Which part of the decay will take the most time?


the decay of U-238 to Th-234


the decay of Th-234 to Ra-226


the decay of Ra-226 to Po-214


the decay of Po-214 to Pb-206

Answers

Answer 1

The decay process of each isotope depends on their half-lives. The half-life is the amount of time required for half of the initial sample to decay.

U-238 has a half-life of 4.5 billion years, which means it takes billions of years for half of the U-238 to decay. Th-234 has a half-life of 24 days, which is relatively short compared to U-238. Ra-226 has a half-life of 1,600 years, which is shorter than U-238 but longer than Th-234. Po-214 has a half-life of 164 microseconds, which is incredibly short compared to the other isotopes. Pb-206 is a stable isotope, which means it does not undergo radioactive decay.

Therefore, the decay of Po-214 to Pb-206 is the fastest decay process of the four isotopes mentioned above, and the decay of U-238 to Th-234 is the slowest. The decay of Th-234 to Ra-226 and Ra-226 to Po-214 are intermediate decay processes.

To know more about isotope refer here

https://brainly.com/question/12955625#

#SPJ11


Related Questions

Calculate the ph of the resulting solution when 85 mL of 0. 3 M nitric acid is mixed with 75 mL of 0. 2 magnesium hydroxide

Answers

To calculate the pH of the resulting solution when 85 mL of 0.3 M nitric acid is mixed with 75 mL of 0.2 M magnesium hydroxide, we need to determine the concentration of the excess H+ or OH- ions after the reaction between the two solutions has occurred.

First, we need to write the balanced chemical equation for the reaction:

HNO3 + Mg(OH)2 → Mg(NO3)2 + 2H2O

This equation tells us that 1 mole of HNO3 reacts with 1 mole of Mg(OH)2 to produce 1 mole of Mg(NO3)2 and 2 moles of H2O.

Next, we need to determine which reactant is limiting and which is in excess. To do this, we can use the balanced chemical equation to calculate the number of moles of each reactant:

Number of moles of HNO3 = (0.3 mol/L) x (0.085 L) = 0.0255 mol
Number of moles of Mg(OH)2 = (0.2 mol/L) x (0.075 L) = 0.015 mol

Since the number of moles of Mg(OH)2 is less than the number of moles of HNO3, Mg(OH)2 is the limiting reactant and HNO3 is in excess.

The Mg(OH)2 will react completely with the HNO3 to form Mg(NO3)2 and H2O. The balanced chemical equation tells us that 1 mole of Mg(OH)2 reacts with 2 moles of HNO3 to produce 1 mole of Mg(NO3)2 and 2 moles of H2O. Therefore, all of the Mg(OH)2 will react with 0.015 moles of the HNO3, leaving 0.0105 moles of HNO3 in excess.

The concentration of the excess HNO3 can be calculated as follows:

Concentration of excess HNO3 = (0.0105 mol) / (0.085 L + 0.075 L) = 0.06 M

Now, we can use the concentration of the excess H+ ions to calculate the pH of the resulting solution. Since HNO3 is a strong acid, it will completely dissociate in water to form H+ and NO3- ions. Therefore, the concentration of H+ ions in

Using the formula m1v1=m2v2 , you have a 0.5 m mgso4 stock solution available.
calculate the volume of the stock solution needed to make 2.0 l of 0.20m mgso4.
0.5 l
04.0l
0.9 l
kid 0.8 l

Answers

We need 0.4 L of the 0.5 M MgSO₄ stock solution to make 2.0 L of 0.20 M MgSO₄.

To calculate the volume of the 0.5 M MgSO₄ stock solution needed to make 2.0 L of 0.20 M MgSO₄, we will use the formula m₁v₁ = m₂v₂.

1. Identify the given values:
m₁ = 0.5 M (concentration of the stock solution)
m₂ = 0.20 M (concentration of the desired solution)
v₂= 2.0 L (volume of the desired solution)

2. Plug the given values into the formula:
(0.5 M)(v₁) = (0.20 M)(2.0 L)

3. Solve for v1 (volume of the stock solution needed):
v₁= (0.20 M)(2.0 L) / (0.5 M)
v₁= 0.4 L

So, you need 0.4 L of the 0.5 M MgSO₄ stock solution to make 2.0 L of 0.20 M MgSO₄.

To know more about stock solution :

https://brainly.com/question/27304546

#SPJ11

A container of helium is at 40°C with a volume of 2. 55 L. What must the temperature be (in °C) raised to for the volume to be 4. 50 L?

Answers

A container of helium is at 40°C with a volume of 2. 55 L. The temperature must be 280.81°C raised to for the volume to be 4. 50 L.

Using the combined gas law, we can find the temperature change needed to achieve a volume of 4.50 L:

(P1V1/T1) = (P2V2/T2)

At the start, P1 = P2 since the pressure is constant. So we can simplify the equation:

(V1/T1) = (V2/T2)

Plugging in the given values, we get:

(2.55 L)/(313.15 K) = (4.50 L)/T2

Solving for T2, we get:

T2 = (4.50 L x 313.15 K) / 2.55 L

T2 = 553.81 K

Converting to Celsius, we get:

T2 = 280.81°C

Therefore, the temperature must be raised to 280.81°C for the volume to be 4.50 L.

To know more about the helium refer here :

https://brainly.com/question/4945478#

#SPJ11

What volume (mL) of concentrated H3PO4 (14. 7 M) should be used to prepare 125 mL of a 3. 00 M H3PO4 solution?

Answers

You should use about 25.51 mL of concentrated H3PO4 to prepare 125 mL of a 3.00 M H3PO4 solution.

To prepare 125 mL of a 3.00 M H3PO4 solution using concentrated H3PO4 (14.7 M), you can use the dilution formula:

M1 × V1 = M2 × V2

Where M1 is the initial molarity (14.7 M), V1 is the volume of the concentrated solution needed, M2 is the final molarity (3.00 M), and V2 is the final volume (125 mL).

Rearrange the formula to solve for V1:

V1 = (M2 × V2) / M1

V1 = (3.00 M × 125 mL) / 14.7 M

V1 ≈ 25.51 mL

Therefore, you should use approximately 25.51 mL of concentrated H3PO4 to prepare 125 mL of a 3.00 M H3PO4 solution.

To learn more about molarity, refer below:

https://brainly.com/question/8732513

#SPJ11

Research the history of DNA analysis in forensic science and create a timeline to show its evolution over the years

Answers

DNA analysis has revolutionized forensic science in the past few decades. It has become an indispensable tool for crime scene investigations, identifying suspects, and exonerating the innocent.

The history of DNA analysis dates back to 1984, when British geneticist Alec Jeffreys developed the technique of DNA fingerprinting. He used variable number tandem repeats (VNTRs) to create a unique DNA profile for each individual.

In 1986, DNA analysis was first used in a cri-minal case, where it was used to exonerate a man who had been wrongly convicted of ra-pe and mu-rder. Since then, DNA analysis has been used in several high-profile cases, such as the OJ Simpson trial in 1995 and the identification of 9/11 victims in 2001.

The technique of DNA fingerprinting evolved over the years, with the development of polymerase chain reaction (PCR) and short tandem repeats (STRs) in the 1990s. PCR enabled amplification of DNA samples, while STRs provided greater discrimination power in creating unique DNA profiles.

The first DNA database was established in the UK in 1995, followed by the US in 1998. Today, DNA databases are used worldwide for identifying suspects and matching DNA samples to cri-me scenes.

The latest advancements in DNA analysis include next-generation sequencing (NGS), which can analyze entire genomes, and mitochondrial DNA analysis, which can identify maternal lineage.

In conclusion, DNA analysis has come a long way since its inception in the 1980s. It has become an essential tool for forensic investigations and has contributed significantly to the justice system. The technique continues to evolve, and future advancements in DNA analysis will undoubtedly improve its effectiveness and accuracy.

To know more about DNA analysis, visit:

https://brainly.com/question/19340987#

#SPJ11

15. The ionization potential ……………….. across the period from left to right whereas it as one moves from top to bottom.
(a) increases, decreases
(b) decreases, increases
(c) remains same
(d) None of these

Answers

A.
Increases across a period and decreases down a group

What is the in a 12. 2 L vessel that contains 1. 13 mol of Co2 at a temperature of 42 degrees C?

Answers

The pressure of the [tex]Co_{2}[/tex]  gas in the 12.2 L vessel at a temperature of 42°C with 1.13 mol of CO2 is 2.12 atm.

The volume of the vessel =  12.2 L

Number of moles of [tex]Co_{2}[/tex] =  1. 13 mol

Temperature = 42 degrees

To calculate the pressure of the gas we need to use the ideal gas law equation.

PV = nRT

P = nRT/V

Assuming that the Universal gas constant R =  0.0821 L·atm/(mol·K).

Converting the temperature degrees into Kelvin scale

T = 42°C + 273.15 = 315.15 K

Substituting the above values into the equation:

P = [(1.13 mol) * (0.0821 L·atm/mol·K)* (315.15 K)] / (12.2 L) = 2.12 atm

Therefore, we can conclude that the pressure of the gas is 2.12 atm.

To learn more about Pressure

https://brainly.com/question/25764275

#SPJ4

The complete question is:

What is the pressure required in a 12. 2 L vessel that contains 1. 13 mol of Co2 at a temperature of 42 degrees C?

What volume of an hcl solution with a ph of 1. 3 can be neutralized by one dose of milk of magnesia?.

Answers

480 mL of the HCl solution with a pH of 1.3 can be neutralized by one dose of milk of magnesia assuming the concentration of magnesium hydroxide is 0.2 M.

To determine the volume of [tex]HCl[/tex] solution that can be neutralized by milk of magnesia, we need to know the concentration of the milk of magnesia.

Assuming milk of magnesia is a suspension of solid magnesium hydroxide in water, we need to know the concentration of magnesium hydroxide [tex](Mg(OH)2)[/tex] in the suspension.

Let's assume that the concentration of magnesium hydroxide in milk of magnesia is 0.2 M.

The balanced chemical equation for the neutralization reaction between [tex]HCl[/tex] and[tex]Mg(OH)2[/tex]is:

[tex]2HCl + Mg(OH)2 - > MgCl2 + 2H2O[/tex]

From the equation, we can see that two moles of [tex]HCl[/tex] react with one mole of [tex]Mg(OH)2[/tex].

To determine the volume of [tex]HCl[/tex] solution, we need to calculate the number of moles of [tex]Mg(OH)2[/tex] in one dose of milk of magnesia:

0.2 M = 0.2 moles / liter

Let's assume one dose of milk of magnesia is 30 mL, or 0.03 L. Then the number of moles of [tex]Mg(OH)2[/tex] in one dose is:

0.2 moles / L x 0.03 L = 0.006 moles Mg(OH)2

Therefore, this amount of [tex]Mg(OH)2[/tex] would require:

2 x 0.006 = 0.012 moles of [tex]HCl[/tex] for complete neutralization

Now, let's calculate the volume of [tex]HCl[/tex] solution needed to provide 0.012 moles of [tex]HCl[/tex].

The volume of [tex]HCl[/tex] solution can be calculated using the balanced chemical equation and the molarity of the [tex]HCl[/tex] solution:

2 moles HCl / 1 mole [tex]Mg(OH)2[/tex] x 0.012 moles [tex]Mg(OH)2[/tex] / 1 = 0.024 moles HCl

[tex]pH = -log[H+]1.3 = -log[H+]\\[H+] = 5 x 10^-2 M[/tex]

Now we can calculate the volume of the HCl solution using the equation:

moles = concentration x volume

0.024 moles = [tex]5 x 10^-2 M x volume[/tex]

volume = 0.48 L or 480 mL

To know more about  milk of magnesia refer to-

https://brainly.com/question/22066653

#SPJ11

Given that the specific heat capacities of ice and b. boiling point and vapor pressure
steam are 2.06 j/g °c and 2.03 j/g °c, respec- tively, and considering the information about
water given in exercise 22, calculate the total quantity of heat evolved when 10.0 g of steam at
200. °c is condensed, cooled, and frozen to ice at 50. °c.

Answers

The total quantity of heat evolved when 10.0 g of steam at 200°C is condensed, cooled, and frozen to ice at 50°C is 410.56 kJ.

To calculate the total quantity of heat evolved, we need to break down the process into different steps:

Step 1: Condensation of 10.0 g of steam at 200°C

The heat evolved during condensation can be calculated using the formula:

q = m × ΔHvap

where q is the heat evolved, m is the mass of steam, and ΔHvap is the molar heat of vaporization of water, which is 40.7 kJ/mol.

First, we need to calculate the moles of steam:

n = m/M

where M is the molar mass of water, which is 18.02 g/mol.

n = 10.0 g / 18.02 g/mol = 0.555 mol

Now we can calculate the heat evolved during condensation:

q1 = n × ΔHvap = 0.555 mol × 40.7 kJ/mol = 22.5 kJ

Step 2: Cooling of liquid water from 100°C to 0°C

The heat evolved during cooling can be calculated using the formula:

q = m × c × ΔT

where q is the heat evolved, m is the mass of water, c is the specific heat capacity of water, and ΔT is the change in temperature.

We need to calculate the mass of water formed from the condensation of 10.0 g of steam. Since the density of water is 1 g/mL, we know that:

m_water = m_ice = V × ρ = 10.0 g/mL × 0.92 g/mL = 9.2 g

Now we can calculate the heat evolved during cooling:

q2 = 9.2 g × 4.18 J/g°C × (100 - 0)°C = 385 kJ

Step 3: Freezing of liquid water from 0°C to -50°C

The heat evolved during freezing can be calculated using the formula:

q = m × ΔHfus

where q is the heat evolved, m is the mass of water, and ΔHfus is the molar heat of fusion of water, which is 6.01 kJ/mol.

We need to calculate the moles of water:

n = m/M = 9.2 g / 18.02 g/mol = 0.510 mol

Now we can calculate the heat evolved during freezing:

q3 = n × ΔHfus = 0.510 mol × 6.01 kJ/mol = 3.06 kJ

Total heat evolved = q1 + q2 + q3 = 22.5 kJ + 385 kJ + 3.06 kJ = 410.56 kJ

To know more about heat evolved refer to-

https://brainly.com/question/31321782

#SPJ11

In a different method of obtaining nickel, the process produces a mixture of the liquids nickel tetracarbonyl and iron pentacarbronyl.



The boiling point of nickel tetracarbonyl is 43°



the boiling point of iron pentacarbonyl is 103°


these two liquids mix together completely.



Describe the process used to separate these two liquids. (3 marks)

Answers

One possible process to separate nickel tetracarbonyl and iron pentacarbonyl is fractional distillation. Since the boiling points of the two liquids are different, the process can take advantage of this difference to separate the components.

Fractional distillation works by heating the mixture in a distillation apparatus, which causes the liquids to vaporize. The vapor is then condensed back into a liquid and collected. However, the composition of the vapor is not uniform, with more volatile components having a higher concentration.

By using a fractionating column, which contains many plates or packing material, the vapor is forced to condense and evaporate multiple times.

As the vapor travels up the column, the components with lower boiling points will vaporize and travel up more easily, while the components with higher boiling points will condense and fall back down more frequently. This process effectively separates the components based on their boiling points.

In the case of nickel tetracarbonyl and iron pentacarbonyl, the fractional distillation apparatus would be set up, and the mixture would be heated. As the vapor rises up the column, the nickel tetracarbonyl, with its lower boiling point, would vaporize and travel up the column more easily, while the iron pentacarbonyl would condense and fall back down more frequently.

The components can then be collected separately at the end of the apparatus, resulting in the separation of the two liquids.

To know more about fractional distillation refer to-

https://brainly.com/question/29037176

#SPJ11

832 J of energy is used to raise the temperature of an unknown metal from 65oC to 71oC. If the specific heat of the metal is 0. 466 J/g*C, what is the mass of the metal sample? g (five sig figs)

Answers

The formula for calculating the amount of energy required to raise the temperature of a substance is:

q = m * c * ΔT

where q is the amount of energy, m is the mass of the substance, c is the specific heat, and ΔT is the change in temperature.

We can rearrange this formula to solve for the mass of the metal:

m = q / (c * ΔT)

Substituting the given values, we get:

m = 832 J / (0.466 J/g*C * (71oC - 65oC))

m = 832 J / (0.466 J/g*C * 6oC)

m = 832 J / 2.796 J/g

m = 297.1387678 g

Rounding to five significant figures, the mass of the metal sample is 297.14 g.

To know more about substance refer here

https://brainly.com/question/13320535#

#SPJ11

What is the molarity of a solution made by dissolving 2. 0 mol of solute in 6. 0 L of solvent?

Answers

The molarity of the solution is 0.33 M.

To calculate the molarity, you need to divide the moles of solute by the volume of the solvent in liters. In this case, you have 2.0 moles of solute and 6.0 liters of solvent. Using the formula M = moles/volume, you can find the molarity of the solution:

M = (2.0 moles) / (6.0 L)
M = 0.33 M

This means that the concentration of the solute in the solution is 0.33 moles per liter. Molarity is an important concept in chemistry as it helps in determining the concentration of a particular substance in a solution and is useful in various calculations and reactions.

To know more about moles  click on below link:

https://brainly.com/question/26416088#

#SPJ11

A) Why weight of water is converted to true volume. What are the three corrections that are considered?​

Answers

The weight of water is converted to true volume because the volume of water can be affected by temperature, pressure, and dissolved impurities. The three corrections that are considered are thermal expansion correction, atmospheric pressure correction, and dissolved impurities correction.

The thermal expansion correction takes into account the fact that water expands or contracts with temperature changes. As the temperature of water increases, its volume increases, and vice versa. The correction factor is calculated based on the temperature of the water and the coefficient of thermal expansion of water.

The barometric or atmospheric pressure correction is applied because the pressure of the surrounding air can affect the volume of water. The correction factor is calculated based on the atmospheric pressure and the vapor pressure of water at the given temperature.

The dissolved impurities correction is applied because dissolved substances, such as salts or gases, can also affect the volume of water. The correction factor is calculated based on the concentration of dissolved substances in the water.

To know more about thermal expansion, refer here:

https://brainly.com/question/14092908#

#SPJ11

PLEASE HELP!!!!
If the sun heats my car from a temperature of 293K to a temperature of 338K, what will the pressure inside my car be? Assume the pressure was initially 1 atm.

Answers

The pressure inside the car will be approximately 1.16 atm after the temperature increase.

In the solution to this question, we can assume that the temperature increase is isobaric (constant pressure), so we can use the ideal gas law to calculate the final pressure of the car:

PV=nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

We know that the amount of gas in the car will remain constant, so we can write:

[tex]P_1V = nRT_1[/tex]

and

[tex]P_2V = nRT_2[/tex]

where [tex]P_1[/tex] and [tex]T_1[/tex] are the initial pressure and the temperature, whereas [tex]P_2[/tex] and [tex]T_2[/tex] are the final pressure and temperature of the car.

We are given that [tex]P_1[/tex]=1 atm, [tex]T_1[/tex]=293 K, and [tex]T_2[/tex] = 338 K. We need to find the pressure [tex]P_2[/tex]:

We can say that [tex]P_2 = (P_1 T_2/ T_1)[/tex];

= (1 atm)(338 K/293 K)

= 1.16 atm

So, the pressure inside the car will be approximately 1.16 atm after the temperature increase.

Learn more about Ideal Gas law at:

https://brainly.com/question/25290815

#SPJ1

Which two pioneer species help break up
rock to create a substrate rich in organic
material. starts the process of creating
soil in a newly created environment.

Answers

There are many pioneer species that can help break down and establish new ecosystems, but two common ones are lichens and mosses. These simple organisms are often the first to colonize barren or disturbed areas, paving the way for other, more complex species to follow.

Lichens are unique in that they are actually a symbiotic combination of two different organisms – a fungus and an algae or cyanobacterium. This partnership allows them to survive in a wide range of environments, including those with little or no soil. Lichens secrete acids that can dissolve rocks and other substrates, creating a thin layer of soil that other plants can use to establish themselves. Additionally, lichens can fix nitrogen from the air, providing a crucial nutrient for plant growth.

Mosses are another common pioneer species that can help break down and prepare new environments for other plants. Like lichens, they can grow in harsh conditions with little soil or nutrients. Mosses are able to absorb moisture and nutrients directly from the air, and can also trap sediment and organic matter, building up a layer of soil over time.

Additionally, mosses can store large amounts of water, which can be important for establishing other plants during dry periods.In summary, lichens and mosses are two pioneer species that can help break down and prepare new ecosystems for other plants. Through their unique adaptations and abilities, these simple organisms play a crucial role in establishing life in harsh or barren environments.

To know more about ecosystems refer here

https://brainly.com/question/13979184#

#SPJ11

In air, nitric oxide gas reacts with oxygen to produce nitrogen dioxide,


which appears brown in color:


2 no(g) + o2(g) = 2no,(9)


what mass in grams of nitrogen dioxide would be produced by the


complete reaction of 0.551 grams of nitric oxide gas?

Answers

The complete reaction of 0.551 grams of nitric oxide gas would produce 0.846 grams of nitrogen dioxide.

The given chemical equation shows that 2 moles of nitric oxide (NO) gas reacts with 1 mole of oxygen (O2) gas to produce 2 moles of nitrogen dioxide (NO2). Therefore, the stoichiometric ratio of NO to NO2 is 2:2 or 1:1. This means that for every 1 mole of NO gas, 1 mole of NO2 gas is produced.

To determine the mass of NO2 produced from 0.551 grams of NO gas, we need to first convert the mass of NO into moles using its molar mass. The molar mass of NO is 30.01 g/mol (14.01 g/mol for N and 16.00 g/mol for O).

0.551 g of NO is equivalent to 0.551 g / 30.01 g/mol = 0.0184 moles of NO.

Since the stoichiometric ratio of NO to NO2 is 1:1, the number of moles of NO2 produced will also be 0.0184 moles.

The molar mass of NO2 is 46.01 g/mol (14.01 g/mol for N and 2 x 16.00 g/mol for 2 O atoms).

Therefore, the mass of NO2 produced will be:

0.0184 moles x 46.01 g/mol = 0.846 grams.

Hence, the complete reaction of 0.551 grams of nitric oxide gas would produce 0.846 grams of nitrogen dioxide.

To know more about nitric oxide, visit:

https://brainly.com/question/31737620#

#SPJ11

Which has more particles a teaspoon of salt or teaspoon of sugar

Answers

A teaspoon of salt has more particles (approximately 6.20 x 10^22) than a teaspoon of sugar (approximately 7.41 x 10^21).

To compare the number of particles in a teaspoon of salt and a teaspoon of sugar, we need to understand the concept of moles.

A mole is a unit of measurement used to express the amount of a substance, and it corresponds to approximately 6.022 x 10^23 particles.

The number of moles in a given mass of a substance can be calculated using the formula:

moles = mass / molar mass.

The molar mass of common table salt (NaCl) is 58.44 g/mol, while the molar mass of table sugar (C12H22O11) is 342.3 g/mol.

Considering that a teaspoon of salt typically weighs about 6 grams and a teaspoon of sugar weighs about 4.2 grams, we can calculate the moles of each substance:

Moles of salt = 6 g / 58.44 g/mol ≈ 0.103 moles
Moles of sugar = 4.2 g / 342.3 g/mol ≈ 0.0123 moles

Now, to find the number of particles in each substance, we multiply the moles by Avogadro's number (6.022 x 10^23 particles/mol):

Particles of salt = 0.103 moles x 6.022 x 10^23 particles/mol ≈ 6.20 x 10^22 particles
Particles of sugar = 0.0123 moles x 6.022 x 10^23 particles/mol ≈ 7.41 x 10^21 particles

to know more about Avogadro's number refer here:

https://brainly.com/question/28812626#

#SPJ11

The volume of a sample of gas is 2. 8 L when the pressure is 749. 5 mm Hg and the temperature is 31. 2 C. What is the new temperature in degrees Celsius if the volume increases to 4. 3 L and the pressure increases to 776. 2 mm Hg?




a 120 C


b 280 C


c 480 C


d 210 C

Answers

The volume of a sample of gas is 2.8 L when the pressure is 749.5 mm Hg and the temperature is 31. 2°C. (c) 480°C is the new temperature in degrees Celsius if the volume increases to 4. 3 L and the pressure increases to 776.2 mm Hg

Using the combined gas law:

(P1V1) / (T1) = (P2V2) / (T2)

Where:

P1 = 749.5 mm Hg

V1 = 2.8 L

T1 = 31.2 + 273.15 = 304.35 K (temperature converted to Kelvin)

P2 = 776.2 mm Hg

V2 = 4.3 L

T2 = ?

Solving for T2:

T2 = (P2V2T1) / (P1V1)

T2 = (776.2 mmHg * 4.3 L * 304.35 K) / (749.5 mmHg * 2.8 L)

T2 ≈ 758 K

Converting T2 back to Celsius:

T2 = 758 K - 273.15 = 484.85°C ≈ 480°C

Therefore, the new temperature is approximately 480°C.

To know more about the combined gas law refer here :

https://brainly.com/question/30458409#

#SPJ11

Ifa container of nitrogen and oxygen gas holds 2. 50 atm of N2 gas and 1. 50 atm of O2 gas, what


is the total pressure inside the container?

Answers

The total pressure inside the container is 4.00 atm. This is because the total pressure of a gas mixture is equal to the sum of the individual pressures of each gas present. In this case, we have 2.50 atm of N2 gas and 1.50 atm of O2 gas.

When these two values are added together, we get the total pressure of 4.00 atm. This total pressure is also known as the partial pressure of the gas mixture.

The partial pressure of the gas mixture is the sum of the individual partial pressures of each gas present. Since the total pressure of a gas mixture is equal to the sum of the individual pressures of each gas present, the total pressure in the container is 4.00 atm.

Know more about Total pressure here

https://brainly.com/question/30255561#

#SPJ11

A 983. 6 g sample of antimony undergoes a temperature change of +31. 51 °C. The specific heat capacity of antimony is 0. 049 cal/(g·°C). How many calories of heat were transferred by the sample?

Answers

The sample transferred 1,518.7 calories of heat.

First, we need to calculate the heat absorbed or released by the sample using the formula:

q = m * c * ∆T

where q is the heat transferred, m is the mass of the sample, c is the specific heat capacity of antimony, and ∆T is the temperature change.

Plugging in the values, we get:

q = 983.6 g * 0.049 cal/(g·°C) * 31.51 °C

q = 1,518.7 cal

Therefore, the sample transferred 1,518.7 calories of heat.

To know more about heat transfer refer here:

https://brainly.com/question/31065010

#SPJ11

____SO2 + ____O2 →____SO3.


How many grams of oxygen are needed to produce 16.7 g of sulfur trioxide, SO3?

Answers

The mass (in grams) of oxygen are needed to produce 16.7 g of sulfur trioxide, SO₃ is 3.34 grams

How do i determine the mass of oxygen needed?

First, we shall determine the mole of sulfur trioxide, SO₃ produced. Details below:

Mass of sulfur trioxide, SO₃ = 16.7 grams Molar mass of sulfur trioxide, SO₃ = 80 g/mol Mole of sulfur trioxide, SO₃ =?

Mole = mass / molar mass

Mole of sulfur trioxide, SO₃ = 16.7 / 80

Mole of sulfur trioxide, SO₃ = 0.209 mole

Next, we shall determine the mole of oxygen needed. Details below:

2SO₂ + O₂ -> 2SO₃

From the balanced equation above,

2 mole of SO₃ was produced from 1 moles of O₂

Therefore,

0.209 mole of SO₃ will be produce from = 0.209 / 2 = 0.1045 mole of O₂

Finally, we shall detemine the mass of oxygen, O₂ needed. Details below:

Molar mass of O₂ = 32 g/mol Mole of O₂ = 0.1045 moleMass of O₂ = ?

Mole = mass / molar mass

0.1045 = Mass of O₂ / 32

Cross multiply

Mass of O₂ = 0.0888 × 32

Mass of O₂ = 0.178 grams

Thus, that the mass of oxygen, O₂ needed is 3.34 grams

Learn more about mass:

https://brainly.com/question/21940152

#SPJ1

When ammonium is added to water the temperature of the water decreases. Ammonium nitrates can be recovered by evaporating the water added Which explains those observations A the ammonium nitrates dissolved in water and process is endothermic B the ammonium nitrate reacts with the water and process is endothermic C the ammonium nitrates dissolved in water and process is exothermic D the ammonium nitrate reacts with the water and process is exothermic

Answers

Ammonium nitrates can be recovered by evaporating the water added explains that ammonium nitrates dissolved in water and process is endothermic. Thus, option A is correct.

When ammonium is added to water, the temperature of the water decreases. This is because the dissolution of ammonium in water is an endothermic process, meaning it requires energy in the form of heat to take place. When ammonium dissolves in water, it absorbs heat from the surroundings, which causes the temperature of the water to decrease.

Furthermore, ammonium nitrates can be recovered by evaporating the water that was added. This indicates that the ammonium nitrates dissolved in water and the process is endothermic. If the ammonium nitrate had reacted with the water, it would not be possible to recover it by evaporation.

Therefore, option A, "the ammonium nitrates dissolved in water and process is endothermic," is the correct explanation for the observations that when ammonium is added to water, the temperature decreases, and ammonium nitrates can be recovered by evaporating the water added.

To know more about Ammonium nitrates, visit:

https://brainly.com/question/5148461#

#SPJ11

27. Identify the particles that facilitate the electric conductivity of the following substances (1) Sodiun metal (ii) Sodium Chloride solution (iii) Molten Lead Bromide​

Answers

The particles that facilitate the electric conductivity of the following substances. The current is able to flow through the molten lead bromide.

(i) Sodium metal: Sodium is a metal and conducts electricity due to the presence of mobile electrons in it. These electrons are free to move around and allow electric current to flow through the metal.

(ii) Sodium Chloride solution: Sodium chloride solution is a conductive solution because it contains the ions of both sodium and chloride, which are capable of carrying electric current. The positive sodium ions move towards the negative end of the electric field, while the negative chloride ions move towards the positive end of the field.

(iii) Molten Lead Bromide: Molten lead bromide is also a conductor of electricity because it contains the ions of both lead and bromide. The positively charged lead ions are attracted to the negative end of the electric field, while the negatively charged bromide ions are attracted to the positive end of the electric field. As a result, the current is able to flow through the molten lead bromide.

Know more about electric current here

https://brainly.com/question/2264542#

#SPJ11

YALL HELP ASAP



1) If big molecules can't get absorbed in the small intestine, why aren't there other big molecules besides fiber, like complex carbohydrates, coming out in the poop of healthy people?



2) What's happening to the other big molecules like complex carbohydrates? How can we explain why the amount of complex carbohydrates could be decreasing as food travels through the digestive system?




WHATS THE ANSWER TO THESE PLS HELPME

Answers

1) The reason why other big molecules, such as complex carbohydrates, don't usually come out in the feces of healthy people is because they are broken down into smaller, absorbable units during the digestive process.

If big molecules can't get absorbed in the small intestine, why aren't there other big molecules besides fiber, like complex carbohydrates, coming out in the poop of healthy people:

Complex carbohydrates are broken down into simple sugars like glucose through the action of enzymes such as amylase, which is present in saliva and pancreatic secretions. These simple sugars can then be absorbed by the small intestine and used by the body for energy. In contrast, fiber cannot be broken down by human digestive enzymes, so it remains undigested and is eliminated in the feces.

2) What's happening to the other big molecules like complex carbohydrates? How can we explain why the amount of complex carbohydrates could be decreasing as food travels through the digestive system?

As food travels through the digestive system, complex carbohydrates are gradually broken down into smaller, absorbable units. This process begins in the mouth with the action of salivary amylase, which starts breaking down the complex carbohydrates into smaller units. As the food continues to the stomach and then to the small intestine, more enzymes, like pancreatic amylase, are secreted to further break down the complex carbohydrates into simple sugars. These simple sugars are then absorbed by the small intestine and enter the bloodstream, where they can be used for energy or stored for later use. This is why the amount of complex carbohydrates decreases as food travels through the digestive system.

To know more about digestive system:

https://brainly.com/question/29694477

#SPJ11

A man heats a balloon in the oven. If the balloon initially has a pressure of 860. 0 torr and


a temperature of 20. 0 °C, what will the temperature (in Kelvin) of the balloon be after he


increases the pressure to 3. 00 atm? (Hint: Convert to atmospheres). Do not include


units in your answer.

Answers

The temperature of the balloon after increasing the pressure to 3.00 atm is 608 K.

First, we need to convert the initial pressure from torr to atm, which is 860.0 torr/760 torr/atm = 1.13 atm.

Using the combined gas law, we can solve for the new temperature:

(P₁x V₁)/T₁ = (P₂x V₂)/T₂

Where P₁ = 1.13 atm, V₁ is constant, T₁ = 20.0 + 273.15 K (convert from Celsius to Kelvin), P₂ = 3.00 atm, and we want to solve for T₂.

Substituting the values and solving for T₂:

T₂ = (P₂ x V₁ x T₁)/(P₁ x V₂) = (3.00 atm x V1 x 293.15 K)/(1.13 atm x V₂)

Since V₁ and V₂ are equal (since it is the same balloon), we can simplify to:

T₂ = (3.00 atm x 293.15 K)/1.13 atm = 608 K

Therefore, the temperature of the balloon after increasing the pressure to 3.00 atm is 608 K.

To learn more about temperature, here

https://brainly.com/question/11464844

#SPJ4

If an area has a very cold climate, it is most likely that the area

Answers

If an area has a very cold climate, it is most likely that the area experiences low temperatures throughout the year.

Cold climate regions are often characterized by sub-zero temperatures and limited precipitation, which can lead to dry and barren landscapes. These regions are typically found in the polar regions of the world, such as the Arctic and Antarctic, as well as in high-altitude mountain ranges.

The cold climate can have a significant impact on the environment, with many plants and animals adapted to survive in the harsh conditions. In cold climates, plants and animals often have adaptations that help them conserve heat and energy, such as thick fur coats, hibernation, or slow growth rates.

This means that the biodiversity in cold climate regions may be different than that found in more temperate regions.

Human communities that live in cold climate regions have also adapted to the extreme conditions, often relying on traditional techniques to survive. For example, the Inuit people of the Arctic have developed an intricate knowledge of the land and sea to hunt, fish, and gather food. They have also developed specialized tools and clothing to withstand the cold temperatures.

Overall, a cold climate can have a significant impact on the environment and the communities that rely on it. Understanding the unique challenges and adaptations of these regions is crucial for effective conservation and management.

To know more about cold climate, visit:

https://brainly.com/question/11673115#

#SPJ11

An unknown gas with a mass of 205 g occupies a volume of 20. 0 L at 273 K and 1. 00 atm. What is the molar mass of this compound?

Answers

The molar mass of the unknown gas is approximately 221.6 g/mol.

To find the molar mass of the unknown gas, we can use the ideal gas law equation:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.

First, we need to convert the given values to their appropriate units:

mass (m) = 205 g

volume (V) = 20.0 L

pressure (P) = 1.00 atm

temperature (T) = 273 K

Next, we can rearrange the ideal gas law equation to solve for the number of moles:

n = PV / RT

Substituting the given values, we get:

n = (1.00 atm) x (20.0 L) / [(0.08206 L atm/mol K) x (273 K)]

n = 0.926 mol

Now we can calculate the molar mass of the unknown gas by dividing its mass by the number of moles:

molar mass = mass / n

molar mass = 205 g / 0.926 mol

molar mass = 221.6 g/mol

To know more about molar mass refer to-

https://brainly.com/question/22997914

#SPJ11

A 20. 0 g lead ball is heated in a Bunsen burner to 705 degrees celsius. It is then dropped into a 500. 0 g water bath. What is the initial temperature of the water if the final temperature is 35 degrees celsius? The C of lead is 0. 13 J/g degrees C.


[ Remember: Ch2o = 4. 18 J/g degrees celsius]

Answers

The initial temperature of the water is 25.8 °C. As a result, the lead ball loses heat rapidly when it is placed in the water bath, causing the water temperature to increase significantly.

What is  Temperature?

Temperature is a measure of the average kinetic energy of the particles in a substance. It is a physical quantity that describes how hot or cold an object is. Temperature is usually measured using a thermometer and is commonly expressed in units such as degrees Celsius (°C), Fahrenheit (°F), or Kelvin (K).

The energy gained by the water can also be calculated using the formula:

Q = mcΔT

where Q is the energy gained (in joules), m is the mass of the water (in grams), c is the specific heat capacity of water (in J/g°C), and ΔT is the change in temperature of the water (in °C).

We can calculate Q as follows:

Q = (500.0 g)(4.184 J/g°C)(35°C - T)

where T is the initial temperature of the water.

Since the energy lost by the lead ball is equal to the energy gained by the water, we can set these two equations equal to each other and solve for T:

(20.0 g)(0.13 J/g°C)(705°C - T) = (500.0 g)(4.184 J/g°C)(35°C - T)

Simplifying and solving for T gives:

T = 25.8°C

Therefore, the initial temperature of the water is 25.8 °C.

To know more about Temperature, visit;

https://brainly.com/question/26866637

#SPJ4

Identify the type of reaction.


HgO --> Hg + O2


Combustion


Decomposition


Synthesis


Double Displacement


Single Replacement

Answers

The given reaction HgO → Hg + O₂ is a decomposition reaction.

The balanced chemical reaction is  2HgO → 2Hg + O₂

A decomposition reaction is a type of reaction in which a particular compound or molecule dissociates or decomposes to form smaller constituent particles.

Combustion is the burning of any substance in presence of oxygen to give out carbon dioxide, water and heat.

In Synthesis reaction , new compounds are synthesized from different reactants.

Displacement reactions involve exchange of cations and anions from reactants to form different products.

To know more about decomposition here

https://brainly.com/question/14024847

#SPJ4

What mass in grams of sucrose must be dissolved in 2000 grams of water to make a 0. 1m solution?

Answers

We need to dissolve 6.85 grams of sucrose in 2000 grams of water to make a 0.1 M solution.

To calculate the mass of sucrose needed to make a 0.1 molar solution in 2000 grams of water, we need to use the formula:

[tex]m = n *M * MW[/tex]

Step 1: Calculate the number of moles of sucrose needed

Molarity (M) = 0.1 mol/L

volume of solution = 2000 grams of water ÷ density of water = 2000 mL

We need to calculate the number of moles of sucrose that would be present in 2000 mL of a 0.1 M solution:

moles of solute (n) = [tex]M * V = 0.1 mol/L *2.0 L = 0.2 moles[/tex]

Step 2: Calculate the mass of sucrose needed

Molecular weight of sucrose is 342.3 g/mol.

We can use the formula:

[tex]m = n * M * MW \\m = 0.2 moles *0.1 mol/L * 342.3 g/mol = 6.85 g[/tex]

To know more about Molecular weight, here

brainly.com/question/18948587

#SPJ4

Other Questions
Debnil has 6 teaspoons of salt. The ratio of teaspoons to tablespoons is 3 to 1. How many tablespoons of salt does Debnil have? A wheatfarmer is converting to com because he believes that com is a more lucrative crop. It is not feasible for him to convert all his creace to com at onceHe is farming 100 acres of com in the current year and is increasing that number by 30 acres per year. As he becomes more experienced in growing com his output increas. He currently harvests 130 buhof com per acre. But the yield be increasing by buhol per acre per year. When both the increasing berage and the increasing yield are considered, how rapidly Withe total number of but of corn currently increasing bushes per year Pantaln es cuadros collar zapatos chaquete ts trajes de bao algodn llama Tivo listas Mara te gusta la roja s pero me gusta ms la de es ms original What is a minimum monthly payment? Someone please help!! (20 POINTS!) The force What is the least common dominator of 4/13 and 4/5? Each airport has a runway that is about 500 m long.when it lands, the speed of the aeroplane is 40 m/s.explain why the airline should not use an aeroplane that has more mass andneeds a higher speed for landing. What is hypothyroidism? How would this condition affect the patients general health? If the patient were suffering from hyperthyroidism, how would the effect on the patients general health differ? FRANK IS DESIGNING 30-KILOMETERS TRAIL RUN WATER WILL BE GIVEN TO THE RUNNERS 4000 OW MANY WATER STATIONS WILL THERE BE The captain of the baseball team hit a homerun 1 out of every 6 at-bats. What is the probability that the captain will hit a homerun on his next 2 at-bats?Determine which simulation models the situation. Select Yes if the simulation can be used to model the situation or No if the simulation cannot be used to model the situation. Yes NoOOUsing a six-sided number cube to model the situation, assign the number 1 to represent the captain hitting a homerun and the number 2 to represent not hitting a homerun. Using a stre-sided number cube to model the situation, assign the number 1 to represent the captain hitting a homerun and the numbers 2 to 6 to represent not hitting a homerunUsing a coin flip to model the situation, assign heads to represent the captain hitting a homerun and tails for not hitting a homerunOUsing a random number generator between 1 and 60 to model the situation, assign the numbers 1 to 10 to represent the captain hitting a homerun and the numbers 11 to 60 to represent not hitting a homerun. why is North Korea isolated from other countries The length of a hollow pipe is 297 cm. Theair column in the pipe is vibrating and hasfive nodes.Find the frequency of the sound wave in thepipe. The speed of sound in air is 343 m/s.Answer in units of Hz. The Titanic had a mass of 52,800 tonnes and was travelling at 41.74 km/h whenthe iceberg was sighted. By the time it hit the iceberg 30 seconds later, it hadslowed to 38.5 km/hWhat was the force? Calculate the area of a circle 4ft ,2in,18ft,5.2in,7.3in,14cm,9m,3m,9.2cm,7m,5m,6m Help please asap need help. Evelyn has a coupon that will reduce her grocery bill by 8%. If c represents the cost of Evelyn's groceries, which expression represents Evelyn's grocery bill? a) c-0. 08 b) c+0. 92 c) 0. 08cd) 0. 92c (Being Timed) Which was a result of the Rebellion of 1641?A. The power of the English grew. B. The Irish converted to Catholicism. C. The Irish won the respect of the English. D. Calls for Irish independence was no longer heard. This is on Edge [4 marks) Find the unit tangent vector T and the principal unit normal vector N at t=0 for = r(t) = ti+at+j+ + 3 tk. NI Relevez tous les moyens par lesquels Gronte tente d'viter de payer.Quel effet produit la rptition de la rplique de Gronte? Que nous indique la dernire didascalie