 0.

Therefore, the range of f(x) is [0, ∞).

Therefore, the correct option is: Domain: [−5/12, [infinity]) Range: [0, [infinity])

Know more about the Domain

https://brainly.com/question/28934802

#SPJ11

What would be an example of a null hypothesis when you are testing correlations between random variables x and y ? a. there is no significant correlation between the variables x and y t
b. he correlation coefficient between variables x and y are between −1 and +1. c. the covariance between variables x and y is zero d. the correlation coefficient is less than 0.05.

Answers

The example of a null hypothesis when testing correlations between random variables x and y would be: a. There is no significant correlation between the variables x and y.

In null hypothesis testing, the null hypothesis typically assumes no significant relationship or correlation between the variables being examined. In this case, the null hypothesis states that there is no correlation between the random variables x and y. The alternative hypothesis, which would be the opposite of the null hypothesis, would suggest that there is a significant correlation between the variables x and y.

To know more about variables visit:

brainly.com/question/29583350

#SPJ11

Given are five observations for two variables, and y. X; Yi The estimated regression equation for these data is ŷ = 0.1 +2.7x. a. Compute SSE, SST, and SSR using the following equations (to 1 decimal

Answers

SSE (Sum of Squares Error) is a statistical measure of the difference between the values predicted by a regression equation and the actual values.

It is an important concept in regression analysis because it provides a measure of the goodness of fit of the model. SST (Total Sum of Squares) is a statistical measure of the total variation in a set of data. It is an important concept in regression analysis because it provides a measure of the total variation in the dependent variable that can be attributed to the independent variable.

SSR (Sum of Squares Regression) is a statistical measure of the variation in the dependent variable that is explained by the independent variable. It is an important concept in regression analysis because it provides a measure of the goodness of fit of the model.

Given are five observations for two variables, and [tex]y. X; Yi[/tex] The estimated regression equation for these data is [tex]ŷ = 0.1 +2.7x[/tex].

The data are given below: [tex]x: 2, 4, 6, 8, 10 y: 5, 10, 15, 20, 25[/tex]

To compute SSE, SST, and SSR, we will use the following equations:

[tex]SST = ∑(yi - ȳ)² SSE = ∑(yi - ŷi)² SSR = SST[/tex] - SSE where [tex]ȳ[/tex] is the mean of y.

We first need to compute the mean of [tex]y: ȳ = (5 + 10 + 15 + 20 + 25)/5 = 15[/tex]

Now we can compute SST: [tex]SST = ∑(yi - ȳ)² = (5 - 15)² + (10 - 15)² + (15 - 15)² + (20 - 15)² + (25 - 15)² = 200 SSE: ŷ1 = 0.1 + 2.7(2) = 5.5 ŷ2 = 0.1 + 2.7(4) = 10.3 ŷ3 = 0.1 + 2.7(6) = 15.1 ŷ4 = 0.1 + 2.7(8) = 19.9 ŷ5 = 0.1 + 2.7(10) = 24.7[/tex][tex]SSE = ∑(yi - ŷi)² = (5 - 5.5)² + (10 - 10.3)² + (15 - 15.1)² + (20 - 19.9)² + (25 - 24.7)² ≈ 5.8 SSR: SSR = SST - SSE = 200 - 5.8 ≈ 194.2[/tex]

Answer: SSE = 5.8, SST = 200, SSR = 194.2

To know more about values visit:

https://brainly.com/question/30145972

#SPJ11

if p(e)=0.60, p(e or f)=0.70, and p(e and f)=0.05, find p(f).

Answers

To find the probability of event F, we can use the formula for the probability of the union of two events: p(E or F) = p(E) + p(F) - p(E and F). Given that p(E or F) = 0.70 and p(E and F) = 0.05.

We can substitute these values into the formula to solve for p(F).

We know that p(E or F) = p(E) + p(F) - p(E and F), so we can rearrange the formula to solve for p(F):

p(E or F) - p(E) = p(F) - p(E and F)

0.70 - 0.60 = p(F) - 0.05

Simplifying the equation, we have:

0.10 = p(F) - 0.05

Adding 0.05 to both sides:

p(F) = 0.10 + 0.05

p(F) = 0.15

Therefore, the probability of event F, denoted as p(F), is 0.15.

To know more about probability click here: brainly.com/question/31828911

#SPJ11

From a table of integrals, we know that for ,≠0a,b≠0,

∫cos()=⋅cos()+sin()2+2+.∫eatcos⁡(bt)dt=eat⋅acos⁡(bt)+bsin⁡(bt)a2+b2+C.

Use this antiderivative to compute the following improper integral:

∫[infinity]01cos(3)− = limT→[infinity]∫0[infinity]e1tcos(3t)e−stdt = limT→[infinity] if ≠1s≠1

or

∫[infinity]01cos(3)− = limT→[infinity]∫0[infinity]e1tcos(3t)e−stdt = limT→[infinity] if =1.s=1. help (formulas)
For which values of s do the limits above exist? In other words, what is the domain of the Laplace transform of 1cos(3)e1tcos(3t)?

help (inequalities)
Evaluate the existing limit to compute the Laplace transform of 1cos(3)e1tcos(3t) on the domain you determined in the previous part:

()=L{e^1t cos(3)}=

Answers

"From a table of integrals, we know that for [tex]\(a \neq 0\)[/tex] and [tex]\(b \neq 0\):[/tex]

[tex]\[\int \cos(at) \, dt = \frac{1}{a} \cdot \cos(at) + \frac{1}{b} \cdot \sin(bt) + C\][/tex]

and

[tex]\[\int e^a t \cos(bt) \, dt = \frac{e^{at}}{a} \cdot \cos(bt) + \frac{b}{a^2 + b^2} \cdot \sin(bt) + C\][/tex]

Use this antiderivative to compute the following improper integral:

[tex]\[\int_{-\infty}^{0} \cos(3t) \, dt = \lim_{{T \to \infty}} \int_{0}^{T} e^t \cos(3t) \, e^{-st} \, dt = \lim_{{T \to \infty}} \text{ if } s \neq 1, \, \text{ or } \lim_{{T \to \infty}} \text{ if } s = 1.\][/tex]

For which values of [tex]\(s\)[/tex] do the limits above exist? In other words, what is the domain of the Laplace transform of [tex]\(\frac{1}{\cos(3)} \cdot e^t \cos(3t)\)[/tex]?

Evaluate the existing limit to compute the Laplace transform of  on the domain you determined in the previous part:

[tex]\[L\{e^t \cos(3t)\[/tex].

To know more about antiderivative visit-

brainly.com/question/9700015

#SPJ11

from the cross ab/ab (coupling configuration) x ab/ab, what is the recombination frequency if the progeny numbers are 72 ab/ab, 68 ab/ab, 17 ab/ab, and 21 ab/ab?

Answers

The recombination frequency from the cross ab/ab (coupling configuration) x ab/ab is 15%.Recombination frequency refers to the frequency of the offspring that have a recombinant genotype. It is calculated by dividing the number of recombinant offspring by the total number of offspring and then multiplying by 100.

In the given cross ab/ab (coupling configuration) x ab/ab, the progeny numbers are as follows:72 ab/ab (non-recombinant)68 ab/ab (non-recombinant)17 ab/ab (recombinant)21 ab/ab (recombinant)The total number of offspring is 72 + 68 + 17 + 21 = 178.The number of recombinant offspring is 17 + 21 = 38.Therefore, the recombination frequency is (38/178) x 100 = 21.3%.

However, since the given cross is in coupling configuration (ab/ab x ab/ab), the percentage of recombinant offspring is subtracted from 50 to get the recombination frequency:50 - 21.3 = 28.7%.Therefore, the recombination frequency from the given cross is 28.7%, which is approximately 15% more than the recombination frequency observed in the repulsion configuration.

To know more about offspring visit:

https://brainly.com/question/14128866

#SPJ11

Other Questions
the map shows some back swamps. (a back swamp is a swampy area in the floodplain, commonly a silted-in, abandoned river channel.) what is the name of one of the back swamps on the map? Area involvingA rectangular paperboard measuring 35 in long and 24 in wide has a semicircle cut out of it, as shown below.Find the area of the paperboard that remains. Use the value 3.14 for x, and do not round your answer. Be sure to include thecorrect unit in your answer.24 in35 in0808inXin in Find the value of each of the six trigonometric functions of theangle theta in the figure.Find the value of each of the six trigonometric functions of the angle 0 in the figure. b a=28 and b=21 0 led a faulk corporation uses a process costing system for its two production departments: mixing and baking. the company provided the following manufacturing cost information for the month of june. In Roulette, 18 of the 38 spaces on the wheel are black.Suppose you observe the next 10 spins of a roulette wheel.(a) What is the probability that exactly half of the spins land on black?(b) What is the probability that at least 8 of the spins land on black? A project is a one-time job that has - A. B. C. D. Indefinite starting and ending points Clearly defined objectives, schedule, and scope Must have a budget All of the above QUESTION 3, MARKS: 20 Project milestone determines - A. B. O C. D. C Controlling sequence of activities Start and completion dates of all work If the requested completion date is possible All of the above QUESTION 4, MARKS: 20 In order to address any changes in the project, what action you (assume you are a project leader) should take? A. Project leader can do any changes without any discussion with team members B. Any changes can be done without the concern of upper management C. Recommended options should be listed, prepare decision matrix, get feedback from members, and get approval from top management D. None of the above QUESTION 5, MARKS: 20 What is the role of a project manager during the project close-out? A. Just handed over to the clients without obtaining acceptance B. Ensure the project is opted for deliver and formally accepted by the clients C. Complete documentation is not a must during close out D. Brainstorm to give thanks to the team members Discuss the challenges faced by organisations trying to improve the environmental sustainability OR ethics of their supply chains. In your answer refer to two of the approaches below:Lean and Green (waste reduction)The Circular economySustainable logistics and transportModern slaverySupplier codes of conductTransparency and traceability.Link your answer to at least one of the United Nations Sustainable Development Goals and illustrate your discussion with a businesscase(s). If the joint probability density of X and Y is given by Find a) Marginal density of X b) Conditional density of Y given that X-1/4 c) P(Y < 1/X = ) d) E (YX =) and Var(Y)X = ) e) P(Y < 1|X In Carroll's classification, sequential reasoning for fluid intelligence, reading and spelling are a part of __________.A. emotional intelligenceB. narrow intelligenceC. abstract intelligenceD. kinesthetic intelligence To practice Problem-Solving Strategy 7.1 Rotational dynamics problems.Suppose that you are holding a pencil balanced on its point. If you release the pencil and it begins to fall, what will be the angular acceleration when it has an angle of 10.0 degreesfrom the vertical?Sort the forces as producing a torque of positive, negative, or zero magnitude about the rotational axis identified in Part A. Keep in mind that counterclockwise rotations are positive. A government agency is putting a large project out for low bid. Bids are expected from ten contractors and will have a normal distribution with a mean of $3.3 million and a standard deviation of $0.27 million. Devise and implement a sampling experiment for estimating the distribution of the minimum bid and the expected value of the minimum bid. C Place "Mean" and "Std Dev" in column A in rows 1 and 2, respectively, and place their corresponding values in column B. Place the column headers "Bid 1", "Bid 2", and so on out to "Bid 10" in cells C1, D1, and so on out to L1, respectively. To generate random numbers for the first bid, in the cells in the "Bid 1" column, enter the formula =NORM.INV( $$$$) in the cells in column C below C1. To generate random numbers for the remaining bids, enter in the cells in columns D through L below row 1. To determine the winning bid for the bids in row 2, enter the column header "Winner" in cell M1, and enter the formula =MIN() in cell M2. Winners for other rows can be calculated using Recording Of Transactions I are provided here with simple step-by-step explanations. These solutions for Recording Of Transactions I are extremely popular among Class 11 Commerce students for Accountancy Recording Of Transactions I Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the NCERT Book of Class 11 Commerce Accountancy Chapter 3 are provided here for you for free. You will also love the ad-free experience on Meritnations NCERT Solutions. All NCERT Solutions for class Class 11 Commerce Accountancy are prepared by experts and are 100% accurate. QS 13-15 (Algo) Computing profit margin and return on total assets LO P3 Edison Company reported the following for the current year: Net sales $ 91,000 67,000 Cost of goods sold Net income 21,840 Begi the four general types of evaluation research include all of the following except: On Dec 31, 2020, ABC Corp issued 4-year, 7% bonds with $2,000,000 as par value ABC Corp. received $2,240,000 in cash. The band interes pd semily on June 30 and December 31 every year. Ap Compute the following: Total bonds premium. Interest paid in cash semiannually. The Semiannual amortization amount of the bond premium. Total bonds interest expense over the 4 years. Activate Windows Question Moving to another question will save this response. plshelp with answering this question!The number of chocolate chips in an 18-ounce bag of chocolate chip cookies is approximately normally distributed with mean 1252 and standard deviation 129 chips. (a) What is the probability that a ran suppose the particle is shot toward the right from x = 1.0 m with a speed of 18 m/s . where is the particle's turning point? autoimmune disorder involving widespread muscle and connective tissue pain What are some of the successes, challenges and treatments for management of eating disorders in college students? How can colleges be helpful with respect to eating disorders Using Planck's constant as h=6.63 E-34 J*s, what is the wavelength of a proton with a speed of 5.00 E6 m/s? The mass of the proton is 1.66 E-27 kg.