Which of the following statements concerning vector and scalar quantities is incorrect? (K:1) Select one: O a. All vector quantities have mangitude O b. All scalar quantities have direction O c. All scalar quantities have magnitude O d. All vector quantities have direction

Answers

Answer 1

The statement all scalar quantities have direction  concerning vector and scalar quantities is incorrect . So option (b) is correct answer.

The statement which is incorrect concerning vector ( the physical quantity that has both directions as well as magnitude) and scalar (the physical quantity with only magnitude and no direction) quantities is: All scalar quantities have direction .A scalar quantity is one that can be specified by its magnitude and a unit of measurement, whereas a vector quantity is one that is described by its magnitude, direction, and a unit of measurement.

Therefore, the correct option is( B) All scalar quantities have direction.

To learn more about scalar and vector quantity visit below link

https://brainly.com/question/28518744

#SPJ11


Related Questions

A square of side length 3.0 m is placed on the x axis with its
center at (1.5, 1.5). A circular hole with a 1m radius is drilled
at the location (2, 2). Where is the center of mass of the
square?

Answers

To find the center of mass of the square, we need to consider the coordinates of its vertices.

Let's assume that the bottom-left vertex of the square is at (0, 0). Since the side length of the square is 3.0 m, the coordinates of its other vertices are as follows:

Bottom-right vertex: (3.0, 0)

Top-left vertex: (0, 3.0)

Top-right vertex: (3.0, 3.0)

To find the center of mass, we can average the x-coordinates and the y-coordinates of these vertices separately.

Average of x-coordinates:

[tex]\[ \bar{x} = \frac{0 + 3.0 + 0 + 3.0}{4} = 1.5 \][/tex]

Average of y-coordinates:

[tex]\[ \bar{y} = \frac{0 + 0 + 3.0 + 3.0}{4} = 1.5 \][/tex]

Therefore, the center of mass of the square is located at [tex]\((1.5, 1.5)\)[/tex].

To know more about center of mass visit-

brainly.com/question/31595023

#SPJ11

An electron (mass of 9.109×10^-31 kg) enters a uniform magnetic field of 5.43×10^-3 T, with its velocity in a direction perpendicular to the magnetic field. If the electron is initially at rest, how much potential difference must be provided to the electron to accelerate it through the magnetic field when the radius of its circular path is 2.26 cm?

Answers

A potential difference of about 2.32×10^-5 V is required to accelerate the electron through the magnetic field when the radius of its circular path is 2.26 cm.

The force on a charged particle in a uniform magnetic field is given by:

F = qvB

where: F is the force on the particle

q is the charge on the particle

v is the velocity of the particle

B is the magnetic field

The force is directed towards the center of the circular path, which has a radius r given by:

r = mv/qB

where: m is the mass of the particle

v is the velocity of the particle

q is the charge on the particle

B is the magnetic field

The potential difference (voltage) required to accelerate the electron through the magnetic field is given by:

V = KEq

where: V is the potential difference (voltage)

K is a constant that depends on the geometry of the system

E is the electric field

The electric field required to accelerate the electron through the magnetic field is given by:

E = F/q where: F is the force on the particle

q is the charge on the particle

Substituting the expression for F into the expression for E, we get:

E = F/q

= qvB/q

= vB

Therefore: V = KEq

= KEvB

Substituting the expression for r into the expression for v, we get: [tex]v = \sqrt{(qBr/m)}[/tex]

Substituting this expression into the expression for V, we get: [tex]V = KE(\sqrt{(qBr/m))}[/tex]

(Note that the charge q cancels out.)Substituting the given values into this expression, we get:

[tex]V = KE(\sqrt{(rmB))}[/tex]

The value of K depends on the geometry of the system and is not given. However, we can calculate the value of V for a particular value of K, and then adjust the value of K to get the desired value of V. For example, if we assume that K = 1, then:

[tex]V = KE(\sqrt{(rmB)}) \\= (1)(1.602\times10^-19 C)(\sqrt{((2.26\times10^-2 m)(9.109\times10^-31 kg)(5.43\times10^-3 T)))} \\= 2.32\times10^-5 V[/tex]

Therefore, a potential difference of about 2.32×10^-5 V is required to accelerate the electron through the magnetic field when the radius of its circular path is 2.26 cm.

To know more about potential difference, visit:

https://brainly.com/question/23716417

#SPJ11

A potential difference of 29.7 volts must be provided to the electron to accelerate it through the magnetic field when the radius of its circular path is 2.26 cm.

A charged particle with mass m, charge q, and speed v moving in a uniform magnetic field B feels a magnetic force

The magnitude of the magnetic force is given by:

F = |q|vB sin θ

where |q| is the magnitude of the charge on the particle, θ is the angle between the particle's velocity and the magnetic field, and v is the speed of the particle.

Since the force is perpendicular to the direction of motion, it will cause the particle to move in a circular path. The radius of the path is given by:

r = mv / |q|B

The potential difference required to accelerate an electron through the magnetic field when the radius of its circular path is 2.26 cm can be found using the following formula:

V = (1/2)mv² / qr

The mass of an electron is 9.109×10^-31 kg, and the magnetic field is 5.43×10^-3 T.

Since the electron is initially at rest, its initial velocity is zero.

Thus,

θ = 90° and

sin θ = 1.

r = 2.26 cm

= 0.0226 m

|m| = 9.109×10^-31 kg

|q| = 1.602×10^-19

CV = (1/2)mv² / qr

= (1/2) × 9.109×10^-31 × (2.99792×10^8)² / (1.602×10^-19 × 0.0226 × 5.43×10^-3)

V = 29.7 volts

Therefore, a potential difference of 29.7 volts must be provided to the electron to accelerate it through the magnetic field when the radius of its circular path is 2.26 cm.

To know more about potential difference, visit:

https://brainly.com/question/23716417

#SPJ11

49 A 5500-pF capacitor is charged to 95 V and then quickly connected to an inductor with 76-mH inductance. 33% Part (a) Find the maximum energy, in joules, stored in the magnetic field of the inductor max 33% Part (b) Find the peak value of the current, in amperes. 4 33% Part (C) Find the circuit's oscillation frequency, in hertz. ררר

Answers

(a) The maximum energy stored in the magnetic field of the inductor can be calculated using the formula: E = (1/2) * L * I^2, where L is the inductance and I is the peak current. Plugging in the values, we have E = (1/2) * 76e-3 * (95/5500e-12)^2 = 4.35 J.

(b) The peak value of the current can be calculated using the formula: I = V / sqrt(L/C), where V is the voltage and C is the capacitance. Plugging in the values, we have I = 95 / sqrt(76e-3 / 5500e-12) = 1.37 A.

(c) The circuit's oscillation frequency can be calculated using the formula: f = 1 / (2 * pi * sqrt(L * C)). Plugging in the values, we have f = 1 / (2 * pi * sqrt(76e-3 * 5500e-12)) = 348 Hz.

 To  learn  more  about frequency click on:brainly.com/question/29739263

#SPJ11

Give examples from your own experiences an example of a free-end reflection and fixed-end reflection."

Answers

In free-end reflection, a wave traveling along a medium encounters an open or free end, causing it to reflect back towards the source, resulting in interference and wave patterns and In fixed-end reflection, a wave traveling along a medium reaches a fixed or closed end, causing it to reverse its direction and reflect back towards the source, leading to interference and wave patterns.

Free-End Reflection:

Imagine a long rope that is held by one person at each end.

When one person moves their hand up and down in a periodic motion, a wave is generated that travels along the length of the rope.

At the opposite end of the rope, the wave encounters a free end where it reflects back towards the person who initially created the wave.

This reflection at the free end causes an interference pattern, resulting in a combination of the incoming and reflected waves.

This phenomenon can be observed in various scenarios involving strings, ropes, or even musical instruments like guitars.

Fixed-End Reflection:

Let's consider a rope tied securely to a wall or a post at one end.

If a wave is created by moving the rope up and down at the free end, the wave will travel along the length of the rope.

However, when it reaches the fixed end, it cannot continue beyond that point.

As a result, the wave undergoes reflection at the fixed end, reversing its direction.

The reflected wave then travels back along the rope in the opposite direction until it reaches the free end again, creating an interference pattern with the incoming wave.

This type of reflection can be observed in scenarios involving ropes tied to fixed objects, such as waves on a string fixed at one end or sound waves in a closed pipe.

Learn more about Reflection from the given link :

https://brainly.com/question/26494295

#SPJ11

Is it possible for two objects to be in thermal equilibrium if they are not in contact with each other? Explain.

Answers

It is not possible for two objects to be in thermal equilibrium if they are not in contact with each other. Thermal equilibrium occurs when two objects reach the same temperature and there is no net flow of heat between them. Heat is the transfer of thermal energy from a hotter object to a colder object.

When two objects are in contact with each other, heat can be transferred between them through conduction, convection, or radiation. Conduction is the transfer of heat through direct contact, convection is the transfer of heat through the movement of fluids, and radiation is the transfer of heat through electromagnetic waves.

If two objects are not in contact with each other, there is no medium for heat to transfer between them.

Therefore, they cannot reach the same temperature and be in thermal equilibrium. Even if the objects are at the same temperature initially, without any means of heat transfer, their temperatures will not change and they will not be in thermal equilibrium.

For example, let's consider two metal blocks, each initially at a temperature of 150 degrees Celsius. If the blocks are not in contact with each other and there is no medium for heat transfer, they will remain at 150 degrees Celsius and not reach thermal equilibrium.

In conclusion, for two objects to be in thermal equilibrium, they must be in contact with each other or have a medium through which heat can be transferred.

Without contact or a medium for heat transfer, the objects cannot reach the same temperature and therefore cannot be in thermal equilibrium.

Learn more about equilibrium

https://brainly.com/question/30694482

#SPJ11

An x-ray tube with a 1.2 mm focal spot is used to image a bullet lodged 6 cm from the anterior chest wall. If the radiograph is taken in a PA projection at 120 cm SID with a tabletop to image receptor separation of 4 cm, what will be the size of the focal-spot blur?

Answers

The size of the focal-spot blur in this scenario would be approximately 1.9 mm.

To determine the size of the focal-spot blur, we need to consider the magnification factor caused by the distance between the object and the image receptor. In this case, the object (bullet) is located 6 cm from the anterior chest wall. The source-to-image distance (SID) is 120 cm, and the tabletop to image receptor separation is 4 cm.

Using the formula:

Magnification Factor = SID / (SID - object distance + image receptor distance)

Substituting the given values:

Magnification Factor = 120 cm / (120 cm - 6 cm + 4 cm)

                   = 120 cm / 118 cm

                   ≈ 1.017

The magnification factor tells us that the image of the bullet will be slightly larger than its actual size. Now, to calculate the size of the focal-spot blur, we multiply the magnification factor by the focal spot size:

Focal-Spot Blur = Magnification Factor * Focal Spot Size

              = 1.017 * 1.2 mm

              ≈ 1.9 mm

Therefore, the size of the focal-spot blur in this scenario would be approximately 1.9 mm.

To learn more about focal click here brainly.com/question/27835284

#SPJ11

A material has an index of refraction n = 1.78, the speed of the light in vacuum is c = 3 × 10^8 [m/s]. a. Which formula can be used to calculate the speed of the light in this material? b. The speed of the light in this material is given by: 01.78 x 3 x 10^8 3x10^8/1.78 1.78 /3x10^8 c. What is the speed of light in this material?

Answers

The formula that can be used to calculate the speed of light in a material is v = c / n. The speed of light in this material is approximately 1.69 × 10^8 meters per second.

a. The formula that can be used to calculate the speed of light in a material is:

v = c / n

where:

v is the speed of light in the material,

c is the speed of light in a vacuum,

n is the refractive index of the material.

b. The correct expression for the speed of light in this material is:

v = c / n

c. To calculate the speed of light in this material, we substitute the given values:

v = (3 × 10^8 [m/s]) / 1.78

v ≈ 1.69 × 10^8 [m/s]

Therefore, the speed of light in this material is approximately 1.69 × 10^8 meters per second.

To learn more about speed of light click here

https://brainly.com/question/1555553

#SPJ11

In an ideal RLC series circuit, if the circuit has a resistance of 11 k-ohms, a capacitance of 6.0 uF, and an inductance of 50 mH, what freq. is needed to minimize the impedance so the current will reach its maximum?

Answers

The frequency needed to minimize the impedance and maximize the current in the RLC series circuit is approximately 91.05 kHz.

In an ideal RLC series circuit, the impedance is minimized and the current reaches its maximum when the reactance due to the inductance and the reactance due to the capacitance cancel each other out. This occurs at the resonant frequency of the circuit.

The resonant frequency (f) of an RLC series circuit can be calculated using the formula:

f = 1 / (2π√(LC))

where L is the inductance and C is the capacitance.

Given:

Resistance (R) = 11 kΩ = 11,000 Ω

Capacitance (C) = 6.0 μF = 6.0 × 10^(-6) F

Inductance (L) = 50 mH = 50 × 10^(-3) H

Substituting the values into the formula:

f = 1 / (2π√((50 × 10^(-3)) × (6.0 × 10^(-6))))

Simplifying the expression:

f = 1 / (2π√(3 × 10^(-9)))

f = 1 / (2π × 1.732 × 10^(-3))

f ≈ 91.05 kHz

Therefore, the frequency needed to minimize the impedance and maximize the current in the RLC series circuit is approximately 91.05 kHz.

Learn more about frequency here:-

https://brainly.com/question/254161

#SPJ11

The most abundant isotope of carbon is 12 C, which has an atomic number Z = 6 and mass number A = 12. The electron configuration of the valence shell of carbon is characterised by two electrons in a p-shell with 1 = 1 (namely, 2p2). By applying Hund's rules, do you expect that carbon is a paramagnetic or diamagnetic material? Please briefly explain why in your own words.

Answers

Based on the electron configuration of carbon and Hund's rules, we can expect carbon to be a paramagnetic material due to the presence of unpaired electrons.

The electron configuration of carbon is 1s2 2s2 2p2, which means there are two electrons in the 2p subshell. According to Hund's rules, when orbitals of equal energy (in this case, the three 2p orbitals) are available, electrons will first fill each orbital with parallel spins before pairing up.

In the case of carbon, the two electrons in the 2p subshell would occupy separate orbitals with parallel spins.

This is known as having unpaired electrons. Paramagnetism is a property exhibited by materials that contain unpaired electrons. These unpaired electrons create magnetic moments, which align with an external magnetic field, resulting in attraction.

Therefore, based on the electron configuration of carbon and Hund's rules, we can expect carbon to be a paramagnetic material due to the presence of unpaired electrons.

Learn more about Hund's rules here : brainly.com/question/12646067
#SPJ11

Current Attempt in Progress = The circuit in the figure consists of switch S, a 6.00 V ideal battery, a 35.0 M92 resistor, and an airfilled capacitor. The capacitor has parallel circular plates of radius 6.00 cm, separated by 1.50 mm. At time t = 0, switch S is closed to begin charging the capacitor. The electric field between the plates is uniform. At t = 230 us, what is the magnitude of the magnetic field within the capacitor, at radial distance 2.40 cm? = Number i Units

Answers

To calculate the current, we use the formula I = V/R exp(-t/τ), where V is the voltage across the capacitor, R is the resistance in the circuit, t is the time, and τ is the time constant.

The magnetic field within the air-filled capacitor can be determined using the formula B = μ₀I/(2r), where μ₀ is the permeability of free space, I is the current flowing in the circuit, and r is the radial distance from the center of the capacitor.

Substituting the given values, we find the capacitance C = 6.64×10⁻¹¹ F and the time constant τ = 2.32×10⁻³ s.

At t = 230 μs, the voltage across the capacitor is V = 0.30 V.

Using the formula I = V/R exp(-t/τ), we calculate the current I = 6.75×10⁻⁹ A.

Substituting the values of μ₀, I, and r into B = μ₀I/(2r), we find the magnetic field B = 9.98 × 10⁻⁹ T.

Therefore, the magnitude of the magnetic field within the capacitor, at a radial distance of 2.40 cm, at time t = 230 μs is 9.98 × 10⁻⁹ T.

To learn more about  magnetic field, you can visit the following link:

brainly.com/question/29731324

#SPJ11

The following image of the 2008 Sloan Digital Sky Survey maps
galaxies and their redshift.
What is the redshift of the Sloan Great Wall?

Answers

The Sloan Great Wall is a galactic wall and is known to be one of the largest structures in the observable universe. Its redshift is around z = 0.08, which makes it around 1.5 billion light-years away from Earth.

This means that the light we see from it today has traveled through the universe for around 1.5 billion years before it reached our telescopes. Redshift is the change of wavelengths of light caused by a source moving away from or toward an observer.

It is commonly used in astronomy to determine the distance and relative velocity of celestial objects. In the case of the Sloan Great Wall, its redshift of z = 0.08 indicates that it is moving away from us at a significant rate.

To know more about structures visit:

https://brainly.com/question/33100618

#SPJ11

Ross is very proud of his loud speakers in his car. As he drives along, pedestrians often stare due to their hearing his loud, low-pitched booming. How would we characterize the sounds emitting from Ross' car? High frequency, low amplitude Low frequency, low amplitude Low frequency, high amplitute. High frequency, high amplitude I 26 1 point In response to hearing the noise from Ross' car described in the previous question, we would expect a pedestrian to experience maximum displacement of the basilar membrane at its apex. True False 27 Tpoint Maura holds her head still while looking straight ahead while trying to locate the origin of a sound. Which of the following differences in sound localization will be the most difficult for her to detect? Sounds coming from directly in front of her (12 o'clock) from sounds coming directly behind her (6 o'clock) All directions of sound will be impossible to distinguish without moving the head. Sounds coming from her right side (3 o'clock) from sounds coming from her left side (9 o'clock) All directions of sound will be easy to distinguish without moving the head. 28 1 point The human sensory homunculus devotes considerable space to the larger parts of the body, such as the torso and legs. True False

Answers

The sounds emitting from Ross' car can be characterized as low frequency, high amplitude.

The question states that pedestrians often stare at Ross' car due to the loud, low-pitched booming sound they hear. From this description, we can infer certain characteristics of the sound.

Low frequency refers to sounds with a lower pitch, such as deep bass notes. These low-pitched sounds are associated with lower frequencies on the sound spectrum.

High amplitude refers to the intensity or loudness of the sound. When a sound is described as loud, it indicates a high amplitude or a greater magnitude of sound waves.

Therefore, the sounds emitting from Ross' car can be characterized as low frequency (low-pitched) and high amplitude (loud). This combination of characteristics results in the loud, low-pitched booming sound that draws the attention of pedestrians.

To know more about sounds refer here:

https://brainly.com/question/30045405#

#SPJ11

What is the (a) atomic number Z and the (b) atomic mass number A of the product of the reaction of the element ¹2X with an alpha particle: ¹2X (ap)Y? (a) Number i Units (b) Number i Units

Answers

(a) The atomic number (Z) of the product is 124.

(b) The atomic mass number (A) of the product is 130.

(a) The atomic number (Z) of the product can be determined by subtracting the charge of the alpha particle (2) from the atomic number of the element ¹²₆X. Therefore, Z = 126 - 2 = 124.

(b) The atomic mass number (A) of the product can be obtained by summing the atomic mass numbers of the element ¹²₆X and the alpha particle (4). Hence, A = 126 + 4 = 130.

Correct  Question: What is the (a) atomic number Z and the (b) atomic mass number A of the product of the reaction of the element ¹²₆X  with an alpha particle: ¹²₆X (α,ρ)[tex]^{A}_Z Y[/tex]?

Read more on Atomic Number here: https://brainly.com/question/11353462

#SPJ11

4. a. An electron in a hydrogen atom falls from an initial energy level of n = 5 to a final level of n = 2. Find the energy, frequency, and wavelength of the photon that will be emitted for this sequence. [ For hydrogen: E--13.6 eV/n?] b. A photon of energy 3.10 eV is absorbed by a hydrogen atom, causing its electron to be released with a kinetic energy of 225 eV. In what energy level was the electron? c. Find the wavelength of the matter wave associated with an electron moving at a speed of 950 m/s

Answers

The energy of the emitted photon is 10.2 eV, its frequency is 3.88 × 10^15 Hz, and its wavelength is 77.2 nm. The electron was in the energy level of n = 3. The wavelength is approximately 0.167 nm.

a. To find the energy, frequency, and wavelength of the photon emitted when an electron falls from n = 5 to n = 2 in a hydrogen atom, we can use the formula for the energy levels of hydrogen: E = -13.6 eV/n^2.

The initial energy level is n = 5, so the initial energy is E1 = -13.6 eV/5^2 = -0.544 eV. The final energy level is n = 2, so the final energy is E2 = -13.6 eV/2^2 = -3.4 eV.

The energy of the emitted photon is the difference between the initial and final energies: ΔE = E2 - E1 = -3.4 eV - (-0.544 eV) = -2.856 eV.

To convert the energy to joules, we multiply by the conversion factor 1.602 × 10^-19 J/eV, giving ΔE = -2.856 eV × 1.602 × 10^-19 J/eV = -4.578 × 10^-19 J.

The frequency of the photon can be found using the equation E = hf, where h is Planck's constant (6.626 × 10^-34 J·s). Rearranging the equation, we have f = E/h, so the frequency is f = (-4.578 × 10^-19 J) / (6.626 × 10^-34 J·s) = -6.91 × 10^14 Hz.

To find the wavelength of the photon, we can use the equation c = λf, where c is the speed of light (3 × 10^8 m/s). Rearranging the equation, we have λ = c/f, so the wavelength is λ = (3 × 10^8 m/s) / (-6.91 × 10^14 Hz) = -4.34 × 10^-7 m = -434 nm. Since wavelength cannot be negative, we take the absolute value: λ = 434 nm.

b. If a photon of energy 3.10 eV is absorbed by a hydrogen atom and the released electron has a kinetic energy of 225 eV, we can find the initial energy level of the electron using the equation E = -13.6 eV/n^2.

The initial energy level can be found by subtracting the kinetic energy of the electron from the energy of the absorbed photon: E1 = 3.10 eV - 225 eV = -221.9 eV.

To find the value of n, we solve the equation -13.6 eV/n^2 = -221.9 eV. Rearranging the equation, we have n^2 = (-13.6 eV) / (-221.9 eV), n^2 = 0.06128, and taking the square root, we get n ≈ 0.247. Since n must be a positive integer, the energy level of the electron was approximately n = 1.

c. The de Broglie wavelength of an electron can be calculated using the equation λ = h / (mv), where h is Planck's constant (6.626 × 10^-34 J·s), m is the mass of the electron (9.10938356 × 10^-31 kg), and v is the velocity of the electron (950 m/s).

Substituting the values into the equation, we have λ = (6.626 × 10^-34 J·s) / ((9.10938356 × 10^-31 kg) × (950 m/s)) = 7.297 × 10^-10 m = 0.7297 nm.

To learn more about photon click here:

brainly.com/question/33017722

#SPJ11

2. A ball is thrown at a wall with a velocity of 12 m/s and rebounds with a velocity of 8 m/s. The ball was in contact with the wall for 35 ms. Determine: 2.1 the mass of the ball, if the change in momentum was 7.2 kgm/s
2.2 the average force exerted on the ball

Answers

The mass of the ball, if the change in momentum was 7.2 kgm/s is 0.6 kg. The average force exerted on the ball is  205.71 N.

2.1

To determine the mass of the ball, we can use the equation:

Change in momentum = mass * velocity

Given that the change in momentum is 7.2 kgm/s, and the initial velocity is 12 m/s, we can solve for the mass of the ball:

7.2 kgm/s = mass * 12 m/s

Dividing both sides of the equation by 12 m/s:

mass = 7.2 kgm/s / 12 m/s

mass = 0.6 kg

Therefore, the mass of the ball is 0.6 kg.

2.2

To find the average force exerted on the ball, we can use the equation:

Average force = Change in momentum / Time

Given that the change in momentum is 7.2 kgm/s, and the time of contact with the wall is 35 ms (or 0.035 s), we can calculate the average force:

Average force = 7.2 kgm/s / 0.035 s

Average force = 205.71 N

Therefore, the average force exerted on the ball is 205.71 N.

To learn more about force: https://brainly.com/question/12785175

#SPJ11

If the period of a 70.0-cm-long simple pendulum is 1.68 s, what
is the value of g at the location of the pendulum?

Answers

The value of g at the location of the pendulum is approximately 9.81 m/s², given a period of 1.68 s and a length of 70.0 cm.

The period of a simple pendulum is given by the formula:

T = 2π√(L/g),

where:

T is the period,L is the length of the pendulum, andg is the acceleration due to gravity.

Rearranging the formula, we can solve for g:

g = (4π²L) / T².

Substituting the given values:

L = 70.0 cm = 0.70 m, and

T = 1.68 s,

we can calculate the value of g:

g = (4π² * 0.70 m) / (1.68 s)².

g ≈ 9.81 m/s².

Therefore, the value of g at the location of the pendulum is approximately 9.81 m/s².

To learn more about acceleration due to gravity, Visit:

https://brainly.com/question/88039

#SPJ11

Multiple-Concept Example 1 discusses the concepts that are relevant to this problem. A person undergoing radiation treatment for a cancerous growth receives an absorbed dose of 2.5 Gy. All the radiation is absorbed by the growth. If the growth has a specific heat capacity of 3200 J/(kg-C°), determine the rise in its temperature. Number i Units

Answers

In this problem, a person undergoing radiation treatment receives an absorbed dose of 2.5 Gy, which is all absorbed by the cancerous growth. We are asked to determine the rise in temperature of the growth, given that it has a specific heat capacity of 3200 J/(kg-°C). We need to calculate the change in temperature using the absorbed dose and the specific heat capacity.

The absorbed dose, measured in gray (Gy), is a unit of radiation dose that represents the amount of energy absorbed per unit mass. In this case, the entire absorbed dose of 2.5 Gy is absorbed by the cancerous growth.

To determine the rise in temperature, we can use the formula:

ΔT = Q / (m * c)

Where ΔT is the change in temperature, Q is the absorbed dose, m is the mass of the growth, and c is the specific heat capacity.

Since the absorbed dose is given as 2.5 Gy, we can use this value for Q. The mass of the growth is not given, so we cannot calculate the exact change in temperature. However, we can use this formula to understand the relationship between absorbed dose, specific heat capacity, and temperature change.

The specific heat capacity of the growth is given as 3200 J/(kg-°C). This value represents the amount of energy required to raise the temperature of 1 kilogram of the growth by 1 degree Celsius.

By plugging in the values into the formula, we can calculate the change in temperature. However, since the mass of the growth is not provided, we cannot calculate the exact value. The units for the change in temperature will be in degrees Celsius (°C).

To learn more about Specific heat capacity - brainly.com/question/28302909

#SPJ11

Give the value of the quantum number ℓ, if one exists, for a hydrogen atom whose orbital angular momentum has a magnitude of sqrt 30 (h/2π). A. ℓ=5
B. ℓ=6
C. ℓ=30

Answers

If one exists, for a hydrogen atom whose orbital angular momentum has a magnitude of sqrt 30 (h/2π), then the quantum number ℓ is 5. The correct option is A.

The quantum number ℓ can be calculated from the magnitude of the orbital angular momentum using the following formula:

L = √(ℓ(ℓ+1))(h/2π)

√(ℓ(ℓ+1))(h/2π) = √30 (h/2π)

Now,

ℓ(ℓ+1) = 30

ℓ² + ℓ - 30 = 0

(ℓ - 5)(ℓ + 6) = 0

ℓ - 5 = 0 or ℓ + 6 = 0

ℓ = 5 or ℓ = -6

Since the quantum number ℓ cannot be negative, the correct value for ℓ is ℓ = 5.

Therefore, the answer is A. ℓ = 5.

For more details regarding quantum number, visit:

https://brainly.com/question/32773003

#SPJ4

If we place a particle with a charge of 1.4 x 10° C at a position where the electric field is 8.5 x 10³ N/C, then the force experienced by the particle is?

Answers

The force experienced by the particle is 1.19 x 10³ N in the direction of the electric field.

When a charged particle is placed in an electric field, it experiences a force due to the interaction between its charge and the electric field. The force can be calculated using the formula F = qE, where F is the force, q is the charge of the particle, and E is the electric field strength.

Plugging in the values, we have F = (1.4 x 10⁻¹ C) * (8.5 x 10³ N/C) = 1.19 x 10³ N. The force is positive since the charge is positive and the direction of the force is the same as the electric field. Therefore, the force experienced by the particle is 1.19 x 10³ N in the direction of the electric field.

To learn more about electric field

Click here brainly.com/question/30544719

#SPJ11

4. (-14 Points) DETAILS OSCOLPHYS2016 17.5.P.039. What beat frequencies (in Hz) will be present in the following situations? (ə) if the musical notes 8 and E are played together (frequencies of 494 and 659 H2) HZ (D) of the musical notes and G are played together (frequencies of 698 and 784 Hz) Hz (c) if all four are played together (Enter your answers as a comma-separated list.) Hz atv A

Answers

The beat frequencies when all four notes A, E, D, and G are played together are: 165 Hz, 204 Hz, 290 Hz, 39 Hz, 125 Hz, and 86 Hz.

The beat frequencies are 165 Hz (A and E), 86 Hz (D and G), and various combinations when all four notes are played together.

(a) To find the beat frequency when the musical notes A and E are played together, we subtract the frequencies:

Beat frequency = |f_A - f_E|

Given information:

- Frequency of note A (f_A): 494 Hz

- Frequency of note E (f_E): 659 Hz

Calculating the beat frequency:

Beat frequency = |494 Hz - 659 Hz|

Beat frequency = 165 Hz

Therefore, the beat frequency when notes A and E are played together is 165 Hz.

(b) To find the beat frequency when the musical notes D and G are played together:

Beat frequency = |f_D - f_G|

Given information:

- Frequency of note D (f_D): 698 Hz

- Frequency of note G (f_G): 784 Hz

Calculating the beat frequency:

Beat frequency = |698 Hz - 784 Hz|

Beat frequency = 86 Hz

Therefore, the beat frequency when notes D and G are played together is 86 Hz.

(c) To find the beat frequencies when all four notes A, E, D, and G are played together:

The beat frequencies will be the pairwise differences among the frequencies of the notes. Let's calculate them:

Beat frequency between A and E = |f_A - f_E| = |494 Hz - 659 Hz| = 165 Hz

Beat frequency between A and D = |f_A - f_D| = |494 Hz - 698 Hz| = 204 Hz

Beat frequency between A and G = |f_A - f_G| = |494 Hz - 784 Hz| = 290 Hz

Beat frequency between E and D = |f_E - f_D| = |659 Hz - 698 Hz| = 39 Hz

Beat frequency between E and G = |f_E - f_G| = |659 Hz - 784 Hz| = 125 Hz

Beat frequency between D and G = |f_D - f_G| = |698 Hz - 784 Hz| = 86 Hz

Therefore, the beat frequencies when all four notes A, E, D, and G are played together are: 165 Hz, 204 Hz, 290 Hz, 39 Hz, 125 Hz, and 86 Hz.

To know more about frequencies, click here:

brainly.com/question/33270290

#SPJ11

If the flux of sunlight at Arrokoth (visited by New Horizons in
2019) is currently 0.95 W/m2 what is its distance from
the Sun in AU right now? (Use 3 sig. figs.)

Answers

The distance of Arrokoth from the Sun is approximately 1.030 AU.

To determine the distance of Arrokoth from the Sun, we can use the concept of solar flux and the inverse square law.

The solar flux (F) is given as 0.95 W/m^2. The solar flux decreases with distance from the Sun according to the inverse square law, which states that the intensity of radiation is inversely proportional to the square of the distance.

Let's denote the distance of Arrokoth from the Sun as "d" in astronomical units (AU). According to the inverse square law, we have the equation:

F ∝ 1/d^2

To find the distance in AU, we can rearrange the equation as follows:

d^2 = 1/F

Taking the square root of both sides, we get:

d = √(1/F)

Substituting the given value of solar flux (F = 0.95 W/m^2) into the equation, we have:

d = √(1/0.95)

Calculating this value gives us:

d ≈ 1.030 AU

Therefore, the distance of Arrokoth from the Sun is approximately 1.030 AU.

Learn more about distance at https://brainly.com/question/14984392

#SPJ11

1. A book will heat up if placed in the sunlight. Why is this not this an example of conduction? Explain why not 2. Describe a real-life situation of your own where heat is being transferred via conduction

Answers

1. The heating of a book in sunlight is primarily due to radiation, not conduction.

2. Holding a metal spoon in hot soup demonstrates heat transfer through conduction.

3. Placing a cold beverage can on a tabletop leads to heat transfer through conduction.

4. Holding an ice cube in your hand causes heat transfer through conduction, resulting in melting.

1. The heating of a book in sunlight is not an example of conduction because conduction refers to the transfer of heat through direct contact between objects or substances. In the case of the book in sunlight, the heat transfer occurs primarily through radiation, not conduction. Sunlight contains electromagnetic waves, including infrared radiation, which can transfer energy to the book's surface. The book absorbs the radiation and converts it into heat, causing its temperature to increase. Conduction, on the other hand, would involve the direct transfer of heat from one object to another through physical contact, such as placing a hot object on the book.

2. A real-life situation where heat is being transferred via conduction is when you hold a metal spoon in a pot of hot soup. The heat from the hot soup is conducted through the metal spoon to your hand. The metal spoon, being a good conductor of heat, allows the transfer of thermal energy from the hot soup to your hand through direct contact. The heat flows from the higher temperature (the soup) to the lower temperature (your hand) until thermal equilibrium is reached. This conduction process is why the metal spoon becomes hot when immersed in the hot soup, and you can feel the warmth spreading through the spoon when you touch it.

learn more about "beverage ":- https://brainly.com/question/25884013

#SPJ11

Explain how we could distinguish a quasar from a star using its
spectra?

Answers

Quasars are different from stars in a variety of ways, and one way to tell the difference between the two is to examine their spectra.

Quasars, unlike stars, have spectra that indicate a large amount of energy, and they emit far more radiation than stars.

Furthermore, quasars have very strong, broad emission lines that indicate the presence of superheated gas surrounding the black hole, whereas stars have more subtle absorption lines produced by their outer layers. This distinction in spectra is thus used to differentiate between quasars and stars.

Learn more about quasar at

https://brainly.com/question/30482971

#SPJ11

How many electrons does carbon have? how many are valence electrons? what third-row element has the same number of valence electrons as carbon?

Answers

Carbon has 6 electrons. To determine the number of valence electrons, we need to look at the electron configuration of carbon, which is 1s² 2s² 2p². The third-row element that has the same number of valence electrons as carbon is silicon (Si).

In the case of carbon, the first shell (1s) is fully filled with 2 electrons, and the second shell (2s and 2p) contains the remaining 4 electrons. The 2s subshell can hold a maximum of 2 electrons, and the 2p subshell can hold a maximum of 6 electrons, but in carbon's case, only 2 of the 2p orbitals are occupied. These 4 electrons in the outermost shell, specifically the 2s² and 2p² orbitals, are called valence electrons. The electron configuration describes the distribution of electrons in the different energy levels or shells of an atom.

Therefore, carbon has 4 valence electrons. Valence electrons are crucial in determining the chemical properties and reactivity of an element, as they are involved in the formation of chemical bonds.

The third-row element that has the same number of valence electrons as carbon is silicon (Si). Silicon also has 4 valence electrons, which can be seen in its electron configuration of 1s² 2s² 2p⁶ 3s² 3p². Carbon and silicon are in the same group (Group 14) of the periodic table and share similar chemical properties due to their comparable valence electron configurations.

To learn more about, valence electrons, click here, https://brainly.com/question/31264554

#SPJ11

Final answer:

Carbon has 6 electrons in total, with 4 of them being valence electrons. Silicon is the third-row element that shares the same number of valence electrons as carbon.

Explanation:

Carbon has 6 electrons in total. The electron configuration and orbital diagram for carbon are 1s²2s²2p¹, where the 1s and 2s orbitals are completely filled and the remaining two electrons occupy the 2p subshell. This means that carbon has 4 valence electrons.

The third-row element that has the same number of valence electrons as carbon is silicon (Si). Silicon also has 4 valence electrons.

Learn more about Electrons in Carbon here:

https://brainly.com/question/33829891

#SPJ3

Displacement d, is in the yz plane 58.8 ° from the positive direction of the y axis, has a positive z component, and has a magnitude of 3.52 m. Displacement d2 is in the xz plane 26.2 ° from the positive direction of the x axis, has a positive z component, and has magnitude 2.07 m. What are (a) d₁d₂, (b) the x component of d₁ × d₂, (c) the . X X y component of d₁ × d₂, (d) the z component of d₁ x d₂, and (e) the angle between d, and d₂ ?

Answers

(a) d₁d₂ = -5.56 m²

(b) The x component of d₁ × d₂ = -3.08 m²

(c) The y component of d₁ × d₂ = 0 m²

(d) The z component of d₁ × d₂ = 1.98 m²

(e) The angle between d₁ and d₂ = 31.8°

The given problem involves two displacements, d₁ and d₂, specified in terms of their magnitude, direction, and components. To solve the various parts of the question, we need to use vector operations.

(a) The product of two displacements, d₁d₂, is calculated by multiplying their magnitudes and taking the cosine of the angle between them. Since the angle between d₁ and d₂ is not given directly, we can find it by subtracting the given angles from 180°. Using the formula, d₁d₂ = (3.52 m) * (2.07 m) * cos(180° - 58.8° - 26.2°), we can calculate the value as -5.56 m².

(b) The x component of the cross product of d₁ and d₂ can be obtained using the formula, (d₁ × d₂)x = (d₁y * d₂z) - (d₁z * d₂y). Here, d₁y represents the y component of d₁, and d₂z represents the z component of d₂. Substituting the given values, we have (-3.52 m * sin(58.8°)) * (2.07 m * sin(26.2°)), which evaluates to -3.08 m².

(c) The y component of the cross product of d₁ and d₂, (d₁ × d₂)y, is given by (d₁z * d₂x) - (d₁x * d₂z). As both d₁ and d₂ have zero x components, the y component of their cross product will also be zero.

(d) The z component of the cross product of d₁ and d₂, (d₁ × d₂)z, is calculated as (d₁x * d₂y) - (d₁y * d₂x). Here, d₁x represents the x component of d₁, and d₂y represents the y component of d₂. Plugging in the given values, we get (3.52 m * cos(58.8°)) * (2.07 m * sin(26.2°)), which simplifies to 1.98 m².

(e) To find the angle between d₁ and d₂, we can use the dot product formula, d₁ · d₂ = |d₁| |d₂| cos θ, where θ is the angle between the two displacements. Rearranging the equation, we have cos θ = (d₁ · d₂) / (|d₁| |d₂|). Substituting the values, cos θ = (3.52 m * 2.07 m * cos(58.8°) * cos(26.2°)) / (3.52 m * 2.07 m), and solving for θ, we find the angle between d₁ and d₂ to be 31.8°.

Learn more about x component

brainly.com/question/29030586

#SPJ11

Consider the skier on a slope that is 32.8 degrees above horizontal. Her mass including equipment is 58.7 kg. E (a) What is her acceleration if friction is negligible? E a== units m/s^2

Answers

The acceleration of a skier on a slope that is 32.8 degrees above the horizontal is 3.66 m/s^2, assuming that the friction is negligible.

Let's derive this solution step by step. During free fall, acceleration is due to gravity. The acceleration due to gravity is 9.8 m/s^2 in the absence of air resistance. A component of the weight vector is applied parallel to the slope, resulting in a downhill acceleration.

The skier's weight is mg, where m is the mass of the skier and equipment and g is the acceleration due to gravity, which we assume to be constant.

Calculate the force parallel to the slope, which is the force acting to propel the skier forward down the slope. The downhill force is equivalent to the force acting along the x-axis, which is directed parallel to the slope. When we resolve the weight into components perpendicular and parallel to the slope,

The parallel component is : Parallel Force = Weight × sin (32.8).

We assume that the friction force is negligible since we are told to disregard it in the problem statement. The downhill acceleration is then obtained by dividing the downhill force by the skier's mass. It's expressed in meters per second squared

.Downhill Acceleration = (Parallel Force) / Mass = Weight × sin (32.8) / Mass

= (58.7 kg × 9.8 m/s^2 × sin 32.8) / 58.7 kg

= 3.66 m/s^2.

Therefore, the skier's acceleration is 3.66 m/s^2.

#SPJ11

Learn more about acceleration and friction https://brainly.com/question/22438157

The angular position of a point on the rim of a rotating wheel is given by = 2.95t - 3.782 +3.4013, where is in radians and tisin seconds. What are the angular velocities at (a) t = 2.44 s and (b) t = 9.80 s? (c) What is the average angular acceleration for the time interval that begins at t = 2.44 s and ends at t = 9.80 s? What are the instantaneous angular accelerations at (d) the beginning and (e) the end of this time interval?

Answers

The angular position of a point on the rim of a rotating wheel is given by = 2.95t - 3.782 +3.4013, where is in radians and t is in seconds. (a)the angular velocity at t = 2.44 s is 2.95 rad/s.(b)the angular velocity at t = 9.80 s is also 2.95 rad/s.(c)the average angular acceleration for the time interval from t = 2.44 s to t = 9.80 s is 0 rad/s².(d) the instantaneous angular acceleration at the beginning of the time interval (t = 2.44 s) is 0 rad/s².(e)the instantaneous angular acceleration at the end of the time interval (t = 9.80 s) is also 0 rad/s².

To find the angular velocities and angular accelerations, we can differentiate the given angular position function with respect to time.

Given:

θ(t) = 2.95t - 3.782 + 3.4013 (in radians)

t (in seconds)

a) Angular velocity at t = 2.44 s:

To find the angular velocity, we differentiate the angular position function with respect to time:

ω(t) = dθ(t)/dt

Differentiating θ(t) = 2.95t - 3.782 + 3.4013:

ω(t) = 2.95

Therefore, the angular velocity at t = 2.44 s is 2.95 rad/s.

b) Angular velocity at t = 9.80 s:

Similarly, differentiate the angular position function with respect to time:

ω(t) = dθ(t)/dt

Differentiating θ(t) = 2.95t - 3.782 + 3.4013:

ω(t) = 2.95

Therefore, the angular velocity at t = 9.80 s is also 2.95 rad/s.

c) Average angular acceleration from t = 2.44 s to t = 9.80 s:

The average angular acceleration is given by:

α_avg = (ω_final - ω_initial) / (t_final - t_initial)

Given:

ω_initial = 2.95 rad/s (at t = 2.44 s)

ω_final = 2.95 rad/s (at t = 9.80 s)

t_initial = 2.44 s

t_final = 9.80 s

Substituting the values:

α_avg = (2.95 - 2.95) / (9.80 - 2.44)

α_avg = 0 rad/s²

Therefore, the average angular acceleration for the time interval from t = 2.44 s to t = 9.80 s is 0 rad/s².

d) Instantaneous angular acceleration at the beginning (t = 2.44 s):

To find the instantaneous angular acceleration, we differentiate the angular velocity function with respect to time:

α(t) = dω(t)/dt

Since ω(t) = 2.95 rad/s is a constant, the derivative of a constant is zero:

α(t) = 0

Therefore, the instantaneous angular acceleration at the beginning of the time interval (t = 2.44 s) is 0 rad/s².

e) Instantaneous angular acceleration at the end (t = 9.80 s):

Similar to part (d), since ω(t) = 2.95 rad/s is a constant, the derivative of a constant is zero:

α(t) = 0

Therefore, the instantaneous angular acceleration at the end of the time interval (t = 9.80 s) is also 0 rad/s².

To learn more about angular accelerations visit: https://brainly.com/question/13014974

#SPJ11

You send light from a laser through a double slit with a distance = 0.1mm between the slits. The 2nd order maximum occurs 1.3 cm from the 0th order maximum on a screen 1.2 m away. What is the wavelength of the light? What color is the light?

Answers

You send light from a laser through a double slit with a distance = 0.1mm between the slits. The [tex]2^n^d[/tex] order maximum occurs 1.3 cm from the [tex]0^t^h[/tex] order maximum on a screen 1.2 m away.

1. The wavelength of the light is 1.083 × 10⁻⁷ meters.

2. The color is the light would be violet.

1. To determine the wavelength of the light and its color, we can use the double slit interference equation:

y = (λL) / d

where y is the distance between the [tex]0^t^h[/tex] order maximum and the [tex]2^n^d[/tex] order maximum on the screen, λ is the wavelength of light, L is the distance between the double slit and the screen, and d is the distance between the slits.

Given:

d = 0.1 mm = 0.1 × 10⁻³ m

y = 1.3 cm = 1.3 × 10⁻² m

L = 1.2 m

1.3 × 10⁻² m = (λ × 1.2 m) / (0.1 × 10⁻³ m)

Simplifying the equation,

λ = (1.3 × 10⁻²) m × 0.1 × 10⁻³ m) / (1.2 m)

λ = 1.083 × 10⁻⁷ m

Therefore, the wavelength of the light is approximately 1.083 × 10⁻⁷ meters.

2. To determine the color of the light, we can use the relationship between wavelength and color. In the visible light spectrum, different colors correspond to different ranges of wavelengths. The approximate range of wavelengths for different colors are:

Red: 620-750 nm

Orange: 590-620 nm

Yellow: 570-590 nm

Green: 495-570 nm

Blue: 450-495 nm

Violet: 380-450 nm

Comparing the calculated wavelength (1.083 × 10⁻⁷ m) to the range of visible light, we find that it falls within the range of violet light. Therefore, the color of the light would be violet.

To know more about double slit here

https://brainly.com/question/30890401

#SPJ4

Question 16 An element, X has an atomic number 45 and a atomic mass of 133.559 u. This element is unstable and decays by decay, with a half life of 68d. The beta particle is emitted with a kinetic energy of 11.71 MeV. Initially there are 9.41×10¹² atoms present in a sample. Determine the activity of the sample after 107 days (in μCi). 1 pts

Answers

The activity of the sample after 107 days is 0.2777 μCi.

Atomic number of an element, X = 45

Atomic mass of an element, X = 133.559 u

Half-life = 68 d

Initial number of atoms in the sample = 9.41 x 10¹²

Beta particle emitted with kinetic energy = 11.71 MeV

To determine the activity of the sample after 107 days (in μCi), we use the formula given below:

Activity = λN

Where,

λ is the decay constant

N is the number of radioactive nuclei.

We know that the decay constant (λ) of an element is related to the half-life (t1/2) of an element as follows:

λ = 0.693/t1/2

Hence, the decay constant (λ) of the element can be calculated as follows:

λ = 0.693/68 = 0.01019 per day

Thus, the activity of the sample can be calculated using the formula as shown below:

Activity = λN = (0.01019 per day) x (9.41 x 10¹² atoms) = 9.604 x 10¹⁰ decays per day

Now, the activity is calculated for one day. To find the activity for 107 days, we multiply it by 107.

Activity after 107 days = 9.604 x 10¹⁰ decays/day x 107 days = 1.0275 x 10¹³ decays

Thus, the activity of the sample after 107 days is 1.0275 x 10¹³ decays.

The activity is measured in Becquerel (Bq) and microcurie (μCi) units.

1 Bq = 27 nCi (nano Curies)

1 μCi = 37 MBq

Hence, the activity of the sample after 107 days (in μCi) is calculated as shown below:

Activity in μCi = 1.0275 x 10¹³ decays x (1 Bq/decays) x (27 nCi/1 Bq) x (1 μCi/10⁶ nCi) = 0.2777 μCi

Therefore, the activity of the sample after 107 days is 0.2777 μCi (rounded to four significant figures).

To learn more about sample, refer below:

https://brainly.com/question/32907665

#SPJ11

15. You measure the specific heat capacity of a gas and obtain the following results: Cp = -1 (1.13±0.04) kJ kg-¹ K-¹, and Cy = (0.72 ± 0.03) kJ kg-¹ K-¹. State whether this gas is more likely to be monatomic or diatomic. State the confidence level of your answer by calculating the number of standard deviations. Q15: y = 1.57 ± 0.09 (most likely monatomic ~10, diatomic ruled out by ~1.90).

Answers

The specific heat capacity, Cp, of a monatomic gas is 3/2 R, where R is the molar gas constant (8.31 J K-¹ mol-¹).  The specific heat capacity, Cp, of a diatomic gas is 5/2 R.

The specific heat capacity of a monatomic gas is less than the specific heat capacity of a diatomic gas. Therefore, the gas is more likely to be monatomic based on the values obtained.In order to calculate the number of standard deviations, the formula below is used:

\[\text{Number of standard deviations} = \frac{\text{observed value - mean value}}{\text{standard deviation}}\]Standard deviation, σ = uncertainty in the measurement (±) / 2 (as this is a random error)For Cp:-1 (1.13 ± 0.04) kJ kg-¹ K-¹ \[= -1.13\text{ kJ kg-¹ K-¹ } \pm 0.02\text{ kJ kg-¹ K-¹ }\].

To know more about calculate visit:

https://brainly.com/question/30781060

#SPJ11

Other Questions
Find the measure of the indicated arc.T56S?U 46-year-old patient comes to your office and tells you she was diagnosed with gastritis and that she has been experiencing numbness and tingling in her hands and feet for about 2 months. She also informs you she has been a vegetarian for 6 years. Her lab work reveals decreased Hgb, increased MCV, and increased ESR. Choose three (3) answer choices related to this case. a. Low serum ferritin b.MMA c. Decreased serum iron d. Sickle cells e. Hemolytic anemia f. Microcytic anemia g. Increased TBC h. Posterior lateral sclerosis 1. Increased transferrin 1. Macrocytic anemia k. Rouleaux 1. Rubbing your hands together warms them by converting work into thermal energy. If a woman rubs her hands back and forth for a total of 23 rubs, at a distance of 7.5 cm per rub, and an average frictional force of 35 N: a) What is the amount of energy transfered to heat? Q= b) What is the temperature increase if the mass of the tissue warmed is 0.100 kg and the specific heat capacity of the tissue is 3.49 kJ/(kg o C)? AT= C 1. Following vigorous exercise, the body temperature of a person weighing 75 kg is 41 C. At what rate in watts must the person transfer thermal energy to reduce the body temperature to 37 C in 30 min, assuming the body continues to produce energy at the rate of 150 W? (1W= 1 joule/sec or 1W=1J/s) The specific heat of the human body is 3500 J/kg C. P required: W A small plastic bead has been charged to -11 nC. Part A What is the magnitude of the acceleration of a proton that is 0.60 cm from the center of the bead? Express your answer with the appropriate units.ap = What kind of ideas does poetry convey that pros cannot Describe the following sectional planes: o Frontal/Coronal: o Transverse/Horizontal: o Sagittal: o Midsagittal: List the four abdominal quadrants and include at least two organs located primarily in each of the quadrants. In addition, provide a small, labeled drawing of the quadrants. Consider the recurrence functionT(n) = 27T(n/3) + 274log nGive an expression for the runtime T(n) if the recurrence can be solved with theMaster Theorem. Assume that T(n) = 1 for n 1. Social media platforms compete for our attention so they cansell more online ad spaceGroup of answer choicesTrueFalse Your neighbor tries to stop his child from sneaking out by removing the distributor cap from the family vehicle. In Behaviorism terms, this would most likely to be considered which of the following:a.Negative Punishmentb.Positive Punishmentc.Negative Reinforcementd.Positive Reinforcement Step 2 in this academic exercise, you will have to read two short stories by juan rulfo. you will then have to identify the most glaring instances, in each story, where you believe anamorphosis is in full swing. in order to accomplish this, please support your claims by citing evidence from both short stories and any of the theorists we have read thus far. please format step 2 in the format of a mini essay. the length of step 2 should be between 500 words A 0.5 kg book is on a level table. You apply a force, downwards and to the right at 20degrees as shown, on the book. The coefficient of static friction between the book and thetable is 0.2 and the coefficient of kinetic friction is 0.1. What is the maximum force (inNewtons) that you can push with at this angle before the book begins to move? This is a Multiple Choice Question. Select the ONE answer you think is correct.The "Saladin Tithe" wasa tax levied by Henry II of England and Philip II of France to cover their anticipated crusading expenses.a tax levied by the papacy to maintain the upkeep of the Church of the Holy Sepulcher in Jerusalem.a tax levied by William II of Sicily to assist Archbishop Joscius of Tyre in his efforts to convince western leaders of the need for a crusade.a poll tax Saladin imposed on the Latins residing in his realm. Think Outside the Box: Cognitive Control & Reward Activity trends A linear trend of prefrontal cortex activity (cognitive control) & upside down U-shape for reward activity sensitivity (Casey et al. 2008, see imbalance model) suggest that it might be a product of nature or how we are built. Telzer et al.'s research suggest practice in meaningful family activities can foster maturity, indicating nurture. 2.) Do we want to foster maturity? Were these trends naturally built for an adaptive reason? 3.) What are some positive and negative consequences that may occur as a result of speeding maturity of both systems? Which finding does the nurse anticipated while assessing a apatient who has had limited mobility for the past month? I need help with 53 please Which term describes a disclosure of confidital information to the news media? 2. a) Econometrics model modifies the mathematical model of economic theory by introducing the disturbance variables. Discuss the statement further and also explain the reasons for including residuals into economic models. b) Correlation analysis is believed to be symmetric in nature. Discuss and give explanation on the properties of correlation coefficients? extra credit a 6-sided die will be rolled once. a. review each event and put an x in the box and calculate the probability. Two charges are placed 17 cm away and started repelling each other with a force of 3.6x10- N. If one of the charges is 18 nC, whatwould be the other charge? Special Right Triangles! Pleaseeee helppp!